Transport properties of quantum-classical systems
Transport properties of quantum-classical systems
Publication Type:
Journal ArticleSource:
Journal of Chemical Physics, Volume 122, Number 21 (2005)URL:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-21244437963&doi=10.1063%2f1.1925268&partnerID=40&md5=4e6c23381c9d02e3f4ed04cf373ae9c3Keywords:
Computer Simulation, Correlation methods, Harmonic analysis, Harmonic oscillators, Kinetic energy, Matrix algebra, Oscillators (electronic), Potential energy, Quantum Theory, Quantum transfer processes, Quantum-classical systems, Rate constants, Spectral density function, Transport propertiesAbstract:
Correlation function expressions for calculating transport coefficients for quantum-classical systems are derived. The results are obtained by starting with quantum transport coefficient expressions and replacing the quantum time evolution with quantum-classical Liouville evolution, while retaining the full quantum equilibrium structure through the spectral density function. The method provides a variety of routes for simulating transport coefficients of mixed quantum-classical systems, composed of a quantum subsystem and a classical bath, by selecting different but equivalent time evolution schemes of any operator or the spectral density. The structure of the spectral density is examined for a single harmonic oscillator where exact analytical results can be obtained. The utility of the formulation is illustrated by considering the rate constant of an activated quantum transfer process that can be described by a many-body bath reaction coordinate. © 2005 American Institute of Physics.