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Transport properties of quantum-classical systems
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Correlation function expressions for calculating transport coefficients for quantum-classical systems
are derived. The results are obtained by starting with quantum transport coefficient expressions and
replacing the quantum time evolution with quantum-classical Liouville evolution, while retaining
the full quantum equilibrium structure through the spectral density function. The method provides
a variety of routes for simulating transport coefficients of mixed quantum-classical systems,
composed of a quantum subsystem and a classical bath, by selecting different but equivalent time
evolution schemes of any operator or the spectral density. The structure of the spectral density is
examined for a single harmonic oscillator where exact analytical results can be obtained. The utility
of the formulation is illustrated by considering the rate constant of an activated quantum transfer
process that can be described by a many-body bath reaction coordina@5cAmerican Institute

of Physics[DOI: 10.1063/1.1925268

. INTRODUCTION yields expressions for transport coefficiéritsthe evaluation
of which entails carrying out quantum-classical evolution of

Transport properties, such as diffusion and viscosity cooperators and sampling over the quantum-classical equilib-
efficients or rate constants, are some of the most basic quarium density. More general expressions for time correlation
tities that are used to characterize the dynamical behavidunctions have been derived by taking the quantum-classical
systems. For equilibrium systems statistical mechanics prdimit of the quantum correlation functioff. The evaluation of
vides well-defined expressions for transport coefficients irthese correlation functions involves forward and backward
terms of time integrals of flux—flux correlation functiohs. guantum-classical time evolution of the operators and sam-
The evaluation of these correlation function expressions ermpling based on the spectral density that retains the full quan-
tails sampling over an equilibrium ensemble of initial condi- tum equilibrium structure. The structure of the propagator in
tions and time evolution of dynamical variables or operatorsthis correlation function expression is reminiscent of that in
While such calculations are routinely carried out for classicathe forward-backward influence functional technidti@nd
many-body systems, their evaluation for quantum-it may be possible to employ similar approximations to the
mechanical systems is a very challenging problem. Part gfropagator in a quantum-classical context. Linearization
the difficulty stems from the fact that no methods exist formethods have also been used to incorporate nonadiabatic ef-
solving the time-dependent quantum equations of motion fofects in the evaluation of time correlation functiofis*®
a large condensed phase system; thus, in contrast to classical In this article we construct general quantum-classical ex-
systems, direct calculations of transport properties by quarpressions for transport properties, starting from a full quan-
tum molecular dynamics are rarely attempfed. tum treatment of the entire many-body system. The transport

In some instances a full quantum-mechanical treatmentoefficient formulas again retain the full quantum equilib-
is unnecessary. In many applications the quantum characteium structure of the system and entail carrying out quantum-
of certain degrees of freedoftermed the subsysténmust  classical Liouville evolution of operators but allow much
be accounted for, while the remainder of the systbath more flexibility in how the quantum-classical limit is taken.
with which they interact may be approximated by classicalThe resulting expressions are flexible enough to be appli-
mechanic$® For example, a decomposition of this type is cable to a variety of transport properties, including the cal-
appropriate for a subsystem composed of light particles, likeulation of the rate constants of activated nonadiabatic reac-
electrons or protons, interacting with a solvent of heavy mol+ions.
ecules. Thus, transport properties, such as quantum-particle In Sec. Il we derive a number of general expressions for
diffusion coefficients, rate coefficients of proton or electronquantum transport coefficients in terms of Wigner trans-
transfer processes and vibrational relaxation rate coefficienferms. These expressions provide a convenient separation of
in the condensed phase, may be computed in a mixethe guantum equilibrium structure in the spectral density
quantum-classical framework. function from the time evolution of operators. While for-

Assuming the dynamics is described by the quantummally exact, the results in this section do not provide a com-
classical Liouville equatioﬁ‘,12 the linear response theory putationally tractable route to the evaluation of transport

properties because of the instabilities inherent in the simula-

aElectronic mail: hkim@chem.utoronto.ca tions of the ngner-transformed expressions. The _spectral
PElectronic mail: rkapral@chem.utoronto.ca density function plays a central role in this formulation. To
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examine its structure, in Sec. lll we consider a single harwhere lowercase and uppercase symbols refer to the sub-
monic oscillator in thermal equilibrium for which this func- system and bath, respectively. In Sec. IV we shall show how

tion can be analytically determined. In Sec. IV we employthe transport coefficients for a system partitioned in this way

the results of Ref. 14 to take the quantum-classical limit ofcan be evaluated in the quantum-classical limit. For the

the evolution equation for the spectral density and use thipresent, however, it is convenient to first take a Wigner trans-

expression to obtain computationally useful expressions foform [22] over all degrees of freedom, subsystem plus bath,

the transport coefficients. The results are illustrated by derivand later single out the subsystem and bath degrees of free-
ing expressions that can be used to simulate the rates ofom for different treatments. Introducing a coordinate repre-

activated nonadiabatic chemical reactions. The conclusionsentation{Q}={q}{Q} of the operators in Eq(3) (calli-

of the study are given in Sec. V. graphic symbols are used to denote variables for the entire
system, making a change of variable§,=R,-2,/2, Q,
Il. QUANTUM TRANSPORT COEFFICIENTS =R.+ 2,12, etc., and then expressing the matrix elements in

terms of the ngner transforms of the operators, we have
For a quantum-mechanical system in thermal equilib-

rium a transport coefficient,g may be determined from the 1 -
time integral of a flux—flux correlation function, Aag(t) = /_g o d)‘ A1 (AW X1, 1) Bu( X2, 1)
o A 1 o | R R
= [ = — —[i 1 (i . .

AaB Jo di(jasjs(t) ,Bfo dt<ﬁ[lB(t),A]>, (1) xmfdzldzze (ilh)(P-21+Py2Z))
wherej,=A |/ﬁ)[H Al is the flux of A, with an analogous ><<R + 2 Ui/ +i)) R, - é>
expression foer, [-,] is the commutator, and the angular 2 2
brackets (A;B)=(1/8)[5d\(e*""Ae™"B) denote a Kubo- Zo| i 2z,
transformed correlation function, wit,a—(kBT)‘1 The equi- R+ 2| @ PHAMHIIN | =5 /) (4)

librium quantum canonical average {s )= Z Tr---gPH
whereZ, is the partition function. In S|mulat|ons it is often In writing this equation we used the fact that the matrix
convenient to consider the time-dependent transport coeffelement of the operatc@(t) can be expressed in terms of its
cient defined as the finite time integral of the flux—flux cor- Wigner transformO,(X,t) as

relation function, 2
! RS Ao 1/ - ~ <R__ é(t) R+E>
Aag(t) =f dt’(jajs(t)) =(A;B(1)) = 3 %[B(t),A] :
0
= dPe (MP20,(x1), 5
2 (2’ J P (A t) (5
where we assumei®, A]=0.%" The transport coefﬂment MaY  where v is the coordinate-space dimension and the Wigner
then be obtained from the plateau valuergf(t).* transform is defined by
A. General expressions for N ,g(f) Ou( Xt :dee(i/ﬁ)P-Z R - élét R+ E 6
WD) S |00|R+2 ). (©®)

We first establish some general relations for the transport
coefficients that will prove useful in the subsequent reduciwe use the notation R=(r,R), P=(p,P) and X
tion to the quantum-classical limit. Writing the second equal=(r R, p,P) where again the lowercase symbols refer to the
ity in Eqg. (2) in detail and inserting arbitrary time variables  subsystem and the uppercase symbols refer to the bath

andt,, we can write the transport coefficiengg(t) as We define the spectral density by
1 (f A - :
_ 1 . _Bh 1 . _
Mag(t) BZq f d\ Tr(A(=izN)B(t)e™”") WXy, Xo,t) = m J dZ,d 2,67 MP21P2 2)
1 . Z,
—— [ d\Tr(A(ty = iAN iAo 22
BZQ f ( (t; ) <R1 Rz2=~, >
(iImHE R —(i/m)At’ B Z P Z
x gl B(t,)g (M grpr) (3) ><<R2+ | e w, - 31> (7)

wheret’ =t+t; —t,. To insert the times,; andtz, we used the
fact that the time evolution of an operat@ is given by ~ Wwhich satisfies the following relations:

1A 1A
O(t) e(l toe ‘ t . . W(XlaXZIt) :W(X21X11_t)1 (8)
We partition the entire quantum system into a subsystem

plus bath so that the Hamiltonian is the sum of the kinetic
energy operators of the subsystem and bath and the potential

energy of the entire systenh:,l:lSz/ZM +ﬁ2/2m+V(q,Q), The last equality may be written as

WX, X, t =i BR) = WX, X t) (9)
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\7\/(;(1, Xy, - w) = e—ﬁﬁw\’/'\/( Xy, X, ), (10)  Where we have written the evolution equation Yoras
~ J— ] —
where the Fourier transform is defined a$(w) EW(XLXZ,I) =iLy(XDW(Xq, X, t). (17
=7, dte“'f(t). If we let
B Equivalent forms of the evolution equation can be derived as
— 1 . . .
W(Xy, Xy, 1) = —f ANW(Xy, Xy, t +i50), (11 follows: Taking complex conjugates on both side of ELj)
BJo gives
. - J— -

we can write the transport coefficient as EW( Xopy X 1) = L XWXy Xy = 1), (18)

Aag(t) = f A, A (AW A 1) Bl A 1) where we used the relatioiis,,=iLy and Eq.(6). If we then

_ exchange variable&’; < X, andt« —t, we get
XW(Xl,Xz,t+tl_t2). (12)

a J— J—
. . o o —W(X, X, 1) = = iLy (X)W Xy, X, t). (19
Equation(12) involves the quantityA)y/(X;,t;) which is it v w2 v

not easy to; computfa. AStartmg with the Heisenberg equatloi&n alternative proof of these expressions is given in Appen-
of motion, A=(i/A)[H,A], and taking its Wigner transform dix A. From these results it also follows that

we have, g— o

q i | W, X, = (LX) = LX) WX, X D). (20)
—Au( Xty = —(H( X MDA (X, t)
dt i From the last equality in Eq2), the transport coefficient

= A Xy, ty €PAH () can be written in a form involving the commutator Afand

2 (A, B(t). Performing a set of manipulations similar to those used
= %H\I\I(Xl)&n(T)A\N(XLtl) above, we may show thatg(t) is also given by,

. i
= iILW(AXDAM X, 1). (13 Mag(t) = Y. f A dALAN XL, ) By X, t)

Here, the Wigner-transformed Hamiltonian isly(X) . B
=P?/2M+V\(R) and A is the negative of the Poisson- XWXy, A E =1+ 1~ 1)
bracket operator, = W(X, Xp,t +t —1))]. (22)

A= 57; - %R - 572 Vo, (14)  Comparing this result with Eq16), we have

Wh_ere the direction of an arrow ind_icates the direction in EV_V(Xl,XZ,t) - —I—[W(Xl,Xz,t—ih,B) — WXy, X, 1)]

which the operator acts. To obtain this equation we used the dt nB

relation (AB)y=An(X)e®V2)B, (X) for the Wigner trans- 2

form of a product of operators. =- h_ﬁ|mW(X1,Xz,t), (22
Using the properties of the phase-space derivatives of

the Wigner-transformed Hamiltonian and integration bywhere Im stands for the imaginary part, and we used(&q.

parts, one may establish that Thus, we have
2
f dX (LX) AW X,1)G(X) Aas(t) = % f dX AN, ) By( Ao, 1)
XImW(Xl,Xz,t+t1_t2). (23)
== f dX Aw(X,1))ILX)G(A), (15 _ : :
We may choose the timegandt, to yield various forms

for the correlation functions. For example, setting0 and

for any functionG(X). Making use of this result, it follows t,=t, Eq. (16) reduces to

that the transport coefficient can be cast in the form

)\AB('[) = —f XmdXZAV\I(XLt]_)BW(Xz,tz) )\AB(t) =- f XmdXZA\N(Xl)BVV(XZat)

Wi XLy X)W, Xy, 0
XILw( XWX, Xo,t + 11— ty) w(XDW(X, Xy, 0)

_ _f A, AX A Xy t) Bl Xarty) :f A A (IL (X)) Ap( X)) By X2, 1)

XWXy, Xy, 0). (24)

a J—
X —W(X, X, t +11 — 1), 16 .
at (4,2 17 %) (16 Finally, we observe that the initial value ¥,
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W(Xl!XZ 0) - e—(Zi/ﬁ)Pz-(Rz—Rl) _ 0.12
S 0.08
X —— ’_1 J dze i)(P1=Pp)-2 %: 0.04
Zo(\2mh)? g o
=z i =z T -0.04
X\ 2R, — Ry — 5 e Pt Rl—z , (25)

involves only a single propagator, whil&/ defined in Eq.
(11), which appears in the transport coefficient expression,
still involves two imaginary time propagators.

The Wigner representation results obtained in this sec- 0.08
tion involved no approximations and are as difficult to solve = 0.04
for a many-body quantum system as the original expressions S0
for the transport coefficients. However, as we shall see in < 004
Sec. IV, they form a convenient starting point for approxima- =2 0.08
tions leading to quantum-classical limit expressions. E | > 3
=<5
R s
I1l. SPECTRAL DENSITY FOR A HARMONIC P2 27373

OSCILLATOR ) .
FIG. 1. Real(upper pangland imaginary(lower) parts ofW(x;,X,,0) as a

. - _ function of ry, and py, for re=p;=1 and Bhw=1. Results are reported in
The spectral densitW plays a central role in the expres terms of the dimensionless unisuw/#)¥2r and (mo/A)"%p’

sions for the transport coefficients and its calculation is a
difficult task, even at=0. Consequently, it is instructive to
examine its structure for a single harmonic oscillator where a
complete analytical solution may be obtained.

For a single harmonic oscillator, the system Hamiltonian )
e i S 2nr2., A2 = 2i(ripy = pira}l. (29
is given byH=(1/2)mw*(p'+G), wherem and » denote
mass and frequency, respectively, and we have rescaled e phase factor couples the position and momentum vari-
momentum operator efsEE’/(m“f)' The propagator for this - gpjes in the twox, and x, phase spaces. If we defing,
Hamiltonian is well knowf" and is given by =X;—X, and X.=(x;+%,)/2, with a similar change of vari-

A 12 ables for the momenta, ER9) can be written as
(qle™g’) = <;> exp| - o{(c2+q')
27 sinhBho 2

xcothBhw - 2qq’ cschﬁﬁw}}, (26)

2
W0 = 2 ) ex-al(es - 17+ 05~ ey

a\2
W(Xy,%5,0) = (;) exd- a{(riz‘F pﬁ)(ﬁ

= 2i(per 12— reP1o)}l, (30)

with a=mew/#. Substituting Eq(26) into Eq. (7) specialized  \hare now the phase factor couples the relative and center of
to the single harmonic oscillator and integrating ozgand | oo positions and momenta. In Fig. 1, we iy, %,,0)

Z,, we obtain versusr, andpj, for Bhw=1 andr.=p.=1.

a\2 The fact thatW(x;,x,,0) is symmetric with respect to
W(Xq,%,t) = (—) exd—a{(ri+r3+ p}%+psdc, the planep;,=-r, for p_=r.=1 is evident in the figure. The
™ real part ofW contains a Gaussian function that is sharply
+(rqrp + p1Pa)Ca(t) + (rips — pira)cs(t)}, peaked around,,=p;,=0 and the imaginary part d¥V is

small in the vicinity of the origin. Wherr,, and p;, are

(27 o . .
small, we can represent the function in a multipole expansion
wherex=(r,p) and and keep only the first order term to get

= a a

€1 = cottfhal2), W(xy, %5, 0) = —— exp[— Z(pg2 ri)} 50x)
’7TC1 Cl

Cy(t) == 2(cq coswt +i sinwt), (28) = pydXo) S(Xy0) . (30)
c3(t) = 2(c, sinwt — i coswt). In this caseW reduces to the Wigner-transformed equilib-

rium density matrixp,y for the center of mass variables of
From this explicit expression folM(x;,x,,t) one can easily two phase spaces. This result is also expected to hold for
see that the relations in Eg®) and (9) are satisfied. general potentials. For other valuespifandr,, we find that
The initial value ofW is the peak rotates around the origin, maintaining its shape.
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0.12

0.08

0.04

Re[W(x4, x5, 0)]

-0.04
0.08 | ]

\
0.04 | P :
i \

Im[W(x4, X5, 0})]

-0.04 F v 1

-0.08 .

-1.5 A1 -0.5 0 0.5 1 15
M2

FIG. 3. Real(upper pangland imaginarylower panel parts of\W(xy,X,,t)
for wt=m/4.

FIG. 2. Plots of the realupper paneland imaginary(lower) parts of W
versus(dimensionleskr 1, along the linep;,=-r,, for Bhw=0.1(solid lineg ) )
and Bw=10 (dashed lines tively, we can rewrite Eq. (27) as W(Xq,Xy,t)

=W(x4(t),%,,0). In more general situations it is not possible

In order to illustrate the quantum effects more clearly,to obtain such a simple form involving the phase-space co-
W(x;,%,,0) is plotted in Fig. 2 forgfw=0.1 andphw=10, Ordinates at time.
corresponding to small and large quantum character, respec- N Fig. 3, we plotW(x;,x;,t) at wt=m/4 with the other
tively. parameters, the same as in Fig. 1. Comparing this figure with
As the value of8fiw becomes larger, negative values of Fig. 1, one can see that the peak moves along thepipe
the real and imaginary parts of th function become sig- =~T12 With little change in its shape. Figure 4 shows pts
nificant. For8=0, W is proportional to a delta function as in VErsusri, with p;,=-ry, for three different time values. The

Eqg. (31).

0.12 T T T T T
A. Equation of motion for W
. = 0.08F
The general form of the equation of motion f&t), and —_ 3 ;
henceW(t), was given in Eqs(17), (19), and (20). For a & 0041 i
harmonic oscillator the operator §im\/2) can be replaced g S
by the first term in its expansion, so that § 0 5,' : 17
T TR
9 T 04l Uil
EW(XLXZIt) = {W(X11X21t)1HW(X1)}| ¢ 2; En:
008f |}
:{HW(XZ)vw(X]JXth)}! (32) 011 Iﬂ I : I
where{-,} denotes the Poisson bracket; th\Mgt) evolves 0.06 1 .
through the classical equations of motion. This is not surpris- = ; i
. . . . - ot .
ing since the quantum and classical evolutiorpaindr are S 002k I‘ i
the same for a single harmonic oscillator and quantum ef- 5 PHEEAT
fects enter through the initial condition in the Wigner repre- 2 002 §iiiii
sentation. We may verify that these equations of motion also E Y
follow directly from the analytical solutions by differentia- -0.06 1 i i
tion with respect to time. In particular, noting that ! t
01F . : .

dcyl d(wt) =c5 and dcs/ d(wt) =—c,, we can easily confirm the . . !
above equations of motion.

Finally, we observe that using the explicit expressions
for the time eyolutlon of the position and .momentur(t) FIG. 4. Plot of W(x,X,,t) function vsr, for wt=0 (solid line), wt="77/8
=r coswt+p’ sinwt and p’(t)=p’ coswt—r sinwt, respec- (long dashed linpand wt=97/8 (short dashed line
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dynamics is periodic, as expected with strongly oscillatory 2 . ,
behavior for long times. It is of interest to note that when — Aag()=— > T dXAz“1(X))Bg2*2(X,)
wt=7 the W function depends on the difference variables apalapay © 1=1

only through the phase factor, g —
% Ewalalazaz(xlaxzyt): (36)

a\? ,
W(xl,xz,g) = (;) expl - af(rZ + p;?)4c

+2i(periz—repr}l (33

For the harmonic oscillator it is also possible to obtain
analytical expressions for general quantum correlation func-

. . . . — —(i/h . .
tions, and these results are given in Appendix B. = | I dze M Prza+P22z)
i=1

where the matrix elements 0¥ are given by

Waialaéaz(xla X21 t)
2

e(i/ﬁ)l:n

, z z
X<a1;R1|<R1+El R2‘52>|Q2JR2>

IV. QUANTUM-CLASSICAL SYSTEMS

In this section we show how to take the quantum- ><(a§;R2|<R2+Z—2 e imHt Rl_é>|a1;Rl>
classical limit of the general expressions for the transport 2 2
coefficients given in Sec. Il. As discussed earlier, the general 1 1

equations in the Wigner-transformed representation are in- (37)
tractable as they stand, except for very simple harmonic sys-
tems, since they are equivalent to a full quantum mechanicz%llith t

treat t of th ¢ lus bath. Bv taking th ¢ =t-iBh. From the definition in Eq(37) one may
reatment of the system pius bath. by taking the quantuMg, .\ ihat these matrix elements satisfy the symmetry prop-
classical limit of these expressions we can obtain transpo

-
g : ) - erties,
coefficient expressions that are amenable to solution using

surface-hopping methods. The computation of the initial P . P
value of W is still a challenging problem but far less formi- WAAE22(Xg, Xa) 1) = W29 (Xg, X, — 1),
dable than the solution of the time-dependent Schrédinger or (39
von Neumann equation for the entire quantum system since W“iC“l“é“Z(Xl,Xz,t— inB) =W“1“1“2“§(X1,X2,t)*,
it involves only imaginary time propagators.

To make connection with surface-hopping representawhich are the analogs of Eq&) and(9).

X_—
Zo (2mh)?

tions of the quantum-classical Liouville equatiome first The quantum-classical limit of the transport coefficient
observe thai\,(X;) can be written as is obtained by evaluating the evolution equation for the ma-
trix elements ofW in the quantum-classical limit. This limit
. Zi |~ z was taken in Ref. 14 and the result was found t&’be
An(X1) :j dzle('/mpl'zl<"1‘5l An(Xp) |11+ _1>,
& N ’
(34) WXy, X 1)
whereAw(Xl) is the partial Wigner transform ofA, defined 1
as in Eq.(6), but with the transform taken only over the bath == > L ayp8,(X0)
degrees of freedom. The partial Wigner transform of the B, B18Y8, re

Hamiltonian is Hy=P2/2M+p2/2m+Vy(§,R) = P2/2M
+F1W(R), whereﬁW(R) is the Hamiltonian for the subsystem
in the presence of fixed particles of the bath. The adiabatic XWPLBB (X, X 1), (39)
eigenstates are the solutions of the eigenvalue problem,

ﬁW(R)|a; R=E,(R)|a;R). We may now express the sub- which has the same structure as E2f). The quantum- clas-
system operators in the adiabatic basis to obtain sical Liouville operator in the adiabatic basis is given by

X B3y 0y, ~ 1Ly 58, (X2 Ou ) Oy )

iﬁaarﬁﬁr(x) = [iwaa,(R) + iLaa’(X)]éaﬁﬁa’,B’

, z
An(X) = 2 Jdzle('m)pl'zl<r1‘El|a1;R1>

ajaq - Jaa’,ﬁﬁ'(x)! (40)
aya ’ 4 h he classical luti tor is defined
X A% (X Rylr + =), 35 where the classical evolution operator is defined as
Ay 1)<a1 alr 2> (35)
, P9 1 -
WhereA(,*Vl"‘i(Xl):ml; Ryl Aw(X)| el Ry). L aw = MR 2[FW(R) " FW(R)]aP’ (41)
Inserting this expression and its analog By(X>) into
Eq. (16) for t;=t,=0, we have with
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P 1 d various forms of the evolution equation @given in Egs.
Jaar g5 (X =~ daﬁ{l +25(R) ap] bup (39) and (43).
P * 1 * (9
-—d,,|1+=S, (R — |5, 42
M“ﬁ{ 2“ﬁ()ap] o (42

Here the frequency w,, (R =[E (R -E,(R)]/#A, the
Hellmann-Feynman forceé=,=—(a;RdVy(d,R)/IRa;R),
=(a;RIV]|B;R), and S,z=(E,~Egd,d(P/M)d,sl%. I cient expression, consider the calculation of the reaction rate

view of Egs.(17) and(19) we can also write the following for the interconversiolA= B between metastabl& and B

A. Reaction rate coefficient

equivalent forms of the evolution equation: states. We suppose that the reaction can be characterized by a
scalar reaction coordinat§ R) which is a function of the
a— 1 . - .
C\WR195a2(X | X 1) classical bath coqrdlnatgs. The and B species operators
ot may then be defined abl,=6(&—£(R)) and Ng=6(&(R)

. — e - &%) where & is the location of the free-energy barrier top

= E I aialﬁiﬁl(xl)wﬁlﬁl 2%2(X1, Xa.1) along the¢ coordinate and) is the Heaviside step function.
Prbr An example of such a many-body reaction coordinate is the

== 3 Eaéaz,ﬁéﬁz(xz)Waialﬁéﬁz(xl, Xot). (43) solvent polarization that may b_e used to characterize proton

or electron transfer processes in polar solvents. Although the

rate process is intrinsically quantum in character, this reac-

The derivation of these expressions follows directly fromtion coordinate involves only the classical bath degrees of

taking the quantum-classical limits of Eqd47) and(19) and  freedom.

expressing them in an adiabatic basis. Equation (45), specialized to the time-dependent rate

One may use the different forms of the quantum-constant for the reaction, is given by

classical evolution equation given above to derive different

but equivalent expressions for the transport coefficient in the )

quantum-classical limit. For example, a particularly useful -1 . e

expression for the evaluation of chemical reaction rates when Kag(t) = n_iq 2 ) fgdxi('ﬁ(xl)NA(xl)) o

the observable is a function of only the classical bath coor- a2y

dlnatgs is obt_auned as follows: We use the first equahty in Eq. XNEszaé(Xz,t)Waialaéaz(Xl' X,,0) (46)

(43), insert this into Eq(36), and move the evolution opera-

tor i £(X;) onto theAy(X;) dynamical variable. Next, we use

the second equality in E¢43) and formally solve the equa- Using the fact that

tion to obtainW(X;, X,,t) =€ “*2'W(X,, X,,0). Finally, we

BB

substitute this form folM(X;,X,,t) into Eq. (36) and move _ . P, .
the evolution operator to the dynamical variaBig(X,). In (IL(X)NA(Xy)) 191 = = MVng(Rl)é(g(Rl) = &) 000l
the adiabatic basis, the action of the propagatfr*2t on
Bul(Xy) is (47)
B 2o t) = 2 (€709 oy g BRF(Xo). (44 the rate coefficient takes the form
BaBy

The result of these operations is

2
1
2 , Kag(t) = e > H dX 8(&(Ry) — &)
Me® = X | TTAXGLX)AWX)) 4 A ayagay ) 1=
ag,0q,a0,05 i=1

P ’
Xy (VR ERDINGZ 20X 1)

X BI292(X,, 1) WHL419272( X X, 0) (45)
which is the quantum-classical analog of E24). This equa- XWHEL9292(Xq, X, 0). (48)

tion can serve as the basis for the computation of transport

properties for quantum-classical systems. Comparing Withrhe evaluation of the rate constant then entails being able to
Eq. (12), we see that the Wigner transform Afis replaced €volve theB species variable using quantum-classical Liou-
by its analog for a quantum-classical system and the tim&ille surface-hopping dynamits and sampling from a
evolution of the dynamical variable is given by quantum-weight function determined bW(X;, X5, 0), where the delta
classical Liouville evolution. Full quantum effects are de-function restrictsé(R;) at the barrier top.

scribed by the initial value ofV. A number of other equiva- If W is approximated by its value in the high-
lent forms may be derived by using combinations of thetemperature, classical-bath lifit
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WOz:i'w:l'ozéaz(>(lv x21 O)
eﬂ(Eai(Rl)‘Eaé(Rl)) -1
B(Eai(Rl) - Eaé(Rl))

1
X _e_ﬂ((PiIZM)+Eai(R1)) 50110(2 6ozéa15( R12) 5( P12) ’
Q
(49
where
Zo=> f dRAP&B(PT2MIHE,R) (50)

J. Chem. Phys. 122, 214105 (2005)

system as well as that of the bath. Its calculation is a difficult
problem, but more tractable than the simulation of the full
guantum time evolution of the entire system. The harmonic
oscillator results provided insight into its structure, espe-
cially into the nature of the coupling of the two phase spaces.

Given the general expressions for the time evolution of

W in Egs.(39) and(43), one can place the time dependence
on either operator or the spectral density function. This al-
lows one to choose the most convenient strategy for the
evaluation of a specific transport coefficient. One useful
strategy for the calculation of the rates of activated chemical

reactions is to evolvéw(xz) using quantum-classical evolu-
tion and average over the two phase spaces with a weight

the time-dependent rate coefficient can be written in theletermined by the equilibrium spectral density function. In

simple form,

1
Kag(t) = ﬁz dX; S(&(Ry) - &)

A ap

P
Xy (TR ERDING X, DX

Here p{idX1) =Zg'exd-B(P;/2M +E,, (Ry))] is the equilib-

(51)

the limit of a high-temperature bath approximation for

W(X;,X,,0) we showed that the resulting expression for the
reaction rate can be related to that obtained earlier using
linear response theory based on the quantum-classical Liou-
ville equation®’ The more general expressions obtained in
this paper allow one to incorporate equilibrium quantum bath
effects which are outside the scope of the quantum-classical
linear response results, while still carrying out the dynamics

rium distribution. This equation is amenable to calculationusing quantum-classical surface hopping schemes. Calcula-
using rare event sampling methods since the delta functiotions of the reaction rate and other transport properties using

confines the initial value of the reaction coordinate to thethis formalism will be given in the future work.

barrier top. As above, the evolution of the species variable
Ngt“(Xy,t) is to be carried out using quantum-classical
Liouville surface-hopping dynamics. This result is the same
as that derived using linear response theory based on the

guantum-classical Liouville equation when the diagonal parACKNOWLEDGEMENTS

of the equilibrium quantum-classical density is used in the
rate coefficient expressi&ﬁ.Equation(48) provides a more
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general expression for the reaction rate that incorporates battatural Sciences and Engineering Council of Canada.

quantum effects in the equilibrium structure. The focus then

shifts to the derivation of more accurate analytical expresAPPENDIX A: ALTERNATIVE PROOF OF W

sions forW“i“Wé“Z(Xl,Xz,O) or the construction of simula-
tion methods to calculate this quantity.

Employing Eq.(51), quantum-classical dynamics was
used previously to study reactive dynamics in a two-leved
quantum system coupled to a nonlinear oscillator, which i
turn was coupled to a harmonic ba?rl?hMaking use of the
new expression for the reaction rate in E48), along with

an approximate form fokV that incorporates quantum dis- —W(t) =

persion in the reaction coordinate, we have been able to ob‘Zt

tain additional quantum effects on the nonadiabatic reaction
rate that are outside the scope of quantum-classical treat-
ments that neglect quantum effects in the equilibrium struc-
ture of the battf®

V. CONCLUSION

The quantum-classical expressions for transport coeffi-
cients derived in this paper, such as Ep), form the basis
for algorithms that can be used to compute these quantities
using surface-hopping methods. The expressions involve a
doubling of the classical phase space with the quantum con-
nectivity between two phase spaces accounted for by the
spectral densityV. The initial value of the spectral density

depends on the quantum equilibrium structure of the suber

(2mh)*Zq

EVOLUTION EQUATIONS
Another proof of Eqs(17) and(19) is possible by direct

ifferentiation ofW(X;, X,,t). The time derivative of E((7)
£an be expressed as either

f d2,dZ,e (M PL21+Py2))

i Zq - - Z,
X — + —|H (i/h)Ht - £
ﬁ fds{<Rl > | |s><s|e IR, >

Zz . " . Zl
x\ R+ — e—(l/ﬁ)H(t—lﬁﬁ) Ri——
< 272 2
Zl . " Zz
R - e(l/ﬁ)Ht Ro——
< 2 22
Z, L N Z
><<R2 72 e‘("h)H(“'ﬁB)|s)<s|H‘Rl— ?l>}

(A1)
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J )
W) = ———— | dZdZ,e (M(Pr2rP22)
A (Zﬂﬁ)ZVZQf e
i . A Z
x%jds{<7€ + 2 e<'”‘)H‘|s><s|H‘R2—?2>
ZZ . ~ . Zl
X\ Ro+ — e—(l/ﬁ)H(t—lh,E) Ro——
< 22 b2
Zl . " ZZ
R+ — e(l/ﬁ)Ht R,— —
< 2 22
Zo| A o Z
><<722+?2 H|s)(sle”(MMHIA) | 12 —?1>}

(A2)

We will prove that the former expression reduces to @4)

and the latter reduces to E@19). The matrix element

(SHIR:2/2) is equal to {(=h2/2M)(d*/3s)+V(9)}

X 8(Rix Z;12-s). We first examine the kinetic-energy part.
Using this form of the matrix element and noting the general

structure of the terms in Eq$Al) and (A2), we are led to
consider integrals of the form,
—-ih

: P Z
AL e —<|m>7>i-zi_5<R_i_'_ )
2M S€ 9s° =57

ool
Xf(s)g| R; * >

J. Chem. Phys. 122, 214105 (2005)

have the desired form. A similar set of manipulations can be
carried out to show that the potential-energy parts also have
equivalent forms involvingY; or X..

APPENDIX B: ANALYTICAL EXPRESSIONS FOR
CORRELATION FUNCTIONS

If the operators& andB are functions of onlyp or g, we
can further simplify the expression fov. When bothA and

B depend only on the position operator, we can integrate
WI(x,,%,,t) over momenta to obtain

W(ry,rp,t) = f dp dpW(Xq, %o, 1)

_/B EXP[_ g{(ri +r5)c + 111G}
(B1)

where b=c2-(1/4)ci(t)=1+(1/4)c3(t), and the second
equality follows because(t)+c5(t)=4c2-4. Note that the
symmetry relationW(r,r,,t)=WI(r,,r{,t) holds. Similarly,

integratingW over position, we find

W(pi,pé,t):Jdl’ldr2W(X1,X2,t)

_ m_ﬁe—(i/ﬁ)Pi-Ziif(R_ + %)
M 072, ! 2 a /2 ,
=—=exp - —{(pl +P27)Cy+ P1PaCa(D)} |
Y i (R _ é) mb
oz # |\ (B2)
_ Z, which has the same form as E®1).
=g WP '%f< R+ ?) From Eq.(B1) for W(r4,r,,t) we can compute the posi-
! tion correlation function as
h
(bt W
MR, M @) = f drydror rW(r, 1)
Substituting these relations into the kinetic matrix elements \b (i+]
in Egs. (Al) and (A2), we obtain (3/dt)W=(P1/ M) = ( ) Frn(C1,C), (B3)
X(dldR)W and (9 t)W=—(P,/ M)(dl IR,)W, respec- 7701 ag
tively, which shows that the free-streaming contributionswhere
r - . - . 3 2
. . i i i j y
(for oddi andj) —yF(1+E>F<l+E)2F1 1+§,1+5;5;R)
Fij =9 1+i\ _[1+] 1+i 1+) 1 y? B4
ixy) (for eveni andj) XF( I)F( J>2F1< I, ) ;—;y—> B4
2 2 2 2 4x
k(foroddi+j) 0.
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Here ,F, is the hypergeometric function defined by
JFi(a,b;c;2=3((a)(b)/(c))(Z/K!) andT is the gamma
function®® Since Fj(x,y)=Fj(x,y), one can easily see
(@am)=«@aq?’). Also, (p'p'M)=(@q4t)’) leads to
PP =(mw)™G'a(t)’).

WhenA is a function ofp andB is a function ofg, the
relevant quantity is

[\r
Vb

W(rq,ps,t) = exp{‘ s{(ri +ps)c, + rlpécs(t)}] ,
(B5)

with b’ = c2—(1/4)c4(t), while whenA is function ofg andB
is function of p, we need

! a a ! !
W(py,rat) = —= eXP{‘ —{(r5+pi¥)c, - r2plc3(t)}:| :
m\b b

(B6)

The analytical solutions fotp'g(t)!) or (§'p(t)) have forms
similar to that for(g'g(t)’)

by
P'a)’) = 7T_CE<£1) Fij(c1,Ca) (B7)
and
— N
oAD' b\
(@p()) = 7T_Cf<;1> Fij(c1,—C3). (B8)
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