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Phase fronts in the forced complex GinzburgÈLandau equation, a model of a resonantly
forced oscillatory reactionÈdi†usion system, are studied in the 3 : 1 resonance regime. The
focus is on the turbulent (BenjaminÈFeir-unstable) regime of the corresponding unforced
system; in the forced system, phase fronts between spatially uniform phase-locked states
exhibit complex dynamics. In one dimension, for strong forcing, phase fronts move with
constant velocity. As the forcing intensity is lowered there is a bifurcation to oscillatory
motion, followed by a bifurcation to a regime in which fronts multiply via the nucleation
of domains of the third homogeneous phase in the front. In two dimensional systems,
rough fronts with turbulent, complex internal structure may arise. For a critical value of
the forcing intensity there is a nonequilibrium phase transition in which the turbulent
interface grows to occupy the entire system. The phenomena we explore can be probed by
experiments on periodically forced light sensitive reactionÈdi†usion systems.

1 Introduction

Resonant forcing of oscillatory reactionÈdi†usion systems can lead to a variety of chemical pat-
terns not seen in unforced systems. In a well-stirred system, an external periodic perturbation,
sufficiently close to the resonant frequency, causes phase-locking of the oscillatory kinetics. At the
n : m resonance stable oscillations may occur only with one of n di†erent phases. These n stable
phase states are equivalent under phase shifts of 2p/n.

In a reactionÈdi†usion system, a spatially-distributed Ðeld of these local n-stable oscillators is
coupled by di†usion. The system tends to form spatially uniform domains inside which the local
oscillations are synchronized to one of the phase-locked states. The boundaries between domains,
where the phase of the oscillations shifts, are domain walls or ““phase fronts ÏÏ. Such phase fronts
have been observed in experimental studies of the ruthenium-catalyzed BelousovÈZhabotinsky
reaction in a continously-fed open reactor, illuminated with a periodic light source.1h4

In many cases the dynamics of patterns in the system can be understood in terms of the
dynamics of the phase fronts. For example, a transition between labyrinthine and non-
labyrinthine stationary two-phase patterns in experiments in 2 : 1 forced systems was attributed to
a lateral instability in the phase front.2 Travelling loop structures in 2 : 1 experiments were
ascribed to the presence of a nonequilibrium IsingÈBloch front bifurcation.5 Earlier theoretical
work had predicted that such a bifurcation could exist in 2 : 1 phase fronts.6

In this paper, we describe phase fronts in the resonantly forced complex GinzburgÈLandau
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(FCGL) system

dA(r, t)
dt

\ (k ] il)A[ (1] ib) oA o2A] cA1 n~1 ] (1 ] ia)+2A. (1)

This equation describes the envelope of oscillations of a forced system at the n : m resonance (n, m
are coprime integers, n O 4) near the Hopf bifurcation.7,8 The parameter c is the amplitude of the
forcing. The reagent concentrations c(r, t) in the original reactionÈdi†usion system which the
complex GinzburgÈLandau equation models are related to the complex amplitude A(r, t) accord-
ing to

c(r, t)[ c0B Aueiuft@n] A1 u6 e~iuft@n, (2)

where u and are the critical eigenvectors involved in the Hopf bifurcation and is theu6 ufB nu0/mforcing frequency. As well as being the normal form of the bifurcation, eqn. (1) is widely used as a
generic model of resonantly forced oscillatory reactionÈdi†usion systems. In the remainder of this
paper we focus on the n \ 3 case corresponding to the 3 : 1 resonance.

The ordinary di†erential equation (ODE) describing the local dynamics of the medium in the
absence of di†usion, has only the trivial Ðxed pointdA/dt \ (k] il)A [ (1] ib) oA o2A ] cA1 n~1,
A\ 0 for c\ 0. As c increases, there is a bifurcation where n pairs of Ðxed points appear. From
eqn. (2) we see that these Ðxed point solutions correspond to phase-locked oscillatory solutions in
the original forced reacting system that is modelled by the reduced FCGL dynamics. The phase
shift symmetry under in the reacting system system appears in the FCGL equationt ] t ] 2p/ufas the phase shift symmetry A] Ae2ip@n ; hence, we consider the FCGL equation to describe the
dynamics of the original system viewed stroboscopically in planes taken at intervalsPoincare�

The FCGL equation exhibits spatially uniform phase-locked domains and phase*t \ 2np/uf .fronts which correspond to those observed in resonantly-forced reactionÈdi†usion systems.
The unforced CGL equation (eqn. (1) with c\ 0), exhibits phase turbulence in the BenjaminÈ

Feir-unstable regime, which is the region of parameter space in which 1] ab \ 0. If forcing is
added to the CGL equation in the BenjaminÈFeir-unstable regime (i.e. if c is taken to be nonzero)
the synchronizing e†ect of the forcing opposes the desynchronizing e†ect of the turbulent CGL
dynamics. Coullet and Emilsson investigated eqn. (1) in this regime.9h11 In the one-dimensional
case, when the forcing intensity is high, one observes phase fronts which either may be stationary
or may translate monotonically with a constant velocity v and have a front proÐle A(x,
t)\ A(x [ vt). This behavior is identical to the BenjaminÈFeir-stable case.12 For n \ 2, as c is
lowered, one observes a Hopf bifurcation in which an oscillatory motion is superposed on the
translating (or stationary) front motion. As c is decreased further a series of period-doubling
bifurcations occurs. Eventually chaotic motion of the front ensues. At still lower c, a regime in
which a turbulent region is nucleated at the front is observed, and ultimately the turbulent region
expands to Ðll the system. The dynamics of phase fronts in the n \ 2, d \ 1 system was also
investigated by Mizuguchi and Sasa13 and Battogtokh and Browne14. Phase fronts in two dimen-
sions exhibit spontaneous roughening of the front proÐle.9

Phase front roughening in two dimensions has been observed in a coupled map lattice (CML)
system which may be regarded as a model for a periodically forced oscillatory system.15h18 If the
uncoupled map is chosen such that it possesses a superstable period-3 cyclic solution
1 ] 2 ] 3 ] 1, there are three cyclic solutions di†ering in phase by one discrete time step. In this
sense the map is a model for a 3 : 1 resonantly forced oscillator. In two dimensions, the fronts
exhibit a variety of other dynamical phenomena, including a nonequilibrium phase transition to a
regime of strong turbulence. Before the transition, interfaces between spatially uniform regions are
rough. As a control parameter is varied, the intrinsic width of the interface increases and complex,
irregular structure develops. As the transition is approached the width of the complex, disordered
interfacial zone increases. The intrinsic interface width diverges at the transition ; beyond the tran-
sition the spatially uniform phases are unstable relative to the turbulent phase ; hence, an initially
present interface will grow to Ðll the entire system with the turbulent phase. In this paper we show
that qualitatively similar phenomena are found in the 3 : 1 FCGL system.

Section 2 is devoted to a study of the one-dimensional, n \ 3, FCGL equation. In Section 3 we
consider phase fronts in two-dimensional systems and in Section 4 we discuss the strong turbu-
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lence regime found beyond the nonequilibrium phase transition. The conclusions of the paper are
given in Section 5.

2 One-dimensional fronts
We consider Ðrst the simplest case : eqn. (1) with k, l, a and b such that the unforced (c\ 0)
equation is in the BenjaminÈFeir-stable regime. For c[ [2((1] b2)(k2] l2))1@2[ 2(k ] bl)]1@2,
the corresponding ODE possesses 3 stable Ðxed pointsdA/dt \ (k] il)A[ (1 ] ib) oA o2A] cA1 2

i\ 1, 2, 3 (and 3 corresponding unstable ones, as well as the unstable A\ 0 Ðxed point)A0i ,
which are also solutions of the spatially distributed system. These solutions are linearly stable to
spatially homogeneous perturbations, and in the BenjaminÈFeir-stable regime are stable to spa-
tially inhomogeneous perturbations. In one dimension, the next simplest solution is a front joining
two of these spatially uniform states. These phase fronts travel at a constant velocity v with
constant shape, A(x, t)\ A(x [ vt).

When the unforced system is BenjaminÈFeir-unstable, such uniformly translating front solu-
tions are stable for large values of c. Fig. 1 shows such a front solution for the parameter values
k \ 1, l\ 1.55, a \ [1.3, b \ 1.5 and c\ 0.63. Throughout this paper we Ðx k, l, a and b at
these values ; c is taken to be the control parameter.¤

As c is lowered, a bifurcation to oscillatory front motion occurs at In general, these oscil-cc .
lating fronts have a non-zero average velocity. In the n \ 2 case, a Hopf bifurcation to oscillatory
motion was found.9,10,13 However, in the n \ 3 system the bifurcation is not a Hopf bifurcation :
the period T of the oscillations diverges as as (Fig. 2 (left)). At the bifur-T Do cc [ c o~1@2 c] cc~cation, the average front velocity, scales as (Fig. 2 (right)), wherev[ v(cc) D a

B
o cc [ c o1@2 a

Bdepends on the sign of cc [ c.
For yet lower c a bifurcation to a regime of weak turbulence occurs (see Fig. 3). The mechanism

for the appearance of weak turbulence involves the nucleation of a Ðnite-sized domain of the third
phase at the front. For example letting [12] denote a front separating phases 1 and 2, nucleation
of phase 3 at the front leads to a [13É É É32] front pair, which travels in the opposite direction.
These newly-formed fronts subsequently undergo similar nucleation events ; in addition fronts may
collide and annihilate. Fig. 3 illustrates a number of such front-splitting, reversal, and annihilation
events. One can see that the number of fronts increases and that the size of the region in which
fronts are found increases. In this weakly turbulent region the front splitting and reversal events
exhibit complex dynamics. A front-splitting regime of this kind has not been reported for the

Fig. 1 A travelling front solution in the one-dimensional n \ 3 FCGL equation for c\ 0.63. Other param-
eters are given in the text. Left : Re A (solid line) and Im A (dashed line) against x. Right : The front plotted as
a trajectory in the A-plane (solid line) ; the three Ðlled circles are the three stable spatially uniform states.

¤ Numerical integration of the FCGL equation was performed using explicit forward di†erencing with a time
step size of *t \ 0.01. The lattice spacing was *x \ 0.25 in one dimension. In two dimensions, *x \ 0.25 or
0.5 and a second-order discrete Laplacian was used. Time intervals and lengths are reported in the absolute
time and space units in which eqn. (1) is written.
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Fig. 2 Left : Plot of T ~2 against c, where T is the period of oscillations in the one-dimensional FCGL
equation. The Ðlled circles are simulation values, the dotted line is whereT ~2\ 0.058 881 76(cc[ c), cc \
0.623 290 841 4. Right : Front velocity v against c. Circles, simulation values ; hollow circles, non-oscillatory
regime and Ðlled circles, average velocity in the oscillatory regime. The solid line is the curve v\ vc ] 2.196(cc[ c)1@2 ; the dashed line is the curve wherev\ vc [ 0.3192(c [ cc)1@2, vc \[0.491 742.

n \ 2 case. The repeated formation of new fronts and spatially homogenous domains observed
here bears some resemblance to a mechanism giving rise to spatiotemporal chaos that has been
described in a reactionÈdi†usion system with one stable homogenous state.19

Continuing to decrease c, we encounter windows of regular dynamics within the domain of
weakly turbulent dynamics. An interesting localized structure observed was an oscillating hole
with zero average velocity within a single phase-locked domain (Fig. 4). This was found at a c
value for which phase fronts are unstable. The character of the spatiotemporal dynamics for

Fig. 3 SpaceÈtime plot of the phase / of the complex amplitude A(x, t)\ ReiÕ in the one-dimensional FCGL
equation for c\ 0.602 105 62. Time is on the ordinate and increases downward. The time interval shown is
2500 time units. The system size is 1250 space units, the plot shows a portion with length 750 space units. The
initial conditions were A(x, where h(x) is the Heaviside function and and (L , R0)\ h([x)A0L] h(x)A0R , A0L A0R ,
½ M1, 2, 3N, are the Ðxed points of the ODE represented by the medium and light grey shades, respec-L DR)
tively. The third Ðxed point is represented by the dark grey shade.
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Fig. 4 A zero-velocity hole solution for c\ 0.573. On the left are spaceÈtime plots of the phase (upper panel)
and amplitude (lower panel) of A. The plots show an interval of 20 time units. The system size is 1250 space
units, the plots show a portion with length 50 units. Right : Graph of Re A (solid line) and Im A (dashed line)
against position, recorded at the time at which the spaceÈtime plots begin.

cB 0.2 takes the form of strong turbulence where both the phase and amplitude vary irregularly
on short distance and time scales. An example of turbulence of this type is shown in Fig. 5. One
can see in this Ðgure that the homogeneous regions within the turbulent phase are rare and
short-lived.

Having given this brief overview of the phenomenology of fronts in the one-dimensional system;
we consider two-dimensional fronts where new phenomena arise.

3 Two-dimensional fronts
In two spatial dimensions front structure and evolution exhibit a number of distinctive character-
istics. For sufficiently high c planar two-dimensional fronts exist which are similar to those seen in
one-dimensional systems. For lower c, the front proÐle roughens but the intrinsic width of the
front is small and comparable to that of the planar front. The front position oscillates locally but

Fig. 5 SpaceÈtime plot of the amplitude (upper panel) and phase (lower panel) of the dynamics in the strong
turbulence regime for c\ 0.2. The system size is 1250 space units, the plots show a portion 500 units in length.
The time interval is 300 units. The initial conditions were of the form described in the Fig. 3 caption.
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these oscillations lose phase-synchronization along the front. Fig. 6 shows typical examples of
fronts of this kind for c\ 0.59.

Decreasing c further, the average intrinsic width of the fronts increases and complex internal
structure develops. In this regime we may regard the front as a turbulent phase separating the two
spatially homogenous phases. Fig. 7 shows fronts of this type for c\ 0.46.

The average width of the interface increases, eventually diverging as c] c*. For our parameter
values c* ^ 0.457. If c \ c* the turbulent interfacial phase is no longer conÐned but grows without
bound, eventually Ðlling the entire system, regardless of system size. We may regard this ““ front
explosionÏÏ as the loss of stability of the homogeneous phases relative to the turbulent phase.

We have statistically characterized the front dynamics for the two conÐned front regimes men-
tioned above, using c\ 0.58 and c\ 0.49 as representative values of the two cases. Periodic
boundary conditions were used in the direction parallel to the front motion and no-Ñux boundary
conditions were imposed on the edges perpendicular to the front motion. The simulations were
performed in a frame moving with the front. The initial conditions consisted of domains of the

Fig. 6 Typical fronts in the ““ thin front ÏÏ regime taken from a single realization of the dynamics at three well
separated times. Here c\ 0.59. The grey-scale indicates the phase / of the complex amplitude A\ ReiÕ, with
/\ [p corresponding to the darkest shade and /\ ]p corresponding to the lightest shade. Points around
which all shades of grey appear are phase defects. The system size is 200] 200 space units, a portion with
dimensions 100 ] 200 is shown.

Fig. 7 The turbulent front in a system with c\ 0.46 at three di†erent times. Grey-scale coding is the same as
in Fig. 6. The system size is 800] 200 space units, a portion with dimensions 200 ] 200 is shown.
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spatially uniform stable states separated by a randomly seeded planar strip. More precisely,

A(x, y, 0) \
7A0L,
R0 eiÕ(x, y),
A0R,

[O \ x \ [W /2

[W /2 O x O W /2

W /2 \ x \ ]O
(3)

where W is the width of the randomly seeded strip, /(x, y) is a random variable uniformly distrib-
uted on [[p, ]p), and (L , R ½ M1, 2, 3N) are Ðxed points of the ODE andA0L A0L R0 \ oA0L o\
oA0R o.

We deÐne the position of the right proÐle t) to be the greatest value of x for which oA(x, y,hR(y,
An analogous criterion is used to deÐne the left proÐle : t) is the smallest valuet)[ A0R oPe. hL(y,

for which oA(x, y, The value e \ 0.02 was chosen ; comparison of the front proÐlest) [ A0L oP e.
determined by this method with the images of the phase and amplitude Ðelds conÐrmed that this
value for e deÐned the boundaries of the interfacial zone well.

We also deÐne the mean positions of the left and right proÐles, t), theh6L@R(t) \ L ~1 /0L dyhL@R(y,
deviations from the mean, and the widths of the left and rightdhL@R(y, t)\ hL@R(y, t)[ h6L@R(t),proÐles,

wL@R(t)\
G1

L
P
0

L
dydhL@R2 (y, t)

H1@2
. (4)

Di†usively rough interfaces typically obey the following scaling relations :20 at small t the
ensemble average width Sw(t)T D tc, until it saturates at One may rescale the Sw(t)T vs. twsatD L ~.
curve by these scaling exponents to obtain vs. which is independent of the systemSw(t)T/L ~ t/L~@c
size. Fronts described by the EdwardsÈWilkinson (EW) equation21 have and 1/4aü \ 1/2 bü \
while KardarÈParisiÈZhang (KPZ) fronts22 have andaü \ 1/2 bü \ 1/3.

For c\ 0.58 (““ thin front ÏÏ case), using both EW and KPZ exponents, neither the left nor the
right interfacial proÐles yielded data collapse. However, rescaling by the exponents andaü \ 1/2

leads to a reasonable collapse of the Sw(t)T data (see Fig. 8 (left)), except for thebü \ aü /3.0 ^ 0.17
smallest system size, L \ 200. The oscillations which are clearly visible at early times in the
L \ 200 curve are also present in the data for larger system sizes but are collapsed by the rescaling
to a small time interval near the origin and are not visible in the Ðgure. The fact that KPZ
exponent scaling fails to provide a data collapse may possibly be ascribed to the correlated nature
of the turbulent dynamics driving the front roughening process in the FCGL system. The oscil-
lations present at early times are an indication that the spectrum of the deterministic noise in this
system is unlikely to be white.

The above results on the width scaling structure are not generally valid for all fronts observed
in this system and the scaling exponents are found to be a function of c. For example, for c\ 0.49,

Fig. 8 Left : The scaled left interfacial proÐle width vs. time, vs. t/L 3.0, for system sizes L \ 600SwL(t)T/L 1@2
(solid line), L \ 500 (long-dashed line), L \ 400 (short-dashed line) and L \ 200 (dotted line) for c\ 0.58.
Right : Scaled plot of the average width of the left proÐle, vs. t/L 3@2 for system sizes L \ 500 (solidSwL(t)T/L 1@2
curve), 400 (dashed curve) and 200 (dotted curve) for c\ 0.49. Each curve is an average over 100 realizations
from initial conditions eqn. (3).
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Fig. 9 S*(t)T vs. t for L \ 400 (solid line) and L \ 600 (dashed line) for c\ 0.58. The average is taken over
100 realizations from initial conditions eqn. (3).

KPZ scaling is found to produce good data collapse (see Fig. 8 (right)). The interface for this
parameter value is thick and the internal turbulent structure is more fully developed. As a result
the deterministic chaos likely has shorter spatial and temporal correlations making a KPZ
approximation to the interfacial dynamics reasonable.

In addition to the average interfacial proÐle width discussed above we may examine the struc-
ture of the intrinsic width of the front *(y, t) which is deÐned by *(y, t). A plott) \ hR(y, t)[ hL(y,
of S*(t)T against t is shown in Fig. 9 for c\ 0.58. Here S É T is an average over the front length
and realizations. One observes oscillatory decay to a constant asymptotic value. Note that the
curves obtained are essentially indistinguishable for the two di†erent system sizes considered in
the Ðgure. The spatial and temporal autocorrelation functions of the intrinsic width are deÐned by

C*(x)\ Sd*(y, t@)d*(y ] y@, t@)T/Sd*2), (5)

C*(t)\ Sd*(y@, t)d*(y@, t ] t@)T/Sd*2T, (6)

where the S É T represents an average over y@ and t@ after the front has reached its statistically
stationary regime and d*\ *[ S*T. The temporal and spatial autocorrelation functions are
plotted in Fig. 10. From this Ðgure we see that both temporal and spatial autocorrelations decay
rapidly and both the correlation time and correlation length increase with decreasing c. From an
examination of instantaneous pictures of the front in Fig. 7 one can see the formation of large
Ñuctuations in the intrinsic interfacial width which extend over long distances. The sizes of these
extended turbulent domains increase as c decreases and this is signalled in the increased corre-
lation length. Similarly, the timescale on which these Ñuctuations decay increases for lower c
values.

Fig. 10 (left) Temporal autocorrelation function and (right) spatial autocorrelation function forC*(t) C*(y)
several di†erent c values : c\ 0.49 (solid line), c\ 0.48 (dashed line) and c\ 0.475 (dotted line). These were
measured in simulations in systems of size L \ 200.
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4 The strong turbulence regime in two dimensions
Below c* ^ 0.457, starting from a planar front separating two stable homogeneous phases, the
width D increases without bound; thus, the turbulent phase eventually Ðlls the entire system. The
time evolution of the front for c\ 0.45 is presented in Fig. 11 and shows the unbounded growth of
the turbulent phase for this c value. For two-dimensional systems we call this the ““ strong
turbulence ÏÏ regime. The largest Lyapunov exponent j in a system containing only the turbulent
phase was measured23 for c\ 0.45 and found to be j ^ 0.31, signalling the presence of determin-
istic chaos in this model. Consistent with this, spatial

C
A
(r)\ SA1 (r ] r@)A(r@)T/S oA o2T, (7)

and temporal

C
A
(t)\ SA1 (t ] t@)A(t@)T/S oA o2T (8)

correlations decay rapidly within the turbulent phase (see Fig. 12).
We have shown in Fig. 11 that the turbulent phase invades the stable homogeneous phases. In

this regime there is only one interfacial proÐle to consider since the turbulent phase is not con-
Ðned and it is no longer necessary to distinguish left and right interfacial proÐles. If the turbulent
phase is on the left and the homogeneous phase is on the right, the proÐle h(y, t) is deÐned
identically to the right proÐle t) above, i.e., as the greatest x such that oA(x, y, IthR(y, t) [ A0 o [ e.
is interesting to investigate the scaling properties of the width of this interfacial proÐle. The scaling
studies were performed starting from initial conditions of the form

A(x, y, 0) \
GA3 (x, y),

A0 ,

x O 0

x [ 0.
(9)

where is one of the stable spatially uniform states, and y) is a turbulent state prepared byA0 A3 (x,
allowing initial conditions of the form

A(x, y)\ R0 eiÕ(x, y) (10)

to evolve under the FCGL dynamics for t \ 200 time units. In eqn. (10), and /(x, y) isR0\ oA0 o,
a random variable uniformly distributed on [[p, p).

Fig. 11 The interface in a system with c\ 0.45, in the strong turbulence regime, at t \ 500, 1500 and 3000.
The initial condition was a planar interface with a thin randomly-seeded strip. The grey-scale indicates the
phase Ðeld / of the complex amplitude A\ ReiÕ with the darkest shade corresponding to /\ [p and the
lightest corresponding to /\ ]p. The system size is 800 ] 200.
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Fig. 12 Left : Temporal autocorrelation function. Real (solid line) and imaginary (dashed line) parts for
c\ 0.40. The magnitude is shown as a dotted line. Right : Spatial autocorrelation function for the sameoC

A
(t) o

c value. The imaginary part is close to zero and the real part is indistinguishable from when plotted.oC
A
(r) o

The results of this calculation are shown in Fig. 13. One can see that the width has a KPZ
scaling structure.

5 Discussion and conclusions
We have found phase front dynamics in the 3 : 1 FCGL equation that are qualitatively similar to
those reported in a coupled map lattice with period-3 local dynamics. In particular, we observed
front roughening, thick fronts with complex internal structure and a ““ front-explosionÏÏ, nonequi-
librium phase transition.16,18 In the CML these phenomena were associated with stable chaos. In
contrast, we have shown that the FCGL equation exhibits deterministic chaos. When the internal
turbulent structure is sufficiently developed, the fronts obey KPZ scaling. When the fronts are
thin, however, the dynamics possess temporal and spatial correlations and the fronts no longer
have KPZ scaling properties.

The CML dynamics of the thick fronts separating two homogeneous phases and the critical
properties of the nonequilibrium phase transition were described well by a phenomenological
stochastic model in which a turbulent phase was identiÐed in the interfacial zone.15 Consequently,
the thick front may be decomposed into two interacting fronts (the left and right proÐles of the
thick front) separating the turbulent phase from the homogeneous phases. In this model EdwardsÈ
Wilkinson equations for the left and right proÐles were coupled by terms describing the inter-
action between these proÐles. Currently, investigations are in progress to characterize the critical
properties of the FCGL phase transition. This should allow one to determine the validity of

Fig. 13 Plot of vs. t/L 3@2 for system sizes L \ 500 (solid curve), 400 (dashed curve) and 200Sw
h
(t)T/L 1@2

(dotted curve) for c\ 0.43. The L \ 400 and L \ 500 curves are averages over 100 realizations from initial
conditions (9), the L \ 200 curve is an average over 200 realizations.
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Fig. 14 The phase Ðeld / in a simulation with c\ 0.49 from initial conditions containing a phase defect. The
system size is 200 ] 200.

phenomenological models of the form described above for the CML, and to shed light on the
nature of the front explosion and its description as a nonequilibrium phase transition.

The phenomenology of the 3 : 1 FCGL equation in the BenjaminÈFeir-unstable regime is
remarkably rich. Some phenomena are similar to those previously found in the 2 : 1 FCGL equa-
tion while others have no known counterparts ; however, there appears to be no reason why
corresponding behaviour should not exist at other resonances.

The results presented here open a number of avenues for further investigation, both theoretical
and experimental. Worthy candidates for investigation are the transition between what are appar-
ently weakly turbulent and strongly turbulent regimes in the one-dimensional system, the zero-
velocity holes and the origins of the non-KPZ scaling in the two-dimensional ““ thin front ÏÏ regime.
The nature of the bifurcation from constant-velocity motion to oscillatory motion in one-
dimension is also an interesting question.

The FCGL equation is a sufficiently faithful model, as far as qualitative phenomenology is
concerned, that there is a good likelihood that the phenomena described here also will exist in
experimental 3 : 1 resonantly forced oscillatory systems. An experimental report of a 3-phase,
phase-locked pattern in a light-sensitive BelousovÈZhabotinsky reaction shows 3 : 1 phase fronts
that resemble the rough fronts in this study.1

Finally, we note that the foregoing study has been concerned entirely with phase fronts and has
not considered other patterns that may exist in two-dimensional resonantly forced systems. Where
three phases meet, one obtains three-armed spiral waves in which rough interfaces separate the
arms (Fig. 14). Due to the constant nucleation and annihilation of phase defects in the turbulent
interfaces, the situation is di†erent from systems with regular dynamics where the single phase
defect present may be identiÐed with the spiral core. Instead, in systems with complex interfacial
structure the core is a region with Ðnite spatial extent. Since spiral dynamics plays an important
role in reactionÈdi†usion systems, the investigation of the dynamics of these unusual spiral waves
is a promising area for future research.
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