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Abstract

Starting with the mixed quantum-—classical Liouville equation, projection operator methods are used to derive an
equation of motion for a quantum subsystem dissipatively interacting with a classical bath. The resulting generalized
master equation is reduced to the Lindblad equation after making a Markovian approximation in the weak coupling
limit. The bath subsystem dynamics is studied from a similar perspective. For situations where the classical subsystem
consists of few degrees of freedom, or one is interested in the nature of the modifications of its dynamics as a result of
coupling to a large, rapidly relaxing quantum bath, a classical analog of the Lindblad equation is derived and dis-

cussed. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Dissipation and decoherence are ubiquitous
phenomena and play important roles in the
chemistry, physics, and biology of open quantum
systems. Often a large system can be described
adequately as a subsystem, consisting of one or
few degrees of freedom, dissipatively interacting
with its environment (thermal bath) comprising a
large number of degrees of freedom. Examples
include electron transfer in solution and in large
biological molecules, vibrational relaxation of
molecules in solution, impurity centers in solids
and excitons in semiconductors coupled to acous-
tic or optical phonon modes, ultrafast optical
spectra of chromophores in crystalline or glassy
hosts and proton transfer and diffusion in liquids
and solids.
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The description of the dynamics of a subsystem
interacting with a bath entails defining a reduced
density operator in the Hilbert space of the sub-
system. In principle, the reduced density operator
can be obtained by evolving the complete density
operator under the quantum Liouville equation
and then tracing over the bath degrees of freedom.
Since it is often impossible to follow the full
dynamics of the subsystem plus bath, the devel-
opment of microscopic quantum theories of sub-
system dynamics, which include dissipative effects
arising from interactions with the bath, has been a
long-standing topic of research in chemistry and
physics [1,2].

Over the past few decades methods have been
developed to obtain equations of motion for sub-
systems interacting with an environment. A con-
siderable amount of early research was devoted
to the derivation of quantum master or Langevin
equations, focusing mainly on subsystems weakly
coupled to their environment [3-11]. Generalized
master equations have been derived by Nakajima
[12], and Zwanzig [13] using projection operator
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techniques. The choice of starting equation and pro-
jection operator are important in such derivations
and these issues have been considered [14-18].

While classical dissipative systems can be
modelled by the well-known Fokker—Planck or
Langevin equations, the description of quantum
dissipative dynamics remains a challenging prob-
lem [1,2,19-30]. Quantum master equations for
strong subsystem-bath coupling have been con-
structed [2,29,31-33]; however, most approximate
relaxation theories are derived under weak cou-
pling conditions. The early theories of Block and
Wangsness [34] and Fano [35], later extended by
Redfield [36-43] grew out of applications of sec-
ond order time-dependent perturbation theory
to derive a set of relaxation equations. Redfield
theory is widely used in chemical applications,
especially for electron transfer, ultrafast optical
spectroscopy and nuclear magnetic resonance
spectroscopy. A number of other general models
have been constructed [44-46]. Approaches that
are based on the equation of motion that arises in
the axiomatic semigroup theory of Lindblad [47],
Gorini et al. [48] and other workers [2,28,29,49-52]
are commonly employed.

These theories may be written in the general form

0p i
Do L pgl0)] + Lapolo). M

where Lq is a damping operator and ki, and Polt)
denote the Hamiltonian and the reduced density
operator of the subsystem, respectively. An equa-
tion of motion of the Lindblad form where the
damping operator is Lgp,(t) = —'))[/i,[/i,ﬁg(t)]],
generates a completely positive dynamics and is
frequently used in applications. Here A4 is a Her-
mitian operator involved in the coupling of the
subsystem to the bath.

In this paper we consider mixed quantum-
classical systems where a subset of the degrees
of freedom of the system is treated quantum
mechanically and the remainder classically. The
mixed quantum-classical Liouville equation for
the entire system [53-61] ' incorporates a detailed

"In Ref. [57] the Poisson bracket terms in the evolution
equation are not anti-symmetric.

description of subsystem-bath interactions and
is amenable to solution using surface-hopping
schemes [62,63]. Starting with this full system
evolution equation we project out the classical
bath degrees of freedom to derive an equation of
motion for the quantum subsystem. We then
consider a weak coupling limit and reduce the
non-Markovian subsystem evolution equation to
Lindblad form. One of the advantages of this
formulation is that for systems which can be ac-
curately described by mixed quantum-—classical
dynamics the coefficients appearing in the Lind-
blad equation take the form of easily computed
classical bath autocorrelation functions.

In the weak coupling limit the impact of the
classical subsystem on the quantum subsystem
dynamics is of interest and the effect of the quan-
tum subsystem on the classical bath is neglected. If
one considers the coupling between a large quan-
tum subsystem and a few degree of freedom clas-
sical subsystem, or must account for the details of
the coupling between the two subsystems, one may
no longer ignore the perturbations on the classical
subsystem. This is the case for most surface-hop-
ping schemes for quantum rate processes in clas-
sical environments. To investigate this problem we
reverse the roles of the quantum subsystem and
classical bath and project out the quantum me-
chanical degrees of freedom and derive an equa-
tion of motion for a classical subsystem interacting
with a quantum bath.

The outline of the paper is as follows: An exact
reduced equation of motion for the quantum
subsystem is derived in Section 2. The Lindblad
equation is obtained after invoking a Markovian
approximation in the weak coupling limit. The
derivation of the classical subsystem reduced
equation of motion is given in Section 3 and the
conclusions of the study are presented in Section 4.

2. Quantum subsystem dynamics

We consider a quantum mechanical many-body
system that is partitioned into a quantum subsys-
tem and a quantum bath or environment. The time
evolution of the density matrix p(¢) of the entire



M. Toutounji, R. Kapral | Chemical Physics 268 (2001) 79-89 81

system (subsystem plus bath) is governed by the
quantum Liouville equation

D _ L py, @

where the Hamiltonian operator is given by
. p2 ﬁz
i=1-+2 170 3)
The quantum subsystem position and momentum
operators are denoted by ¢ and p, respectively,
while the analogous ‘quantum bath operators are
denoted by O and P. The total potential energy
operator may be written as V(g,0) = Vi(q) +
Va(Q) + Ve(g, 0), where the subscripts s, B and ¢
refer to the quantum subsystem, bath and cou-
pling, respectively. We suppress vector notation to
avoid cluttering the equations but system is un-
derstood to have many degrees of freedom.
Mixed quantum-classical descriptions of the
dynamics are appropriate in many-body systems
where the focus is on certain degrees of freedom
whose quantum character cannot be neglected,
while evolution of the remaining degrees of free-
dom, in the absence of interactions with the
quantum subsystem, can be treated classically [53—
61,64]. Such descriptions underlie the construc-
tions of surface-hopping algorithms [62,63,65-76].
The evolution equation for a mixed quantum-—
classical system (quantum subsystem coupled to a
classical bath) analyzed in this paper has been
obtained in a number of earlier investigations [53—
61]. One way to obtain this equation of motion is
to first perform a partial Wigner transform [77]
with respect to the bath coordinates, Q, retaining
the quantum mechanical nature of the subsystem
coordinates, and then expand the resulting equa-
tion to linear order in the mass ratio (m/M)"* (or
7). The hats signify quantum mechanical operators
while purely classical quantities lack hats. The re-
sulting mixed quantum-—classical Liouville equa-
tion is

W — _%[]:IW, pw(2)] +%({F[w,ﬁw(t>}

- {ﬁw(t)al:[w}) = _iff,ﬁw(t)-
(4)

Here { , }is the Poisson bracket, pw(R, P, f) is the
partially Wigner transformed density matrix in the
mixed quantum—classical limit and R and P denote
the set of classical bath phase space coordinates.
The partial Wigner transform of the Hamiltonian
is

R PZ A2

Aw(R.P) = 5+ 3=+ (@ R), (5)
with VW(Q,R) the partially Wigner transformed
total potential energy operator, which is the sum
of the quantum subsystem, bath and subsystem-—
bath potential energies. Eq. (4) will form the
starting point for our derivation of a quantum
mechanical master equation in the limit of weak
subsystem-bath interactions.

2.1. Projected dynamics

Suppose that one wishes to monitor the evolu-
tion of the quantum subsystem only and not the
bath, or that one is constrained to do so, say, by
the resolution limits of the measuring apparatus.
For this purpose one may define a reduced density
matrix py(t) as

) = /deP,bW(R,P, f). (6)

To derive an equation of motion for p, () we in-
troduce an operator that projects onto the quan-
tum part of the full density operator py (R, P, f). In
analogy with studies of fully quantum systems [16—
18] we define a time-independent tetradic projec-
tion operator £ such that

27 (R, P) = % (ﬁb(R7P)</dePf(R,P))

</dePf (R P)) [(R, P))
(7

where py(R,P) is an equilibrium distribution
function determined in the following way: when
the entire mixed quantum-classical system is at
equilibrium it is characterized by the equilib-
rium density matrix, pw,., which is obtained
from the canonical equilibrium density matrix of
the full quantum system by taking the mixed
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quantum-classical limit. It is stationary under
mixed quantum-—classical dynamics, 1% py. =0
[78]. Given py, , defined in this way, we also define

/A)b(RaP) = ﬁW,e(Rvp)ﬁ;la

AT Al ~ (8)
pb(R’P) = ps pW,e(RaP)y

where

b= [ ARAP . (R.P). 9)

Here p, is the equilibrium density matrix for the
quantum subsystem in equilibrium with the clas-
sical bath and p_! is its inverse. Coupling between
the quantum subsystem and the large, rapidly re-
laxing classical bath is responsible for the relax-
ation to equilibrium of the quantum subsystem. In
isolation it need not relax to equilibrium since it
may comprise only a few degrees of freedom.
From its definition, its form is obtained from the
complete mixed quantum-classical equilibrium
density matrix by integrating out the bath phase
space coordinates. Given this definition of g, p, is
the analog of a conditional bath equilibrium den-
sity. The densities are normalized so that

/deP[)b(R,P) =1 (10)

The density p, is still an operator in the quantum
degrees of freedom since both subsystems remain
coupled even in thermal equilibrium. Later, we
shall see that in the weak coupling limit p, may be
replaced by the canonical equilibrium density for
the isolated bath.

The complement of Zis 2 =1 — 2, where 1 isa
unit tetradic operator. The 2 and 2 operators
satisfy the projection operator properties: #° = 2
and 2° =2 (idempotency) and 22 =22 =0
(orthogonality). Using £ and 2, py, can be written
as

| .
Pw :E(ppr'i_prTb) + 2pw- (11)

We shall drop the (R, P) arguments when confu-
sion is unlikely to arise.

Making use of the usual projection operator
algebra [13] applied to Eq. (4) one obtains

o .
paQt(t> = _ / dePi.f% (ﬁbﬁQ(t) + ﬁQ(I)ﬁD

[ N
+ / ds / dRAPi.¥ e 22(-1)
0

S BV . .
x 9372 (pobolt) + po(t)ol)

- / dRAPiZL ¢ 27 24, (0). (12)

This non-Markovian evolution equation describes
the dynamics of an open quantum system in con-
tact with a classical deterministic bath. The use of
the symmetrized form of the projection operator
defined in Eq. (7) in this derivation has a number
of desirable features: the first term on the right-
hand side of Eq. (12) (streaming term) is hermitian
and is thus consistent with the time derivative of
the hermitian reduced density matrix [16]. Fur-
thermore, as argued by Romero-Rochin and co-
workers [17,18] for fully quantum systems, it leads
to a consistent partition into streaming and dissi-
pative contributions (second term on right-hand
side) where each term is zero at equilibrium.

In Eq. (12) pw(0) is the initial value of the
mixed quantum-classical density matrix. Often
product initial conditions are assumed, which take
the form py(0) = py(0)pp,. for our system, with
pp. the canonical equilibrium density matrix for
the bath in isolation from the quantum subsystem.
For such initial conditions, with the projection
operator defined in terms of pg . instead of p, and
its adjoint, the last term on the right-hand side of
Eq. (12) vanishes. However, such product initial
conditions are difficult to achieve physically. The
use of product initial condition terms and the im-
plications for their use on the evolution of quan-
tum subsystem dynamics has been considered in
the literature. For example, it has been shown that
product initial conditions lead to completely pos-
itive reduced dynamics, whereas correlated initial
conditions need not do so [2,17,18,24,79]. In the
present calculation, in parallel with analogous
treatments for fully quantum systems [17,18], we
make no assumption on the form of the initial
condition. We assume that the isolated bath re-
laxes to equilibrium on some characteristic fast
time scale g and, with the choice of the projection
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operator (7), for times greater than tp the initial
condition term will decay to zero [17,18]. We
henceforth consider the time evolution of p,(¢) for
t > g where the initial condition term has decayed
to zero.

The partially Wigner transformed Hamiltonian
can be written as the sum of quantum subsystem,
bath and interaction terms as

-2 2

. . P .
Hy(R,P) = 2 4V 4+ Vo (R) + T3, R)

= hy + Hy(R, P) + Vi(¢, R). (13)

Using this decomposition of the Hamiltonian we
can partition the Liouvillian % in the form

P =P+ Lo+ &, (14)
with
igs :%V}Sv }7 i%p = *{HBv }7

. (15)
i =217 15 (7 )= (7)),

where Z,, ¥y, and ¥ are subsystem, bath, and
subsystem—bath interaction Liouvillians, respec-
tively. Since 2 and %, commute and 2i¥y =
1.¥g? = 0, then Eq. (12) becomes

aﬁg(t) oA s pl
o = —1Zpy(t) — /dePL.?

/.. .
x5 (Bopo(t) + ho()})
4 ~
+ / dr / dRAPiZ e 711
0

S OV . A
x (aw'i (Pupole) + po()0})

- ((':f/ﬁwle) - f)b(/dePiiﬁ/ﬁWQ)

A 1, Y P
X p5 poll') = 5oy ((li”’pw,e)

- </dePi3f’ﬁwye)ﬁL>>. (16)
In order to obtain the result in this form we used

the fact that
(lgs + igB)ﬁW,e = _ig/ﬁw,e (17)

N =

and, using Py, = ppps = PP}, that

ﬁbﬁs(lggﬁs_l) = _lbb(igsﬁs)f)s_l’ (18)
(ZLp bl = =0 (Lpy) Py

The first two terms in Eq. (16) describe the re-
versible (streaming) motion of the quantum sub-
system: the first term just specifies the quantum
evolution of the isolated subsystem, while the
second term accounts for the change in the re-
versible evolution due to the coupling to the clas-
sical bath. The memory term accounts for all
relaxation effects in the quantum subsystem that
arise from interactions with the bath. We shall
analyze these terms in detail in the next section in
the weak coupling limit where further insight into
their structure will be obtained.

2.2. Weak coupling limit

Consider the dynamics generated by & = %, +
Pp+ AL, where /. is a dimensionless parameter
measuring the strength of the subsystem—bath in-
teraction. We wish to determine the evolution in
the weak coupling limit.

We may expand the equilibrium density py
and the density operators p, and p, appearing in
the generalized master equation in powers of this
ordering parameter as

Pwe = PWe + ADWe + -, (19)
o =0y 4Py 4= ppo Py +o (20)
and

po= PO+ A = poe D e, (21)

respectively. In the 2 — 0 limit p, — pg., p5 —
Poe and py . — pp.Po., Where, in the canonical
ensemble,

pB,e = Zgl e_ﬁHBa ﬁQ‘e = Zél e_ﬁhsa (22)
with Zp and Z, the classical bath and isolated
subsystem partition functions, respectively. Also,

in this limit the projection operator reduces to
P — P, where

Py = Py / dRdP - . (23)

Expanding the streaming term and memory
kernel in Eq. (16) to second order in A yields
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+ ML))po(t) — 7 / drRdPi’
Lo, S At

xz(pb po(t) + po(0il!)
2 /dePLf/ (Pt L) (1)

1/, - .
<201$ ppr 2 ((lg/pBﬁpQ,e)

— Ps, (/dePlngeer))erpQ( )

1, TR AP ST
- 390005t (62 puetod
~one [ araPiZonpec) )
The angle brackets are defined as ()=
JdRAP --- pg..
We may write the interaction potential energy
operator as the sum of products of 4 and B(R),

subsystem operators and bath functions, respec-
tively, as

Ve(q, R) =

Using this form we may write Eq. (24) as

A-B(R). (25)
aﬁagt(‘) = 7%[1%5 + 1A - (B)y, po(1)]
_% /deP%B- (4, (#bol0)
+hol0pl")] +% /Otdt’<<%)
x(8B(t — {)3B)y - ([A e 1A, po(2)]]

Po
+[4, e (CT:OQ(t — po(f)C )

( ) {8B(t —1),5B})y : <[A,e—ifs<r—r>
g1
[+

[T L)

In this equation the refers to second rank
tensor contraction, which for the dyadic forms
appearing in Eq. (26) and subsequent equations is
defined by ab : cd =}, a;b;c;d; for any vectors a,
b, ¢ and d with components labeled by indices i and
j. The last line of Eq. (26) defines the (/(4*) con-
tributions to the streaming and memory terms We
have defined 38 =B — (B); and C = Poe Aer
The bath correlation functions are given by

(3B3B(t — 1)) = / dRdP 3B §Bpy .
:/dePéSBSB(t—t/)p&e (27)

and ({3B(t — t'), 8B})y is defined similarly.

This Born approximation introduces a separa-
tion of time scales; the relaxation time of the bath,
T, Which is assumed to be fast, and a slower time
scale, tr, corresponding to the relaxation time
of the system induced by the weak interaction
with the bath. The latter scale is of the order
TR ~ A2 > 15. For 13 to be short (fast bath re-
laxation), one needs to consider temperatures in
such a way that 7y is greater than the thermal time
ph. Therefore, the weak interaction approximation
works best at high temperatures and noticeable
deviations take place in the low temperature limit.
In light of the above, the Born approximation re-
stricts the application of the resulting generalized
master equation to weakly damped systems with
relaxation times, 7R, that are large compared to the
relevant time scales of the reversible motion
[2,15,17,18,29,80].

If, as assumed, bath correlations decay much
more rapidly than the time scale that characterizes
the quantum subsystem dynamics, one may ap-
proximate the bath correlation functions in the
memory integral by

(8B(1 — )5B), ~ 2( / N dt(SB(t)SB>B>
X O8(t — 1) = 2y8(¢ — 1),
({5B(1 — 1), 5B})y ~ 2( [ autao, SB}>B)

X 8(t—1)=2958(t—1).
(28)
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This Markovian approximation may be obtained
by taking the half-sided Fourier transform of Eq.
(26) and taking the limit of a rapid bath relaxation
time compared to the other characteristic times in
the system in the evaluation of the memory kernel.
The autocorrelation function in the second line of
Eq. (28) may be rewritten as ({3B(¢),0B})p =
B(3B(¢)3B)y. Thus, this correlation function has
the form of a cross correlation between a dynam-
ical variable B and its flux. It will vanish at 1 =0
and its time integral will generally be much small
than the autocorrelation function of B in the first
equation in Eq. (28).

We may use these results to compute the
memory term, .#(t). Invoking this Markovian
approximation by using Eq. (28) in the memory
function in Eq. (26), one finds

_ (%)y;g : ([ﬁ,%(ﬁﬁg(t) +;3Q(r)/i)}

In order to compute the ¢(4*) contribution to
the streaming term we must first evaluate /35,1).
Given the definition p, = py p;' and the expan-
sion in Eq. (20) we may write to (/(2?),

~ ~(0) ~— (1
Po = Pehgh + 2o

— AWehghiVhgh) + -, (30)
with plV) = [dRdPp pwe The calculation of pWe
can be accomplished by substituting the expansion
in Eq. (19), into 13,0\,\,e =0 and collectlng terms

in 1. From this it follows that ch = Ppelge> @
noted earlier, and

e = —(1Zs +i%8) iZ Py,
— /0 S U (31)

Using the explicit form of the coupling operator
i’ we may write this result as

/ di e 9 <—[ Pl - B(—1)pg

3 g+ poed) 1B(~).pn ).
(32)
With this result and Eq. (30) we find

/ df'e l“M( 4, PoclPo

g+ poed)py. - (B(— 1), pB,E}),

(33)

: BB( - t,)pB,e

l\)

with a similar expression for ,E)g )T,

—— [ are e (Lagtla e -5~ O

+ ch/i) : {B( - t/)>pB,c}> .
(34)

2er(A

Substituting these results into the expression for
&(t) and envoking rapid decay of bath correla-
tions (Eq. (28)) we have

Collecting these results, Eq. (26) becomes

aﬁaQt(t) _ _%[,; A+ (B)y, ho(D)]

. <h>/ A, pg(0)]

— b [Ag (4ol +g04) |, 36)

where we have set the ordering parameter A to
unity. Eq. (36) is compatible with the form of
Lindblad equation [2,29,47,81]. The first term
represents the reversible motion of the subsystem,
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whereas the second and the third terms represent
the Markovian dynamics induced by the weak
subsystem—bath interaction.

3. The bath master equation

The mixed quantum-—classical evolution equa-
tion accounts for the mutual interactions between
the quantum subsystem and classical bath. Con-
sequently, not only is the quantum subsystem dy-
namics affected by interaction with the bath, as
manifested by the dissipative contributions in
the Lindblad equation derived above, but the
dynamics of the bath will also be changed by in-
teraction with the quantum subsystem. This in-
teraction enters in surface-hopping schemes for
non-adiabatic dynamics [62,63,65-75] and will be
especially important when the classical “bath” has
few degrees of freedom or when a few degrees of
freedom are directly coupled to the quantum
subsystem.

The coupling between the quantum and classi-
cal subsystems has the effect of destroying a
Newtonian representation of the bath dynamics.
In order to examine the nature of this breakdown
we consider an extreme case where a small classical
system is coupled to a large, rapidly relaxing
quantum bath. The analysis of this case is carried
out by projecting the full mixed quantum-—classical
density matrix on to the subspace of the classical
degrees of freedom.

We seek an equation for

pB(RaPat) :Tr,ﬁW(R7P7t)a (37)
where Tr' denotes a trace over the quantum sub-

system degrees of freedom. Using the projec-
tion operator ]f qurf where p, = py, X

(T py e) , the mixed quantum-classical Liouville
equation may be reduced to
0pg(?) P

gt = _Trllgpqu(Rvpa t)

! DP(—1) e Epa
+ /0 di T iLe ™22 p py(R,P,1)

— Tr'i%e 27" 9py, (0).
(38)

Simplifying the expressions in Eq. (38) using the
definition of the Liouville operator yields

0 t g i ' ' ) 17 2211
P (hhy a0} 5 [ T ()
ot nJy

x [, plos(r) }
;/0 dr Tr{

x({8Hw. pu(!) 10, + b, (8w, pu(1)} ) |
—TriZe 27 9py (0), (39)

1Jj(t /)

where (Hw> = Tr'ﬁwﬁq. Using the forms of Hy
and ¥.(¢,R) one can write Eq. (39) more explicitly
as

Opg(t)
ot

= {Ha + (), - B.ps(1)}

_%/ dt/Tr/{HB+A_B7e—i:2;/(t—t)
0
< (4.6 Bou)}
1 S
2 / A0 T {Hy + A - Be 270
0

% (1B.pu()} - 34,5, ) }

— T i% e 27 Dpy (0), (40)

where the anticommutator [Al,A .= A1 A> +
A2A1, for any operators A, and 4.

We may take the Markovian limit of this
equation by introducing a weak coupling approx-
imation that is the analog of that used in the
quantum subsystem case. We suppose that the
quantum subsystem relaxation time 7y is much
more rapid that the characteristic relaxation time
of the classical subsystem. Then for times greater
than 7y we may drop the initial condition term.
The equilibrium density operator p, that enters in
the definition of the projection operator may be
replaced by the canonical equilibrium density for
the quantum subsystem p,. = e ~Phs /T (e7Phs). In
this weak coupling limit we have
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L0t + (g Bopn0} — [ o

x ([, A(t = 1)) : {B,e’i*(fﬂ“”/) X BpB(t')}

1 [ . s
+§/0 dt/<[8A,8A(t—t/)]+>Q:{B,e LB(=1)

x {B, ps(7)}}, (41)

where (f')Q = Tr’f‘,ﬁQ_’e.

Given the rapid relaxation of the quantum
bath, we may approximate the quantum bath
equilibrium correlation functions by their delta
function forms as

i

— (A, At = 1)) ~ 2030~ 1),

0 0 (42)

([84,84(t—1)], )~ 2vod(t — 7).

NI —

Eq. (41) reduces to

apgt(f) = {Hy + (/i)Q "B, py(t)} + V/Q

{B,Boy({)} +vo : {B,{B,pp({)}}.  (43)

This is the classical analog of the Lindblad
equation appropriate for the description of a
classical system coupled to a large quantum me-
chanical dissipative bath whose relaxation time is
much faster than that of the classical subsystem.
The first term on the right-hand side just specifies
the usual classical Newtonian evolution of the
bath degrees of freedom in the presence of an
additional potential contribution arising from the
coupling to the quantum bath, averaged over a
quantum equilibrium distribution. The third term
has the form of a double Poisson bracket, analo-
gous to the double commutator in the Lindblad
equation. This term provides a dissipative contri-
bution to the classical dynamics and prevents a
description of the dynamics in terms of simple
Newtonian trajectories. Since the coupling func-
tion B(R) depends only on the classical coordi-
nates, this dissipative term has the form of a
diffusion operator in momentum space.

One may solve this equation using the tech-
niques developed for the study of surface-hopping
dynamics [62,63] and represent the solution in

terms of an ensemble of stochastic trajectory
segments to simulate the momentum space diffu-
sion.

4. Conclusion

Lindblad-type equations are widely used to in-
vestigate the dynamics open quantum systems and
have been derived using a variety of approaches. It
is well known that equations of this type result
from a weak coupling limit of the exact subsystem
evolution equations and this restricts their domain
of applicability [2]. So it is not surprising that our
reduction of the Liouville equation for a mixed
quantum-—classical system to an equation of mo-
tion for the quantum subsystem alone has this
form. However, we have established the conditions
under which the reduction applies for this mixed
quantum-—classical case. In addition, the phenom-
enological coefficients that appear in the Lindblad
equation have precise definitions in terms of easily-
computed purely classical bath correlation func-
tions.

For a classical subsystem coupled to a large,
rapidly relaxing quantum bath, a similar reduction
of the mixed quantum-—classical Liouville equation
yielded a classical evolution equation, analogous
to the Lindblad equation, that provides insight
into the nature of the modification of the bath
dynamics as a result of coupling to a quantum
system. The bath evolution loses its Newtonian
character and can be represented in terms of sto-
chastic classical trajectory segments with diffusion
in momentum space arising from the dissipative
double Poisson bracket term in the evolution
equation.

The main motivations for considering mixed
quantum-—classical dynamics are that this approx-
imation to the full quantum dynamics is expected
to be appropriate in many instances and the full
dynamics can be simulated using surface-hopping
and other techniques. Thus, although the ap-
proximate subsystem equations have limited ap-
plicability, the results in this paper provide one
with the tools to assess the utility of such equations
for realistic many-body systems.
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