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Correlation function expressions for calculating transport coefficients for quantum-classical systems
are derived. The results are obtained by starting with quantum transport coefficient expressions and
replacing the quantum time evolution with quantum-classical Liouville evolution, while retaining
the full quantum equilibrium structure through the spectral density function. The method provides
a variety of routes for simulating transport coefficients of mixed quantum-classical systems,
composed of a quantum subsystem and a classical bath, by selecting different but equivalent time
evolution schemes of any operator or the spectral density. The structure of the spectral density is
examined for a single harmonic oscillator where exact analytical results can be obtained. The utility
of the formulation is illustrated by considering the rate constant of an activated quantum transfer
process that can be described by a many-body bath reaction coordinate. ©2005 American Institute
of Physics. fDOI: 10.1063/1.1925268g

I. INTRODUCTION

Transport properties, such as diffusion and viscosity co-
efficients or rate constants, are some of the most basic quan-
tities that are used to characterize the dynamical behavior
systems. For equilibrium systems statistical mechanics pro-
vides well-defined expressions for transport coefficients in
terms of time integrals of flux–flux correlation functions.1

The evaluation of these correlation function expressions en-
tails sampling over an equilibrium ensemble of initial condi-
tions and time evolution of dynamical variables or operators.
While such calculations are routinely carried out for classical
many-body systems, their evaluation for quantum-
mechanical systems is a very challenging problem. Part of
the difficulty stems from the fact that no methods exist for
solving the time-dependent quantum equations of motion for
a large condensed phase system; thus, in contrast to classical
systems, direct calculations of transport properties by quan-
tum molecular dynamics are rarely attempted.2

In some instances a full quantum-mechanical treatment
is unnecessary. In many applications the quantum character
of certain degrees of freedomstermed the subsystemd must
be accounted for, while the remainder of the systemsbathd
with which they interact may be approximated by classical
mechanics.3–6 For example, a decomposition of this type is
appropriate for a subsystem composed of light particles, like
electrons or protons, interacting with a solvent of heavy mol-
ecules. Thus, transport properties, such as quantum-particle
diffusion coefficients, rate coefficients of proton or electron
transfer processes and vibrational relaxation rate coefficients
in the condensed phase, may be computed in a mixed
quantum-classical framework.

Assuming the dynamics is described by the quantum-
classical Liouville equation,7–12 the linear response theory

yields expressions for transport coefficients6,13 the evaluation
of which entails carrying out quantum-classical evolution of
operators and sampling over the quantum-classical equilib-
rium density. More general expressions for time correlation
functions have been derived by taking the quantum-classical
limit of the quantum correlation function.14 The evaluation of
these correlation functions involves forward and backward
quantum-classical time evolution of the operators and sam-
pling based on the spectral density that retains the full quan-
tum equilibrium structure. The structure of the propagator in
this correlation function expression is reminiscent of that in
the forward-backward influence functional technique,15 and
it may be possible to employ similar approximations to the
propagator in a quantum-classical context. Linearization
methods have also been used to incorporate nonadiabatic ef-
fects in the evaluation of time correlation functions.16–19

In this article we construct general quantum-classical ex-
pressions for transport properties, starting from a full quan-
tum treatment of the entire many-body system. The transport
coefficient formulas again retain the full quantum equilib-
rium structure of the system and entail carrying out quantum-
classical Liouville evolution of operators but allow much
more flexibility in how the quantum-classical limit is taken.
The resulting expressions are flexible enough to be appli-
cable to a variety of transport properties, including the cal-
culation of the rate constants of activated nonadiabatic reac-
tions.

In Sec. II we derive a number of general expressions for
quantum transport coefficients in terms of Wigner trans-
forms. These expressions provide a convenient separation of
the quantum equilibrium structure in the spectral density
function from the time evolution of operators. While for-
mally exact, the results in this section do not provide a com-
putationally tractable route to the evaluation of transport
properties because of the instabilities inherent in the simula-
tions of the Wigner-transformed expressions. The spectral
density function plays a central role in this formulation. To
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examine its structure, in Sec. III we consider a single har-
monic oscillator in thermal equilibrium for which this func-
tion can be analytically determined. In Sec. IV we employ
the results of Ref. 14 to take the quantum-classical limit of
the evolution equation for the spectral density and use this
expression to obtain computationally useful expressions for
the transport coefficients. The results are illustrated by deriv-
ing expressions that can be used to simulate the rates of
activated nonadiabatic chemical reactions. The conclusions
of the study are given in Sec. V.

II. QUANTUM TRANSPORT COEFFICIENTS

For a quantum-mechanical system in thermal equilib-
rium a transport coefficientlAB may be determined from the
time integral of a flux–flux correlation function,1

lAB =E
0

`

dtk ĵA; ĵBstdl =
1

b
E

0

`

dtK i

"
f ĵBstd,ÂgL , s1d

where ĵA=Â
˙

=si /"dfĤ ,Âg is the flux ofÂ, with an analogous
expression forĵB, f·,·g is the commutator, and the angular

brackets kÂ; B̂l=s1/bde0
bdlkelĤÂe−lĤB̂l denote a Kubo-

transformed correlation function, withb=skBTd−1. The equi-

librium quantum canonical average isk¯l=ZQ
−1 Tr¯e−bĤ

whereZQ is the partition function. In simulations it is often
convenient to consider the time-dependent transport coeffi-
cient defined as the finite time integral of the flux–flux cor-
relation function,

lABstd =E
0

t

dt8k ĵA; ĵBst8dl = kÂ;B̂stdl =
1

b
K i

"
fB̂std,ÂgL ,

s2d

where we assumedfB̂,Âg=0.20 The transport coefficient may
then be obtained from the plateau value oflABstd.21

A. General expressions for lAB„t…

We first establish some general relations for the transport
coefficients that will prove useful in the subsequent reduc-
tion to the quantum-classical limit. Writing the second equal-
ity in Eq. s2d in detail and inserting arbitrary time variablest1
and t2, we can write the transport coefficientlABstd as

lABstd =
1

bZQ
E

0

b

dl TrsÂ˙ s− i"ldB̂stde−bĤd

=
1

bZQ
E

0

b

dl TrsÂ˙ st1 − i"ld

3 esi/"dĤt8B̂st2de−si/"dĤt8e−bĤd, s3d

wheret8; t+ t1− t2. To insert the timest1 andt2, we used the

fact that the time evolution of an operatorÔ is given by

Ôstd=esi/"dĤtÔe−si/"dĤt.
We partition the entire quantum system into a subsystem

plus bath so that the Hamiltonian is the sum of the kinetic
energy operators of the subsystem and bath and the potential

energy of the entire system,Ĥ= P̂2/2M + p̂2/2m+V̂sq̂,Q̂d,

where lowercase and uppercase symbols refer to the sub-
system and bath, respectively. In Sec. IV we shall show how
the transport coefficients for a system partitioned in this way
can be evaluated in the quantum-classical limit. For the
present, however, it is convenient to first take a Wigner trans-
form f22g over all degrees of freedom, subsystem plus bath,
and later single out the subsystem and bath degrees of free-
dom for different treatments. Introducing a coordinate repre-
sentation hQj=hqjhQj of the operators in Eq.s3d scalli-
graphic symbols are used to denote variables for the entire
systemd, making a change of variables,Q1=R1−Z1/2, Q2

=R1+Z1/2, etc., and then expressing the matrix elements in
terms of the Wigner transforms of the operators, we have

lABstd =
1

b
E

0

b

dlE dX1dX2sȦdWsX1,t1dBWsX2,t2d

3
1

s2p"d2nZQ
E dZ1dZ2e

−si/"dsP·Z1+P2·Z2d

3KR1 +
Z1

2
Uesi/"dĤst8+i"ldUR2 −

Z2

2
L

3KR2 +
Z2

2
Ue−bĤ−i/"Ĥst8+i"ldUR1 −

Z1

2
L . s4d

In writing this equation we used the fact that the matrix

element of the operatorÔstd can be expressed in terms of its
Wigner transformOWsX ,td as

KR −
Z
2
UÔstdUR +

Z
2
L

=
1

s2p"dn E dPe−si/"dP·ZOWsX,td, s5d

wheren is the coordinate-space dimension and the Wigner
transform is defined by

OWsX,td =E dZesi/"dP·ZKR −
Z
2
UÔstdUR +

Z
2
L . s6d

We use the notation R=sr ,Rd, P=sp,Pd and X
=sr ,R,p,Pd where again the lowercase symbols refer to the
subsystem and the uppercase symbols refer to the bath

We define the spectral density by

WsX1,X2,td =
1

s2p"d2nZQ
E dZ1dZ2e

−i/"sP·Z1+P2·Z2d

3KR1 +
Z1

2
Uesi/"dĤtUR2 −

Z2

2
L

3KR2 +
Z2

2
Ue−bĤ−si/"dĤtUR1 −

Z1

2
L , s7d

which satisfies the following relations:

WsX1,X2,td* = WsX2,X1,− td, s8d

WsX1,X2,t − ib"d = WsX1,X2,td* . s9d

The last equality may be written as
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W̃sX1,X2,− vd = e−b"vW̃sX1,X2,vd, s10d

where the Fourier transform is defined asf̃svd
=e−`

` dteivt fstd. If we let

W̄sX1,X2,td =
1

b
E

0

b

dlWsX1,X2,t + i"ld, s11d

we can write the transport coefficient as

lABstd =E dX1dX2sȦdWsX1,t1dBWsX2,t2d

3W̄sX1,X2,t + t1 − t2d. s12d

Equations12d involves the quantitysȦdWsX1,t1d which is
not easy to compute. Starting with the Heisenberg equation

of motion, Â
˙

=si /"dfĤ ,Âg, and taking its Wigner transform
we have,

d

dt
AWsX1,t1d =

i

"
sHWsX1des"L1/2idAWsX1,t1d

− AWsX1,t1des"L1/2idHWsX1dd

=
2

"
HWsX1dsinS"L1

2
DAWsX1,t1d

; iLWsX1dAWsX1,t1d. s13d

Here, the Wigner-transformed Hamiltonian isHWsXd
=P2/2M +VWsRd and L is the negative of the Poisson-
bracket operator,

L = ¹Q P ·¹W R − ¹Q R ·¹W P, s14d

where the direction of an arrow indicates the direction in
which the operator acts. To obtain this equation we used the

relation sÂB̂dW=ÂWsXdes"L/2idB̂WsXd for the Wigner trans-
form of a product of operators.22

Using the properties of the phase-space derivatives of
the Wigner-transformed Hamiltonian and integration by
parts, one may establish that

E dXsiLWsXdAWsX,tddGsXd

= −E dXsAWsX,tddiLWsXdGsXd, s15d

for any functionGsXd. Making use of this result, it follows
that the transport coefficient can be cast in the form

lABstd = −E dX1dX2AWsX1,t1dBWsX2,t2d

3iLWsX1dW̄sX1,X2,t + t1 − t2d

; −E dX1dX2AWsX1,t1dBWsX2,t2d

3
]

]t
W̄sX1,X2,t + t1 − t2d, s16d

where we have written the evolution equation forW̄ as

]

]t
W̄sX1,X2,td = iLWsX1dW̄sX1,X2,td. s17d

Equivalent forms of the evolution equation can be derived as
follows: Taking complex conjugates on both side of Eq.s17d
gives

]

]t
W̄sX2,X1,− td = iLWsX1dW̄sX2,X1,− td, s18d

where we used the relationsiLW
* = iLW and Eq.s6d. If we then

exchange variablesX1↔X2 and t↔−t, we get

]

]t
W̄sX1,X2,td = − iLWsX2dW̄sX1,X2,td. s19d

An alternative proof of these expressions is given in Appen-
dix A. From these results it also follows that23

]

]t
W̄sX1,X2,td = 1

2siLWsX1d − iLWsX2ddW̄sX1,X2,td. s20d

From the last equality in Eq.s2d, the transport coefficient

can be written in a form involving the commutator ofÂ and

B̂std. Performing a set of manipulations similar to those used
above, we may show thatlABstd is also given by,

lABstd =
i

"b
E dX1dX2AWsX1,t1dBWsX2,t2d

3fWsX1,X2,t − i"b + t1 − t2d

− WsX1,X2,t + t1 − t2dg. s21d

Comparing this result with Eq.s16d, we have

]

]t
W̄sX1,X2,td = −

i

"b
fWsX1,X2,t − i"bd − WsX1,X2,tdg

= −
2

"b
ImWsX1,X2,td, s22d

where Im stands for the imaginary part, and we used Eq.s9d.
Thus, we have

lABstd =
2

"b
E dX1dX2AWsX1,t1dBWsX2,t2d

3ImWsX1,X2,t + t1 − t2d. s23d

We may choose the timest1 andt2 to yield various forms
for the correlation functions. For example, settingt1=0 and
t2= t, Eq. s16d reduces to

lABstd = −E dX1dX2AWsX1dBWsX2,td

3iLWsX1dW̄sX1,X2,0d

=E dX1dX2siLWsX1dAWsX1ddBWsX2,td

3W̄sX1,X2,0d. s24d

Finally, we observe that the initial value ofW,
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WsX1,X2,0d = e−s2i/"dP2·sR2−R1d

3
1

ZQsÎ2p"d2n E dZe−si/"dsP1−P2d·Z

3K2R2 − R1 −
Z
2
Ue−bĤUR1 −

Z
2
L , s25d

involves only a single propagator, whileW̄ defined in Eq.
s11d, which appears in the transport coefficient expression,
still involves two imaginary time propagators.

The Wigner representation results obtained in this sec-
tion involved no approximations and are as difficult to solve
for a many-body quantum system as the original expressions
for the transport coefficients. However, as we shall see in
Sec. IV, they form a convenient starting point for approxima-
tions leading to quantum-classical limit expressions.

III. SPECTRAL DENSITY FOR A HARMONIC
OSCILLATOR

The spectral densityW plays a central role in the expres-
sions for the transport coefficients and its calculation is a
difficult task, even att=0. Consequently, it is instructive to
examine its structure for a single harmonic oscillator where a
complete analytical solution may be obtained.

For a single harmonic oscillator, the system Hamiltonian

is given by Ĥ=s1/2dmv2sp̂82+ q̂2d, wherem and v denote
mass and frequency, respectively, and we have rescaled the
momentum operator asp̂8; p̂/ smvd. The propagator for this
Hamiltonian is well known24 and is given by

kque−bĤuq8l = S a

2p sinhb"v
D1/2

expF−
a

2
hsq2 + q82d

3cothb"v − 2qq8 cschb"vjG , s26d

with a=mv /". Substituting Eq.s26d into Eq. s7d specialized
to the single harmonic oscillator and integrating overz1 and
z2, we obtain

Wsx1,x2,td = S a

p
D2

expf− ahsr1
2 + r2

2 + p18
2 + p28

2dc1

+ sr1r2 + p18p28dc2std + sr1p28 − p18r2dc3stdjg,

s27d

wherex=sr ,pd and

c1 = cothsb"v/2d,

c2std = − 2sc1 cosvt + i sinvtd, s28d

c3std = 2sc1 sinvt − i cosvtd.

From this explicit expression forWsx1,x2,td one can easily
see that the relations in Eqs.s8d and s9d are satisfied.

The initial value ofW is

Wsx1,x2,0d = S a

p
D2

expf− ahssr1 − r2d2 + sp18 − p
8
2d2dc1

− 2isr1p28 − p18r2djg. s29d

The phase factor couples the position and momentum vari-
ables in the twox1 and x2 phase spaces. If we definex12

=x1−x2 and xc=sx1+x2d /2, with a similar change of vari-
ables for the momenta, Eq.s29d can be written as

Wsx1,x2,0d = S a

p
D2

expf− ahsr12
2 + p128

2dc1

− 2ispc8r12 − rcp128 djg, s30d

where now the phase factor couples the relative and center of
mass positions and momenta. In Fig. 1, we plotWsx1,x2,0d
versusr12 andp128 for b"v=1 andrc=pc8=1.

The fact thatWsx1,x2,0d is symmetric with respect to
the planep128 =−r12 for pc8=rc=1 is evident in the figure. The
real part ofW contains a Gaussian function that is sharply
peaked aroundr12=p128 =0 and the imaginary part ofW is
small in the vicinity of the origin. Whenr12 and p128 are
small, we can represent the function in a multipole expansion
and keep only the first order term to get

Wsx1,x2,0d <
a

pc1
expF−

a

c1
spc8

2 + rc
2dGdsx12d

; rWesxcddsx12d. s31d

In this caseW reduces to the Wigner-transformed equilib-
rium density matrixrWe for the center of mass variables of
two phase spaces. This result is also expected to hold for
general potentials. For other values ofpc8 andrc, we find that
the peak rotates around the origin, maintaining its shape.

FIG. 1. Realsupper paneld and imaginaryslowerd parts ofWsx1,x2,0d as a
function of r12 and p128 for rc=pc8=1 andb"v=1. Results are reported in
terms of the dimensionless unitssmv /"d1/2r and smv /"d1/2p8.
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In order to illustrate the quantum effects more clearly,
Wsx1,x2,0d is plotted in Fig. 2 forb"v=0.1 andb"v=10,
corresponding to small and large quantum character, respec-
tively.

As the value ofb"v becomes larger, negative values of
the real and imaginary parts of theW function become sig-
nificant. Forb=0, W is proportional to a delta function as in
Eq. s31d.

A. Equation of motion for W

The general form of the equation of motion forW̄std, and
henceWstd, was given in Eqs.s17d, s19d, and s20d. For a
harmonic oscillator the operator sins"L /2d can be replaced
by the first term in its expansion, so that

]

]t
Wsx1,x2,td = hWsx1,x2,td,HWsx1dj,

=hHWsx2d,Wsx1,x2,tdj, s32d

where h·,·j denotes the Poisson bracket; thus,Wstd evolves
through the classical equations of motion. This is not surpris-
ing since the quantum and classical evolution ofp andr are
the same for a single harmonic oscillator and quantum ef-
fects enter through the initial condition in the Wigner repre-
sentation. We may verify that these equations of motion also
follow directly from the analytical solutions by differentia-
tion with respect to time. In particular, noting that
]c2/]svtd=c3 and]c3/]svtd=−c2, we can easily confirm the
above equations of motion.

Finally, we observe that using the explicit expressions
for the time evolution of the position and momentum,rstd
=r cosvt+p8 sinvt and p8std=p8 cosvt−r sinvt, respec-

tively, we can rewrite Eq. s27d as Wsx1,x2,td
=Wsx1std ,x2,0d. In more general situations it is not possible
to obtain such a simple form involving the phase-space co-
ordinates at timet.

In Fig. 3, we plotWsx1,x2,td at vt=p /4 with the other
parameters, the same as in Fig. 1. Comparing this figure with
Fig. 1, one can see that the peak moves along the linep128
=−r12 with little change in its shape. Figure 4 shows plotsW
versusr12 with p128 =−r12 for three different time values. The

FIG. 2. Plots of the realsupper paneld and imaginaryslowerd parts ofW
versussdimensionlessd r12 along the linep128 =−r12 for b"v=0.1ssolid linesd
andb"v=10 sdashed linesd.

FIG. 3. Realsupper paneld and imaginaryslower paneld parts ofWsx1,x2,td
for vt=p /4.

FIG. 4. Plot ofWsx1,x2,td function vsr12 for vt=0 ssolid lined, vt=7p /8
slong dashed lined andvt=9p /8 sshort dashed lined.
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dynamics is periodic, as expected with strongly oscillatory
behavior for long times. It is of interest to note that when
vt=p the W function depends on the difference variables
only through the phase factor,

WSx1,x2,
p

v
D = S a

p
D2

expf− ahsrc
2 + pc8

2d4c1

+ 2ispc8r12 − rcp128 djg. s33d

For the harmonic oscillator it is also possible to obtain
analytical expressions for general quantum correlation func-
tions, and these results are given in Appendix B.

IV. QUANTUM-CLASSICAL SYSTEMS

In this section we show how to take the quantum-
classical limit of the general expressions for the transport
coefficients given in Sec. II. As discussed earlier, the general
equations in the Wigner-transformed representation are in-
tractable as they stand, except for very simple harmonic sys-
tems, since they are equivalent to a full quantum mechanical
treatment of the system plus bath. By taking the quantum-
classical limit of these expressions we can obtain transport
coefficient expressions that are amenable to solution using
surface-hopping methods. The computation of the initial
value ofW is still a challenging problem but far less formi-
dable than the solution of the time-dependent Schrödinger or
von Neumann equation for the entire quantum system since
it involves only imaginary time propagators.

To make connection with surface-hopping representa-
tions of the quantum-classical Liouville equation,7 we first
observe thatAWsX1d can be written as

AWsX1d =E dz1e
si/"dp1·z1Kr1 −

z1

2
UÂWsX1dUr1 +

z1

2
L ,

s34d

whereÂWsX1d is thepartial Wigner transform ofÂ, defined
as in Eq.s6d, but with the transform taken only over the bath
degrees of freedom. The partial Wigner transform of the

Hamiltonian is ĤW=P2/2M + p̂2/2m+V̂Wsq̂,Rd; P2/2M

+ ĥWsRd, whereĥWsRd is the Hamiltonian for the subsystem
in the presence of fixed particles of the bath. The adiabatic
eigenstates are the solutions of the eigenvalue problem,

ĥWsRdua ;Rl=EasRdua ;Rl. We may now express the sub-
system operators in the adiabatic basis to obtain

AWsX1d = o
a1a18

E dz1e
si/"dp1·z1Kr1 −

z1

2
ua1;R1L

3 AW
a1a18sX1dKa18;R1ur1 +

z1

2
L , s35d

whereAW
a1a18sX1d=ka1;R1uÂWsX1dua18 ;R1l.

Inserting this expression and its analog forBWsX2d into
Eq. s16d for t1= t2=0, we have

lABstd = − o
a1,a18,a2,a28

E p
i=1

2

dXiAW
a1a18sX1dBW

a2a28sX2d

3
]

]t
W̄a18a1a28a2sX1,X2,td, s36d

where the matrix elements ofW are given by

Wa18a1a28a2sX1,X2,td

=E p
i=1

2

dZie
−si/"dsP1·Z1+P2·Z2d

3ka18;R1uKR1 +
Z1

2
Uesi/"dĤtUR2 −

Z2

2
Lua2;R2l

3ka28;R2uKR2 +
Z2

2
Ue−si/"dĤt9UR1 −

Z1

2
Lua1;R1l

3
1

ZQ

1

s2p"d2nh
, s37d

with t9= t− ib". From the definition in Eq.s37d one may
show that these matrix elements satisfy the symmetry prop-
erties,

Wa18a1a28a2sX1,X2,td* = Wa2a28a1a18sX2,X1,− td,

s38d
Wa18a1a28a2sX1,X2,t − i"bd = Wa1a18a2a28sX1,X2,td* ,

which are the analogs of Eqs.s8d and s9d.
The quantum-classical limit of the transport coefficient

is obtained by evaluating the evolution equation for the ma-

trix elements ofW̄ in the quantum-classical limit. This limit
was taken in Ref. 14 and the result was found to be25

]

]t
W̄a18a1a28a2sX1,X2,td

=
1

2 o
b18b1b28b2

siLa18a1,b18b1
sX1d

3da28b28
da2b2

− iLa28a2,b28b2
sX2dda18b18

da1b1
d

3W̄b18b1b28b2sX1,X2,td, s39d

which has the same structure as Eq.s20d. The quantum- clas-
sical Liouville operator in the adiabatic basisiL is given by7

iLaa8,bb8sXd = fivaa8sRd + iLaa8sXdgdabda8b8

− Jaa8,bb8sXd, s40d

where the classical evolution operator is defined as

iLaa8 =
P

M

]

]R
+

1

2
fFW

a sRd + FW
a8sRdg

]

]P
, s41d

with
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Jaa8,bb8sXd = −
P

M
dabF1 +

1

2
SabsRd

]

]P
Gda8b8

−
P

M
da8b8

* F1 +
1

2
Sa8b8

* sRd
]

]P
Gdab. s42d

Here the frequency vaa8sRd;fEasRd−Ea8sRdg /", the

Hellmann–Feynman forceFW
a =−ka ;Ru]V̂Wsq̂,Rd /]R̂ua ;Rl,

the nonadiabatic coupling matrix element isdab

=ka ;Ru¹Rub ;Rl, and Sab=sEa−EbddabfsP/Mddabg−1. In
view of Eqs.s17d and s19d we can also write the following
equivalent forms of the evolution equation:

]

]t
W̄a18a1a28a2sX1,X2,td

= o
b18b1

iLa18a1,b18b1
sX1dW̄b18b1a28a2sX1,X2,td

= − o
b28b2

iLa28a2,b28b2
sX2dW̄a18a1b28b2sX1,X2,td. s43d

The derivation of these expressions follows directly from
taking the quantum-classical limits of Eqs.s17d ands19d and
expressing them in an adiabatic basis.

One may use the different forms of the quantum-
classical evolution equation given above to derive different
but equivalent expressions for the transport coefficient in the
quantum-classical limit. For example, a particularly useful
expression for the evaluation of chemical reaction rates when
the observable is a function of only the classical bath coor-
dinates is obtained as follows: We use the first equality in Eq.
s43d, insert this into Eq.s36d, and move the evolution opera-
tor iLsX1d onto theAWsX1d dynamical variable. Next, we use
the second equality in Eq.s43d and formally solve the equa-

tion to obtainW̄sX1,X2,td=e−iLsX2dtW̄sX1,X2,0d. Finally, we

substitute this form forW̄sX1,X2,td into Eq. s36d and move
the evolution operator to the dynamical variableBWsX2d. In
the adiabatic basis, the action of the propagatore−iLsX2dt on

B̂WsX2d is

BW
a2a28sX2,td = o

b2b28

se−iLsX2dtda2a28,b2b28
BW

b2b28sX2d. s44d

The result of these operations is

lABstd = o
a1,a18,a2,a28

E p
i=1

2

dXisiLsX1dAWsX1dda1a18

3BW
a2a28sX2,tdW̄a18a1a28a2sX1,X2,0d, s45d

which is the quantum-classical analog of Eq.s24d. This equa-
tion can serve as the basis for the computation of transport
properties for quantum-classical systems. Comparing with

Eq. s12d, we see that the Wigner transform ofÂ
˙

is replaced
by its analog for a quantum-classical system and the time
evolution of the dynamical variable is given by quantum-
classical Liouville evolution. Full quantum effects are de-

scribed by the initial value ofW̄. A number of other equiva-
lent forms may be derived by using combinations of the

various forms of the evolution equation forW̄ given in Eqs.
s39d and s43d.

A. Reaction rate coefficient

As an illustration of the utility of this transport coeffi-
cient expression, consider the calculation of the reaction rate
for the interconversionA
B between metastableA and B
states. We suppose that the reaction can be characterized by a
scalar reaction coordinatejsRd which is a function of the
classical bath coordinates. TheA and B species operators

may then be defined asN̂A=usj‡−jsRdd and N̂B=usjsRd
−j‡d wherej‡ is the location of the free-energy barrier top
along thej coordinate andu is the Heaviside step function.
An example of such a many-body reaction coordinate is the
solvent polarization that may be used to characterize proton
or electron transfer processes in polar solvents. Although the
rate process is intrinsically quantum in character, this reac-
tion coordinate involves only the classical bath degrees of
freedom.

Equation s45d, specialized to the time-dependent rate
constant for the reaction, is given by

kABstd =
− 1

nA
eq o

a1,a18,a2,a28
E p

i=1

2

dXisiLsX1dNAsX1dda1a18

3NB
a2a28sX2,tdW̄a18a1a28a2sX1,X2,0d. s46d

Using the fact that

siLsX1dNAsX1dda1a18 = −
P1

M
¹R1

jsR1ddsjsR1d − j‡dda1a18
,

s47d

the rate coefficient takes the form

kABstd =
1

nA
eq o

a1,a2,a28
E p

i=1

2

dXidsjsR1d − j‡d

3
P1

M
s¹R1

jsR1ddNB
a2a28sX2,td

3W̄a1a1a28a2sX1,X2,0d. s48d

The evaluation of the rate constant then entails being able to
evolve theB species variable using quantum-classical Liou-
ville surface-hopping dynamics26 and sampling from a

weight function determined byW̄sX1,X2,0d, where the delta
function restrictsjsR1d at the barrier top.

If W̄ is approximated by its value in the high-
temperature, classical-bath limit14
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W̄a18a1a28a2sX1,X2,0d

=
ebsEa18

sR1d−Ea28
sR1dd − 1

bsEa18
sR1d − Ea28

sR1dd

3
1

ZQ
e−bssP1

2/2Md+Ea18
sR1ddda18a2

da28a1
dsR12ddsP12d,

s49d

where

ZQ < o
a
E dRdPe−bssP2/2Md+EasRdd, s50d

the time-dependent rate coefficient can be written in the
simple form,

kABstd =
1

nA
eqo

a1

E dX1dsjsR1d − j‡d

3
P1

M
s¹R1

jsR1ddNB
a1a1sX1,tdrWe

a1 sX1d. s51d

Here rWe
a1 sX1d=ZQ

−1expf−bsP1
2/2M +Ea1

sR1ddg is the equilib-
rium distribution. This equation is amenable to calculation
using rare event sampling methods since the delta function
confines the initial value of the reaction coordinate to the
barrier top. As above, the evolution of the species variable
NB

a1a1sX1,td is to be carried out using quantum-classical
Liouville surface-hopping dynamics. This result is the same
as that derived using linear response theory based on the
quantum-classical Liouville equation when the diagonal part
of the equilibrium quantum-classical density is used in the
rate coefficient expression.27 Equations48d provides a more
general expression for the reaction rate that incorporates bath
quantum effects in the equilibrium structure. The focus then
shifts to the derivation of more accurate analytical expres-

sions forW̄a18a1a28a2sX1,X2,0d or the construction of simula-
tion methods to calculate this quantity.

Employing Eq. s51d, quantum-classical dynamics was
used previously to study reactive dynamics in a two-level
quantum system coupled to a nonlinear oscillator, which in
turn was coupled to a harmonic bath.27 Making use of the
new expression for the reaction rate in Eq.s48d, along with

an approximate form forW̄ that incorporates quantum dis-
persion in the reaction coordinate, we have been able to ob-
tain additional quantum effects on the nonadiabatic reaction
rate that are outside the scope of quantum-classical treat-
ments that neglect quantum effects in the equilibrium struc-
ture of the bath.28

V. CONCLUSION

The quantum-classical expressions for transport coeffi-
cients derived in this paper, such as Eq.s45d, form the basis
for algorithms that can be used to compute these quantities
using surface-hopping methods. The expressions involve a
doubling of the classical phase space with the quantum con-
nectivity between two phase spaces accounted for by the
spectral densityW. The initial value of the spectral density
depends on the quantum equilibrium structure of the sub-

system as well as that of the bath. Its calculation is a difficult
problem, but more tractable than the simulation of the full
quantum time evolution of the entire system. The harmonic
oscillator results provided insight into its structure, espe-
cially into the nature of the coupling of the two phase spaces.

Given the general expressions for the time evolution of

W̄ in Eqs.s39d ands43d, one can place the time dependence
on either operator or the spectral density function. This al-
lows one to choose the most convenient strategy for the
evaluation of a specific transport coefficient. One useful
strategy for the calculation of the rates of activated chemical

reactions is to evolveB̂WsX2d using quantum-classical evolu-
tion and average over the two phase spaces with a weight
determined by the equilibrium spectral density function. In
the limit of a high-temperature bath approximation for

W̄sX1,X2,0d we showed that the resulting expression for the
reaction rate can be related to that obtained earlier using
linear response theory based on the quantum-classical Liou-
ville equation.27 The more general expressions obtained in
this paper allow one to incorporate equilibrium quantum bath
effects which are outside the scope of the quantum-classical
linear response results, while still carrying out the dynamics
using quantum-classical surface hopping schemes. Calcula-
tions of the reaction rate and other transport properties using
this formalism will be given in the future work.
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APPENDIX A: ALTERNATIVE PROOF OF W
EVOLUTION EQUATIONS

Another proof of Eqs.s17d ands19d is possible by direct
differentiation ofWsX1,X2,td. The time derivative of Eq.s7d
can be expressed as either

]

]t
Wstd =

1

s2p"d2nZQ
E dZ1dZ2e

−si/"dsP1·Z1+P2·Z2d

3
i

"
E dsHKR1 +

Z1

2
uĤusLKsuesi/"dĤtuR2 −

Z2

2
L

3KR2 +
Z2

2
Ue−si/"dĤst−i"bdUR1 −

Z1

2
L

−KR1 +
Z1

2
Uesi/"dĤtUR2 −

Z2

2
L

3KR2 +
Z2

2
Ue−si/"dĤst−i"bduslksuĤUR1 −

Z1

2
LJ

sA1d

or
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]

]t
Wstd =

1

s2p"d2nZQ
E dZ1dZ2e

−si/"dsP1·Z1+P2·Z2d

3
i

"
E dsHKR1 +

Z1

2
Uesi/"dĤtuslksuĤUR2 −

Z2

2
L

3KR2 +
Z2

2
Ue−si/"dĤst−i"bdUR1 −

Z1

2
L

−KR1 +
Z1

2
Uesi/"dĤtUR2 −

Z2

2
L

3KR2 +
Z2

2
UĤuslksue−si/"dĤst−i"bdUR1 −

Z1

2
LJ .

sA2d

We will prove that the former expression reduces to Eq.s17d
and the latter reduces to Eq.s19d. The matrix element

ksuĤuRi ±Zi /2l is equal to hs−"2/2Mds]2/]s2d+Vssdj
3dsRi ±Zi /2−sd. We first examine the kinetic-energy part.
Using this form of the matrix element and noting the general
structure of the terms in Eqs.sA1d and sA2d, we are led to
consider integrals of the form,

− i"

2M E dse−si/"dPi·Zi
]2

]s2dSRi ±
Zi

2
− sD

3fssdgSRi 7
Zi

2
D

=
2i"

M e−si/"dPi·Zi
]

]Zi
fSRi ±

Zi

2
D

3H ]

]Zi
−

iPi

"
JgSRi 7

Zi

2
D

= e−si/"dPi·Zi
]

]Ri
fSRi ±

Zi

2
D

3H − i"

2M
]

]Ri

±
Pi

MJgSRi 7
Zi

2
D . sA3d

Substituting these relations into the kinetic matrix elements
in Eqs. sA1d and sA2d, we obtain s] /]tdW=sP1/Md
3s] /]R1dW and s] /]tdW=−sP2/Mds] /]R2dW, respec-
tively, which shows that the free-streaming contributions

have the desired form. A similar set of manipulations can be
carried out to show that the potential-energy parts also have
equivalent forms involvingX1 or X2.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR
CORRELATION FUNCTIONS

If the operatorsÂ andB̂ are functions of onlyp̂ or q̂, we

can further simplify the expression forW. When bothÂ and

B̂ depend only on the position operator, we can integrate
Wsx1,x2,td over momenta to obtain

Wsr1,r2,td =E dp18dp28Wsx1,x2,td

=
a

pÎb
expF−

a

b
hsr1

2 + r2
2dc1 + r1r2c2stdjG ,

sB1d

where b;c1
2−s1/4dc2

2std=1+s1/4dc3
2std, and the second

equality follows becausec2
2std+c3

2std=4c1
2−4. Note that the

symmetry relationWsr1,r2,td=Wsr2,r1,td holds. Similarly,
integratingW over position, we find

Wsp18,p28,td =E dr1dr2Wsx1,x2,td

=
a

pÎb
expF−

a

b
hsp18

2 + p28
2dc1 + p18p28c2stdjG ,

sB2d

which has the same form as Eq.sB1d.
From Eq.sB1d for Wsr1,r2,td we can compute the posi-

tion correlation function as

kq̂iq̂std jl =E dr1dr2r1
i r2

j Wsr1,r2,td

=
Îb

pc1
2S b

ac1
Dsi+jd/2

Fmnsc1,c2d, sB3d

where

Fijsx,yd ; 5sfor odd i and jd − yGS1 +
i

2
DGS1 +

j

2
D 2F1S1 +

i

2
,1 +

j

2
;
3

2
;

y2

4x2D
sfor eveni and jd xGS1 + i

2
DGS1 + j

2
D 2F1S1 + i

2
,
1 + j

2
;
1

2
;

y2

4x2D
sfor odd i + jd 0.

6 sB4d
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Here 2F1 is the hypergeometric function defined by

2F1sa,b;c;zd;okssadksbdk/ scdkdszk/k!d andG is the gamma
function.29 Since Fijsx,yd=Fjisx,yd, one can easily see
kq̂iq̂std jl=kq̂jq̂stdil. Also, kp̂8i p̂8std jl=kq̂iq̂std jl leads to
kp̂ip̂std jl=smvdi+jkq̂iq̂std jl.

When Â is a function ofp̂ and B̂ is a function ofq̂, the
relevant quantity is

Wsr1,p28,td =
a

pÎb8
expF−

a

b8
hsr1

2 + p28
2dc1 + r1p28c3stdjG ,

sB5d

with b8;c1
2−s1/4dc3

2std, while whenÂ is function ofq̂ andB̂
is function of p̂, we need

Wsp18,r2,td =
a

pÎb8
expF−

a

b8
hsr2

2 + p18
2dc1 − r2p18c3stdjG .

sB6d

The analytical solutions forkp̂iq̂std jl or kq̂ip̂std jl have forms
similar to that forkq̂iq̂std jl

kp̂iq̂std jl =
Îb8

pc1
2S b8

ac1
Dsi+jd/2

Fijsc1,c3d sB7d

and

kq̂ip̂std jl =
Îb8

pc1
2S b8

ac1
Dsi+jd/2

Fijsc1,− c3d. sB8d

For general many-body quantum-classical systems simi-
lar reduced forms forW enter the correlation functions if the
operators depend only either on the bath positions or the
momenta. However, equations of motion for

Wa18a1a28a2sR1,R2,td or Wa18a1a28a2sP1,P2,td in position or mo-
mentum space cannot be obtained in closed form for these
quantities and approximations must be employed. In this
connection methods based on moments may prove useful
since the evaluation of the correlation function involves a
low-order moment ofW.30
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