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The conditions under which an open quantum-mechanical system may be described by mixed
quantum-classical dynamics are investigated. Decoherence is studied using influence functional
methods in a model composite quantum system comprising two coupled sy#emsy C,
interacting with a harmonic bath with Ohmic and super-Ohmic spectral densities. Subgystem
directly coupled to subsyste@®, while C is coupled directly to the bath. Calculations are presented
for a model where subsystefnis taken to be a two-level system which is bilinearly coupled to a
single harmonic oscillatoC subsystem. The loss of quantum coherence in each subsystem is
discussed in the extreme nonadiabatic regime where the intrinsic dynamics of subgyssem
essentially frozen. Subsysteinis shown to lose its coherence rapidly, while subsystemaintains
coherence for longer time periods sir€anodulates the influence of the bath AnThus, one may
identify situations where the coupleddC system evolution effectively obeys mixed
guantum-classical dynamics. @002 American Institute of Physic§DOI: 10.1063/1.1509745

I. INTRODUCTION model system where subsysteindepends on spin degrees

. - . . . of freedom and subsyste@ is a single harmonic oscillator
Since it is often impossible to isolate a quantum SySterYl)ilinearly coupled both to subsyste and the bath. The

comple_tely from its eljwronment, the_ study of open quanturrbath is a collection of independent harmonic oscillators.
dynamical systems is necessary in many circumstances, . . : L L
hile this is a highly simplified model of the realistic sys-

Techniques used to treat open quantum systems have bet n di d ab it d ¢ ial feat
developed extensively and used in numerous applicatichs. ems dISCUSSed above, It does caplure some essential features

Projection operator techniqésand influence functional of real coupled systems and is amenable to detailed analysis.

method§ have been actively used in chemical physics inPU€ 10 its interaction with the bath, the dynamics of sub-
studies of electron, proton, and exciton transfer processes fyStemC is dissipative and executes Brownian motion. The
the condensed phase and in biological systérHs. brownian motion of a quantum particle governed by different

In this paper, we investigate some of the circumstancegotential functions and immersed in a thermal harmonic os-
under which an open quantum system can be described usi,q@lator bath has been studied extensively by influence func-
mixed quantum-classical dynamics. Quantum-classical dytional method$?~*' The character of its dynamics is deter-
namics is used to study condensed phase many-bodyined by the system—bath coupling and the spectral density
systems*2especially in the context of methods for treating and temperature of the bath. In the composite system we
nonadiabatic dynamics-?°In the studies presented here, we study, the dynamics of th€ subsystem oscillator is also
consider a composite quantum-mechanical systéédncom-  influenced by the quantum dynamics of subsys#&niThe
prising two coupled subsysten#s and C; subsystemC is  dynamics of subsystem is more complicated. It is also
assumed to be in direct contact with a thermal quantuméissipative but its energy must be transmitted through sub-
mechanical battB. Systems with this structure can arise in systemC to the bath. Our results on the applicability of
condensed phase dynamics where certain quantum degremixed quantum-classical dynamics are based on the nature
of freedom @), for example, those associated with protonsof decoherenc&?® in the coupled system: When one sub-
or electrons, may interact directly with neighboring solventsystem behaves quantum-mechanically and the other classi-
molecules C), which in turn interact with the rest of the cally, there must be a mechanism making the former deco-
solvent B). It is interesting to determine if the composite here slowly and the latter quickly.
system may be treated as a mixed quantum-classical system The outline of this paper is as follows: In Sec. Il we
where the dynamics of subsystédy which is in direct con-  specify the model in detail and outline the application of the
tact with the heat bath, is classical in character while subinfluence functional formalism to it. Although we use influ-
systemA retains its quantum nature. Some aspects of thence functional techniques, similar results can be obtained by
dynamics of such quantum-classical composite systems hagher methods. Section 11l considers the equilibration of the
been investigatetf. _ ~ CB system in the absence ¢ and establishes that this

In order to investigate this problem we study a simplecomposite system can be described by an effective spectral
density. The emergence of mixed quantum-classical dynam-
dElectronic mail: rkapral@gatto.chem.utoronto.ca ics is investigated in Sec. IV. In this section we use the re-
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sults developed in the previous sections, specialized to sider the renormalized quantities after including a counter
two-level system in the strongly nonadiabatic regime wherderm as physical observables with specified values in our
the populations change very slowly. We study the decoheranalysis®® The Hamiltonian of subsystem, Ha(o), de-
ence of the off-diagonal elements of the subsystme-  pends on spin variables and we assume subsysteiis
duced density matrix in this regime and show under Whabilinearly coupled to subsyste, \A/AC:)\UX-

conditions one may observe quantum-class?cal dynamics. The dynamical properties of interest can be computed
The conclusions of the study are presented in Sec. V. Thgom the density matrix of the system at tirheln the coor-
Appendices contain additional details of the calculations foryn5te representatiofx,q} of the C subsystem and bat,
Ohmic and super-Ohmic spectral densities. the density matrix takes the formp(x,x’,q,q',t)

=(x q|p(t)|x’ q’), which is still an operator in th& sub-
system degrees of freedom. The density matrix may be writ-
ten more explicitly in integral form in terms of the propaga-
A. Composite system in a thermal bath tor

Il. GENERAL FORMULATION

The compositeACB quantum system consists of three
coupled subsystems: Subsysténs coupled directly to sub-
systemC, while subsystenC is in direct contact with a as
thermal bathB. The ACB system Hamiltonian is

K(X,0;t[X0,00;0)=(x gle”™""|x4 qo), 8

ﬁ(x,X’,q,q’,t)=f dxodx5daed oK (X,0;t|Xo,00:0)

H=Hp+Vac+Hc+Veg+AHc+Hg. (1)
The thgrmal path is taken to be a set findependent X p(X0,X4,00,06,0)K* (X, ;t|x5,04;0).
harmonic oscillators with frequencies,, massesm,,
and coordinates and conjugate momentaq,pj ©
=(01,-.-.0n,P1s - - - ,PN) SO that the Hamiltonian is We are primarily interested in the dynamics of the com-
N p2 1 positeAC subsystem under the influence of the thermal bath.
Hg= >, (_“+ —mnwﬁﬁﬁ)- 2 In such a circumstance the reduced density mdifix ob-
=1 \2My 2 tained by integrating over the bath degrees of freedom, is the

SubsystenC consists of a single harmonic oscillator with relevant quantity. Such a reduction is appropriate if the char-
renormalized mas# and frequencyw,, with coordinate acteristic time scale for the bath is much shorter than those

and momentum operators,p), so that the Hamiltonian for the A and C subsystems. We assume a factorized initial

reads condition between th&C subsystem and the bath
S - N Y P(X0,X0,00,d0,0) = Ppac(X0,X9,0)® pa(do,dp,0),  (10)
He=ou 5 o 3 . o :
2M 2 and the bath is always taken to be initially in thermal equi-
The interaction potential betweehand the bath is assumed librium. Under these conditions the integral form of the re-
to be bilinear duced density matrix at timeis
N ~
Vep=%>, Chlhn, (4) ﬁr(X,X'.t)=j dxodxgdr (X,X"5t[X0,X0;0) pac(Xo,X0,0),
n=1
(11)

wherec,, is the coupling constant to theth oscillator. The |, hare the time evolution kernd| is given by
coupling constants are related to the spectral density of the

bath b - , / .
y , Ji(x,x";t xo,xO;O):f dqdaydgpK(X,9;t|Xg,00;0)
Cn
J = S(w— . 5 ’ 7 ’ ’ ’
S(0)= T2 g 2107 ® X pa(Clo, 85, OK* (i) G5:0).
We suppose the spectral density has the form (12
Jp(w)=nw’e ", (6) Given the initial conditions discussed above, this exact ex-

. . . ression for the reduced density matrix specifies a non-
and consider both Ohnllc'/ﬁl) and super-Ohmicy(=3) _ E/Iarkovian time evolution since t>r/1e solutionpat tinede-
cases. A counter termH¢ has been added to the Hamil- hengs on its past history. Approximate Markovian evolution
tonian. It depends oo,, My, wn, p, andk and is given by gquations may miss essential features of the quantum/
. PARm  (v=1) - classical correﬁpondence agg tend to unierestimate the loss
H.= R N . 7 of quantum coherence. In addition, a Markovian approxima-
nAPYIME T+ A% (v=3) tion is not generally valid for a harmonic oscillator model,
This term is introduced to cancel the shift of the mass anaxcept for systems with Ohmic type dissipation in the high
frequency of theC subsystem oscillator due to the interac- temperature regime. Below we use influence functional
tion with the bath which will become divergent when the methods where the exact solution is expressed as a path in-
frequency cutoffA goes to infinity. As is customary, we con- tegral in order to deal with the nonlocal time evolution.
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B. Influence functional method

The formulation of the reduced density matrix in terms

of an influence functional for the composifeCB system

parallels that for spin-boson models often discussed in the
literature®3! Consequently the presentation of the generali-
zation to our system will be brief. In order to write the re-
duced density matrix in terms of an influence functional, we

first introduce a basis of spin functions with labelgand o’
to represent the states of tllesubsystem. In this basis we
may write Eq.(11) as

pr(O',O',,X,X,,t):f daodaéf dxodx
XJ(o,0" XX ;t|og,04,%0,X4;0)
XPF(O-OIO-(,)yXO!X(I)!O)- (13)

For the factorized initial conditioi10) the kerneld, can be
written in the path integral form as

Ji(o,0" X, X";t|og,00,%X0,%4;0)
- [
(0'0‘70)

whereK[ o] is a probability amplitude for subsysteffol-
lowing the patho in the absence of the subsysté&rand the
environment. The evolution kernég"' for subsystenC in
the presence of external sources ') is

DaoDo’ K[U]K*[O"]J‘W (x,X";t|Xq,%430),

14

Jgar(x,x’;ﬂxo,xé;O)EJ(XX ) DxDx’ e Slowo’ xx 1t

(XoXg)

(19

The actionS[o,0',x,x’] consists of several contributions
and can be decomposed as follows:

S o,0" X, X" [=8c[ X, X" ]+ Spc[ o, 0" X, X" ]
+FAS[X, X T+ Se[x,x"]. (16)

The actions for subsystef, plus its counter action, and the
interaction between subsystesand C are

(Sc+AS)[x,x']= f ds( 2(s)—%woxz(s)

Mo Mo
— 20%02(s)+ =2

> wOX’Z(S)

t (17)
SAC[o,a’,x,x’]=)\fods(x(s)a(s)—x’(s)(r’(s)),

K. Shiokawa and R. Kapral

t S
Sie[x,x"]=i Jodsfods’[x(s)—x’(s)]

X[a(s—s")x(s")—a*(s—s")x'(s")],
(18)
wherea(t) is a complex kernel whose reaf(t) and imagi-
nary o' (t) parts, respectively, are given by

1 (= Pho
aR(t)z—f dwJg(w)coth—— coswt, (19
T Jo 2
1 (= )
a'(t)=——j dwlg(w)sinwt. (20)
T Jo
We define new variables aR=(x+x")/2, r=x—X', o«

=g+ o', and write the actions in these new varlables as

A [t
Saclo- ,R,r]=5deS(m(s)r(s)vL20_(S>R(s)),

t .
(SctAS)[R,r]= deS{MOR(S)'r(S)

MowR(S)r(8)}, (21)

t S
Sie[R,r]=i JodsJOds’r(s)aR(s—s’)r(s’)
—Zf;dsjosds’r(s)a'(s—s’)R(s’).

C. Euler—Lagrange equations and solution

From Eqs.(21) the Euler—Lagrange equations ferand
r are

. S
MoR(S) +Mow3Re(s) + 2f ds'a'(s—s")R.(s")
0

1
=5No(s),

=5 (22

Mofc(s)+ Mowérc(s)—ZJtds’a'(s—s’)rc(s’)=)\a,(s).
(23

The initial and final conditions for Eq22) [Eq. (23)] areR,
andR; (ro andr,). If we let the two independent solutions of
the homogeneous part of Eq22) [Eq. (23)] be u;(s)
(vi(s)), i=1, 2, with boundary conditiong;(0)=1, u,(t)

:0! U2(0):O, UZ(t):l! (01(0):1, vl(t)ZO! UZ(O)ZO!
v,(t)=1), the solutions of these uncoupled equations can be
written as

where, for notational convenience, we used the bare mass

My and bare frequencw, as M;=M and Mowo Mw
+2yAl7 for v=1 while My=M+29»A/7 and Mowo
=Mw?+27A3%(37) for v=3.

The influence actios [ x,x’] accounts for the effect of
the bath onC and is given by

Rc(S) =Rgu;(S) + Riuy(s) + %cu(g(S)),

(24)
re(s)=rova(s)+rwa(s)+uo_(g(s)),

where we have used the notation
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s , , nated by the classical solution given in E84). The o de-
o.(9(s))= fods g+(s=s")o.(s") —Uuy(s) pendence in Eq(24) arises from the back reaction of tiée
subsystem on th€ subsystem. To separate out the contribu-

t ) , tion from this back reaction, we expadn powers ofoand
onds g+ (t=s")o.(s), write
(9(s)) fsd )o_(s')—va(s) * Slos Rer]=SO[Re.rel+S®os R 1]
o_(g(s))= s'g_(s—s')o_(s")—v,(s
g o g-( ( 2 +8@[0.]. (26)

t _ .
XJ ds'g_(t—s)o_(s)), The zeroth-order term iar takes the form
0

SO[R,,rc]=(MUy(t)Ry+Muy(t)R)I,

and definedu=A/M. The solutionsv,; andv, satisfy the i .
—(MUy(0)Ro+MU,(0)Ry)ro

homogeneous part of the backward time E2@) and are

related tou; and u, by v4(sS)=u,(t—s) andv,(s)=u(t (D24 (a1o(t) + Bor () ar
—s). The functiong, (s) (g_(s)) also satisfies the homoge- (a(Dro+ (@) +az()rory
neous part of Eq(22) [Eq. (23)] with boundary conditions +a22(t)rt2), (27

9-(0)=0,9.(0)=1.

The solutions fog.. are given in Appendix A for Ohmic
and super-Ohmic spectral densities. From these solutipps
andv , can be determined.

and is an influence action for a damped harmonic
oscillator?*?% Here

1 (t t
ak,(t)=§f dsj ds'vi(s)aR(s—s")v(s"), (29
D. Reduced density matrix solution o Jo

Since the potentials in our model are harmonic, an exador (k,I =1,2) contains the effects of fluctuations due to the
evaluation of the path integral can be carried out. It is domi-bath on subsyster@. The term linear ins is

t t t
SWo. ,Rc,rc]=>\fod5(u1(3)Ro+ uz(S)Rt)m(S)JriurofodSLdS’{vl(S)aR(s—S’)m(g(S’))}

+iMrtﬂdsJ’;ds’{vz(s)aR(s— s o_(g(s')}+ %J:dwl(s)(u(swr %f;dwz(s)(u(s). (29

This term arises from the interaction between subsystem Uy Ugp —Uy(0)  Uyg(t)
and the bath, modulated by the trajectory of subsys&m u:(u ) M Zu0) ) (32
The quantum back reaction of subsystémon C induces 2 R 2 2
self-coupling inA, which is contained in the last term while the vectorss, and o, are given by
u v
Ay [t
s<2>[a:]=—f dso_(s)o.(g(s))+iu? _[o-(up) _[o(va)
2 Jo * =My () T M (o ) (33
X jtdsfsds' a_(g(s))aR(s—s")o_(g(s)). In Egs.(33) we have used the symbolic notation
0 0
t
20 a_<ui>zfdsu(s>a_<s>,
0
Using the results abovég"' in Eq. (15 can be written
in the compact form t
O'(Ui)EJOdSUi(S) o.(s)/2
, i
‘]g(r (Rt,rt,t|R0,r0,0):N(t)eX4%£’, (31) t
+J ds'iaR(s—s")o_(g(s")/M|, (34
0

whereL=R'ur+ir'ar+ o] R+ o, r+S@[¢.] andN(t) is

a normalization factor independent of dynamical variables. for i=1,2.

In writing this equation we have introduced the notation and ,

()ij=4a;, R"=(Ry,R;) andr'=(r,r,), whereT stands for Having derived the expression fag’ in Eq. (31), we may
the transpose. The matrixis defined as use it to obtain the partial Wigner transform of the reduced
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density matrix. The density matrix in the partial Wigner
representatioif over theC subsystem degrees of freedom is

defined by

1 .
prw(o,0",R,P,t)= mf dre P/

Xpi(o,0' ,R+r/2R—r/2}t). (35

Wigner transforming Eq(13) and using this definition we
obtain

er(a',cr’,R,P,t)=J dcroda'éj(w ')

(‘70‘70)

DoDo'K[o]K*[ o]

xf dRydPoKZ” (R,P;t|Ry,Po;0)
Xer(O-OIO-(!) 1R07P010)1 (36)

where the kernng"'(R,P;t|Ro,P0;0) is defined by

, 1 .
KZ™(R,P;t|Ry,P;0)= 5— f drdree ' (Pr=Pora)/f

X JZ7 (R,F;t|Ry,r0;0).  (37)

Inserting the expression foJ‘é”' in Eqg. (31), the time
evolution kerneIKg"' for the Wigner function is given by

KZ (R;,Py;t|Rg,Pg;0)

N(t)

- _ 7 i(—Pyri+Porot+L)/h
2M,Lfdrdroe

[ i
= Nw(t)exp[ — X\Q L oXy+ F o R+ ?lS(z)[ou_,]

(38)

whereNy,(t)=N(t)/24 \[a] and|a| is the determinant oé.
The vectorsXy=Xyw—{Xw), with

X —( R 39
W= p—no(uy) )’ (39
and
<R>) —1<U11 1 ( Ro )
X)= =— . 40
< > <P> Usq |u| Uso P0+)\O'(Ul) ( )
The matrixQ is given by
_Ah an apolpy—agly )
Ugl Qg1 —apUy) a11u§2—2a12u21u22+a22u§1 ( )
41

In the next section we shall ne€l,; and the explicit expres-
sion for this matrix element is

2h (= Bho
Qqi(t)= W J'O dw COU’(T)JB(Q))A(&),'[), (42

whereA(w,t) is given by

K. Shiokawa and R. Kapral

t t
A(w,t)= fodsfods’g+(t—s)005w(s— s’)g,(t—s').
(43

These results provide the tools needed to analyze the condi-
tions under which passage to the quantum-classical limit
may be carried out. In the next sections we present explicit
results for both the Ohmic and super-Ohmic bath spectral
densities.

IIl. THERMALIZATION OF QUANTUM
BROWNIAN MOTION

Whether a linear or nonlinear system interacting with a
bath will eventually reach thermal equilibrium or not is one
of the fundamental issues in statistical mechanics. For linear
quantum brownian motion, from a general class of initial
conditions, the state o€ is known to reach asymptotically
the Gaussian forr®® In this section, first, we will show that
the C subsystem evolution, starting from an arbitrary initial
condition, possesses an asymptotic limit. We then study the
influence of such a thermalized quantum system on A. For
our analysis, we shall need the results for a system composed
of the particleC and the thermal batB in the absence oA.

In this case Eq(36) takes the form

prw(Ry, Py .t):f dRodPoKc(Ry, Py ;t|Rg,Po;0)

X prw(Ro,Po,0). (44)

In the absence of subsystefyy from Eq. (38) the time evo-
lution kernel for the Wigner function is

Kc(Ry,Py;t|Rg,Pg;0)=Ny(t)exd — sX{,Q 1 oXw],

(45)
whereX},=(R,P) and
B (R))_—_l Ugy 1) RO)
X= (P)) U21(|U| Uzp) | Po/ 40

For a harmonic potential, as a result of the Ehrenfest
theorem, the center phase space coordif&}eof this dis-
tribution function follows a classical trajectory and will de-
cay because of energy dissipation into the bath. Using the
exact expressions for the matrix elements wfobtained
from the formulas given in Appendix A, one may show that
(X) vanishes in the long time limit for both Ohmic and
super-Ohmic baths. As a result, in both cases, for times long
compared to the characteristic relaxation time for this decay,
the time evolution kernel reduces to

Kc(Ry,Pi;t|Ro, Po;0)— Ny(t)exd —X{Q ™ *Xwl,
=Kc(R,Pi;t) (47)

which is independent dR, and P,. Consequently, Eq44)
reduces to

prw(Rt,Pi,t) =Kc (R, Py st), (48)

thus, for an arbitrary initial condition, the Wigner trans-
formed reduced density matrix is uniquely determined by the
time evolution kerneK . Furthermore, the off-diagonal el-
ements ofQ vanish in this limit and we obtain a Gaussian
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form for the density matrix whose widths are uniquely speci-very long compared to those that characterize subsy&tem
fied and given by((AR)?)=Q,/2 and ((AP)?)=Q,J/2.  We suppose that subsystefnis a two-level system withr
The width{(AR)?(>)) can be obtained from E¢42) as ==+1 and focus on the extreme nonadiabatic regime where
the population dynamics of subsystéms essentially frozen
h o Bhw on the time scales of interest so that(—1,—1t)=pa
M2 fo do CO“’(T)‘JB(“’)A(“"O")' (—1,-1,0),pa(1,11)=pa(1,1,0). We further assume that
(49)  subsystem# andC are decoupled initially and use the fac-

torized initial condition
We show in Appendix A, for the Ohmic case and for the

weak coupling limit of the super-Ohmic case, that
Jg()A(w,%2)=M?x{(w), where

(AR)*(=))=

pac(Xo:X5,0)=pa(0)® pc(Xo,X4,0). (55)

, This is a reasonable assumption if they are weakly coupled.
1 wy' (o)
M (wrz— 0’ + 0wy (0)+ 0’y (o)’

(500  A. Decoherence in A interacting with an equilibrium
CB bath

xe(w)=

is the dynamical susceptibility f&€. For the spectral density
defined in Eq(5), the explicit form of the frequency depen-
dent dissipation coefficieny(w) is given by

If the interaction between thA& system and the com-
bined systenCB is turned on after an equilibrium state is
reached, the effect dB on A is given simply by the har-
(v=1) monic bath directly coupled to th& subsystem but with its
M »( w)ﬂ{ 772 v , (51) spectrum characterized by the effective spectral density. Un-

nw* (v=3) der these conditions, the off-diagonal part of the density ma-
trix can be obtained from Eq13) by dropping the depen-
dence on X,x"), omitting the integrals over spin variables
and by making the variable replacements>o and Jg
—Jcg in EqQ. (18) for the influence functional. We find

in the limit of a large cutoff parameteY, wherey”(w) was
absorbed in the mass renormalization for the 3 case.
Consequently, we may writ{ AR)?()) as

o0

h h
(@R = | d“’c"“(ﬂTw)xé(m. (52 pa—11D=e PR 0p(-110, (56)

0
Equation(52) is a statement of the fluctuation—dissipation WhereD{(t) is a decoherence factor férand is defined as
relation®® The form in Eq.(52) suggests that the combined

systemCB is now in thermal equilibrium with spectrum Dgo)(t):ifmdeCB(w)Con_(ﬂﬁw)(l—coz{wt)).
specified byy¢(w) but the systenc itself is not in equilib- mh Jo 2 ®

rium. The fluctuation—dissipation relation is violated at finite (57)

t while the system is still far from equilibrium and holds only Th tioned ab the d . f th i
asymptotically. This result generalizes the result previously us, as mentioned above, he dynamics of the composite

obtained by Caldeira and Leggett for an Ohmic Hath. system is equivalent to that of a two-level spin—boson sys-
When theCB system is in thermal equilibrium, we show tem coupled to a harmonic bath, with an effective spectral

in Appendix B using linear response theory thits(w)  GcnSiY:

IPRY - o . Using these results we may examine the coherenée in
=\%x¢(w): The effective spectral density is proportional to ) .
the dynamical susceptibility of the system. If we use the under the influence of the effective bafliB and the coher-

relation ence of A under the influen_ce of the bat® separate_ly. In
Figs. 1@ and Xb), the off-diagonal part of the density ma-
Je(0)=Mwy' (0), (53) trix of subsystenA is pIottgd for an Ohmig environment. For
reference, we note that in our calculations the cut-off fre-
for the bath spectral density assumed in £}, we see that quency was chosen to be sufficiently large to include all
the effective spectral density in the combined sys@Bcan  relevant molecular vibrational frequencies for typical con-

be written as densed phase systems. The characteristic frequency @f the
) system oscillator was taken to l&~50 cmi ! in conven-
A Jg(w) tional units.
Jep(w)= (54)

M2(w?— w?+ 0y"(0))?+I5(w) The solid line corresponds to our system while the
ashed line is the ordinary spin—boson model withGut
he time evolution ofpp(—1,1t) for the ordinary ordinary

spin—boson model is characterized @y an initial period

where subsystem system has not yet felt the existence of
the environment and its coherence is maintairiggda quan-
tum regime fort>1/A where the system begins to interact
with the vacuum fluctuations of the environment and, finally,
The investigation of the emergence of quantum-classical3) a thermal regime fot># 8 where the effects of thermal
dynamics presented here will be restricted to cases where tlileictuations on subsyste have set in. For W <t<#p,
dynamics of subsystemA occurs on time scales which are only vacuum fluctuations interact with the system.

This relation can also be obtained by solving the classic
equations of motion as suggested eatffer® owing to the
linear coupling assumed between Besystem and the bath.

IV. EMERGENCE OF QUANTUM-CLASSICAL
DYNAMICS VIA DECOHERENCE
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FIG. 1. The temporal behavior of the off-diagonal element of the reduced- 2. piot ofp,(—1,1t) vs time(a) and vs log() (b) for a super-Ohmic
density matrixpa(—1,1f) for subsystemA is plotted in panela) vs time.  gnyironment withw=3. Parameters and labeling are the same as in Fig. 1
The initial value po(—1,1,0)=1. Parameters arg8=0.66, A=500, w,

hall - The dashed line in panéd) for super-Ohmic batiB without C overlaps the
=1, y=03,M=1, andi=1. The same quantity is shown in parie) vertical axis. The behavior is visible in par@®) using the logarithmic time
using a logarithmic time scale. In both figures the solid line corresponds tQcje.

A under the influence df B with the effective Ohmic spectral density, while

the dashed line shows the influence of Ohmic bRthvithout C. (1) A2
=0.1 and(2) A?=0.3.

Results for the super-Ohmic case witt=3 are shown in
Figs. 2a) and 2b).

For the super-Ohmic high-dimensional environment, the
By contrast, the existence of the intermediate subsystemacuum fluctuations play a more significant role than for an
C changes the evolution gis(—1,1t) significantly. Sub-

Ohmic environment, reflecting the fact that there is larger
system C is characterized by its harmonic oscillator fre- number of high-frequency modes in the higher dimensional
guency and mass. Fluctuations originating in the atare

environment. The same effect is also responsible for the
modulated byC through these parameters. For a large massarge difference in the behavior of correlation functions of
M, the effective modes of the combin€®B system are con-

the system in quantum and classical baths when the bath is
centrated in the neighborhood eof, and the decoherence super-Ohmic. The dynamics ofA in the presence of the

behavior of subsyster is governed by these modes. There-intermediate subsystei@ is worth noting. For the present
fore, after the initial period, decoherence will begin to occurchoice of parameterga(—1,1t) asymptotically reaches a
att~1/w, . nonzero value indicating that quantum coherence inAhe
Although some systems are approximately characterizedystem will never be lost completely. The origin of this be-
by an Ohmic spectral density, generic systems will have nonhavior can be understood in terms of the time-dependence of

Ohmic spectral densities. The density of states typically varthe diffusion coefficient(see Ref. 26 SystemC initially
ies asw” with v depending on the spatial dimensibn We

executes brownian motion with a time-dependent diffusion
consider the three-dimension@D) super-Ohmic case with coefficient as a result of the non-Markovian time evolution

v=3. Such an environment is relevant for the study ofof the reduced density matrix. This time-dependent diffusion
polarons® macroscopic magnetization tunneling

in coefficient ofC, which also determines the decoherence rate,
crystals®” and radiation damping of atom$A super-Ohmic

exhibits a rapid increase at early times1/A and then as-
environment affects subsystef evolution on short time ymptotically vanishes. This initial increase can be large

scales more significantly than an Ohmic environment. A subenough to wash away the quantum coherenc€ dafirectly
Ohmic environment induces nontrivial long time behavior.coupled to the bath. Owing to the modulation effect frGm
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these high frequency modes are filtered out and do not diChanging integration variablex,&’)— (R,r) and (q,Xg)
rectly affectA if w,<A. The late time value of the diffusion —(Ry,ro) and using Eq(31) for ng'l(R,r,t|R0,r0,O) we
coefficient is too small to eliminate the quantum coherencenay write this as

from subsystemA completely. Hence, the non-Markonvian

nature of the density matrix evolution for the super-Ohmic

case is responsible for the significant difference in the dy- PA(—l,ll):f de'{f dRodrg

namics of coherence between theand C subsystems.

i
B. Decoherence in A for arbitrary C initial conditions X N(t)exp[%ﬁ] Pc(ROJOvO)}

Thus far we have considered only the asymptotic limit
where CB has reached equilibrium and the fluctuation—
dissipation relation holds. It is interesting to consider the
coherence oA under the influence of the intrinsic dynamics
of C starting from arbitraryC initial conditions. As an ex-
ample of this situation, we assume thatis initially in a
Gaussian coherent state given by the wave function pa(—1,11)=pa(—1,1,00 PA®

1 Xx—X)2  px
Wx):mexr{—%ﬁ%

X pa(—1,1,0). (61)

Making use of the expression fal evaluated foro=—1
ando’=1 and carrying out the integrations we find

, (58 Xexr{%—(fR(t)Yﬂpr(t)ﬁ)}

with width e=1/\/w, wherex andp are parameters. The 1, )
subsystem density matrix at the initial time is then given by xexg — = (fr(O/Mo+fa(OMor) |,
P (Ro—X)% 15 . Pro (62)
pe(Xo.Xo.0)= 5 € Z a2ty
(590  Where

We may now use this expression fag(xq,Xg,0) in the fac- (s) . 1

torized initial condition forAC given in Eq.(55). The off- fr(t)= )\f ds—2>2 Ut o(t)= f ds (63)
diagonal element of reduced density matrix for subsystem Uzy(s)’ Ups(S)

in the nonadiabatic limit can then be determined from Egs.

(13) and(14) for p,(o,0’,x,x’,t) for AC by integrating over and

the C variables. The result is

2\2 (= Bhw
pa(-110)= | axax| [ dxaxg DA~ oz | duds(@rcott 252 a0, (64
xJC1’1(X,x’,t|x0,xé,0)pC(X0,X6,0)} The explicit expression foA(w,t) can be computed from
the solutions presented in Appendix A by a lengthy but
X pa(—1,1,0). (60 straightforward calculation. We find
|
1 1—coq wt) 2 1-coqwt) e Crt
= + — —
Ap(w,t) (Qf—w2)2+41“2w2 " QQrz (0Q(1—e "tcogQt))—wl'e ''sin(t))
2 sin(wt
a0z In )(2m(1 e tcog Q1))+ (Q%-T?)e sinQt))
+0294{(w2+4l“2)92(1—cos(Qt)e’“)z—2FQ(w2+2F2—2(22)(1—cos{Qt)e’“)sin(Qt)e’“
r

+(0T2+(Q2-T?)?)sirt(Qt)e 21|, (65)

Equationg62)—(65) are our main results. The first term in E§2) is the initial condition forA, the second term accounts for
the decoherence arising from thermal fluctuations of the bath mediatéd Bhe third term arises from the initial condition
for C and the last term is responsible for the decoherenck dfie to the averaged damped oscillatory motiorCof
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t FIG. 4. Plot of the decoherence factors vs time. The solid line corresponds

to the negative of the logarithm of the modulus of the density maixixn
FIG. 3. Plot of contribution to the modulus pf(—1,11) versus time foran  Ed. (62, while the dashed line iD¢. System parameters are-x’=1,
Ohmic bati{Fig. 3] and for a super Ohmic baflfig. 3b)]. Subsystenc ~ @;=1, y=0.3, M=1, fi=1. Panel(a) is for the Ohmic bath withg
is in a coherent state initially. In both figures the solid line corresponds to=0.002, A=500. Panel(b) is for the »=3 super-Ohmic bath withg
the second term S, while the dashed line corresponds to the last term L in the 0.02, A =20.
right-hand side in Eq(62). A?=0.1 for S1, L1 and\?=0.3 for S2, L2.
Parameters values are the same as in Fig. 1.

glected. In this circumstance, we may consider the decoher-

The modulus of the off-diagonal reduced density matrix€"C€ 0fC in the absence oA. Quantum brownian motion
element forA is shown in Figs. @) and 3b) as a function of and .decoher'ence 91;4%29Iamped harmonic pscnlator has been
time. The solid line shows the second term E§2), S studied previously? U_Slng th_e result in Eq(3__9) of
=ePaM, which gives the decoherence due to the quantumRef. 26, the reduced density matrix may be approximated by,
back-reaction-induced self-interaction of subsyst&mThe
dashed line shows the last terin=exy — 1/ (f3(t)/M o,
+ fﬁ(t)er)], the decoherence due to the motiorfThe whereDc(t)=fgdsf§ds’aR(s’)COSwrs’ is the decoherence
latter effect is not strong enough to eliminate coherencg of factor for C.
completely. Since, initially, th€€B is far from equilibrium, In Fig. 4, the decoherence factors #randC are plot-
those modes that affeét are not necessarily near resonantted. For an Ohmic batlFig. 4@], initially, the quantum
modes aroundo,. Consequently, the decoherence Afis  coherence is lost faster i@ than inA; hence, theA sub-
more rapid in this case than in the case of evolution from thesystem behaves more quantum mechanically thaiCthab-
thermal equilibrium initial condition studied in Sec. IV A. system during this initial period. Figuréa} shows that there
This tendency is more evident in a super-Ohmic bath than ifs a crossover, and for longer timds; 1/w,, subsystermA
an Ohmic bath. With generic initial conditions f@, A is  experiences stronger decoherence t@anThe decoherence
under the influence of the nonequilibrium b&B, which is  factor for C varies linearly witht indicating that the dynam-
no longer equivalent to the effective thermal bath with theics of C asymptotically approaches Markovian evolution in
spectral density.g. the high temperature Ohmic bath. Quantum-classical ap-

Now let us consider the situation where the decoherencproximations are expected to be valid on intermediate time
of C is fast and that ofA is slow. This may occur at high scales where subsysteAnmaintains its coherence while the
temperatures and for weak coupling betweerand C. In  subsystentC has lost coherencé&egime in Fig. 4 bounded
such a case, the back reaction frefnon C may be ne- by the solid and dashed lines

pi(o, 0" x,x' ,t)~e_(x_x/)2DC(t)p,(U,a" X, x",0), (66)
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For a super-Ohmic batflFig. 4(b)], a substantial portion three regimes are found to exist for an Ohmic bath for all
of the quantum coherence @ is lost during the initial pe- parameter ranges, only regimép and (2) exist for a 3D
riod due to large fluctuations coming from the bath, wiile super-Ohmic bath for some parameter choices.
retains quantum coherence for a long time. The dynamics of In most applications where a condensed phase environ-
the coupled system can be approximated by mixed quantumment is modeled by a bath of harmonic oscillators an Ohmic
classical evolution for long times after the short transientspectral density is assumed with the dissipation coefficient
period. The qualitative coherence behavior shown in Fig. 4determined from experiment. Super-Ohmic spectral densities
appears to be independent of the precise choice of parantave also been used to model vibrational relaxation by
eters. acoustic phonons in a crystalline httor systems where a
Finally, we note that the closed systeAC, without degree of freedom couples linearly through its momentum to
bath, exhibits rather different behavior. Sin€eis a single an effective isotropic elastic mediutf®
harmonic oscillator, its influence ofy will be periodic and We also saw that a different choice of initial conditions
its coherence will be preserved indefinitely. The coupling ofwill modify above picture. When the initial condition f&@
C to the bath degrees of freedom provides the mechanism fas chosen to be a pure gaussian coherent s@Bcan no
decoherence in thaC subsystem. The results in this section longer be considered to be a thermal bath and the coherence
suggest that weak coupling of A to @hich may arise from of A will be lost in a shorter time scale than times given by
a large mass disparity in the two subsystgmsd a high- the inverse characteristic frequency ©f
temperature, high-dimensional environment with large char- Quantum-—classical correspondence in nonlinear sys-
acteristic frequencies will favor a quantum-classical descriptems, in particular, in chaotic systems, has many nontrivial

tion. features'? The quantum open system approach adopted in
this paper can also shed light on this probl&fy*While the
V. CONCLUSION model system studied here is very simple and the extreme

_nonadiabatic regime is only one limiting case to consider,
Qur results nevertheless have provided some insight into the

classical system is essential in many applications to the dquerggnce of quantum-classical dynaml(_:s and should be
namics of many-body systems. Adopting an open quantunli'serI in the study of the quantum dynamics of more com-
system point of view has provided a natural way to exploreolex systems.

this issue based on the decoherence of the superposition of

guantum states into a statistical mixture under the influencBCKNOWLEDGMENTS
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that characterize th& and C subsystems can differ signifi-

cantly._ In pgrticular, in the Ii.mit of nonadia_batic dynamics We poppeNDIX A: SOLUTIONS OF EQUATIONS OF

have identified the following three regime&l) The full  MoTION

guantum regime where both theandC subsystems behave ] ] ) . )
quantum mechanically(2) the quantum-classical regime In this Appendix we give some details of the solutions of
where subsysterA maintains coherence owing to its indirect the €quations of motion discussed in Sec. Il C which are used
coupling to the bath, whileC has lost its coherence and N the calculations presented in Sec. IV. We require the func-
behaves effectively classicallyt3) the classical regime 1Ons UiAs) [andvy(s)] which are the solutions of the
where the quantum coherence of both theand C sub- homogeneous parts of the Euler—Lagrange equatia@s

systems has been lost and the compo&i@subsystem ex- and (23). These functions can be founddf. (s), which are

An appreciation of the conditions under which a quan
tum mechanical system may be approximated as a quantu

hibits effectively classical dynamics. also solutions of the homogeneous parts Egg) and (23),
Our results show that for an Ohmic bath one may ob-2re known, since
serve quantum-classical dynamics for some finite time inter- (s) (s)
. g+(S), g+
val, but eventually the decoherence factors for both Ahe ui(s)=g.(s)— g+(t), ux(s)= 9.0 (A1)
+

and C subsystems increase, leading to classical behavior in 9.+(t)
the AC subsystem. For a super-Ohmic bath the strong inin order to satisfy the boundary conditions on these func-
crease in th€ subsystem decoherence factor and the weakelions. Using the spectral density for an Ohmic bath, the equa-
increase of that foA implies that one may observe quantum- tion thatg.. (s) satisfies is

classical evolution for a longer initial time interval to a high = 2 4T _

degree of accuracy before classical behavior ensessFig. 0:(9)+0g.(5)=21'9.()=0. "2
4(b)]. Furthermore, since the decoherence factor of subThe solution of Eq(A2) is

systemA saturates at a finite value which depends on the sinQs

system parameters, it is possible to find regimes where gi(s)=Te”5, (A3)
guantum-classical evolution holds indefinitely becausefthe

decoherence factor is small for all times. Thus, while allwherel' =y and Q%= w?— 2.
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Using the spectral density for a super-Ohmic bath withneous part of the Euler—Lagrange equations with respect to
v=3, the equations of motion fag..(s) can be written as  time as

. 2 —

0-(s)+wrg+(s)+2y§.(s)=0. (A4) g'i(5)=—w?'gi(s)+@(7), (A7)
Thus, the equation of motion has the form of the Abraham—
Lorentz equatioft* This equation is an approximation to the Which may be substituted into E¢A4) to give (A2) with
full equation of motion with nonlocal time dependence. As inl' = yo? and Q= w, in the leading order approximation as
the electromagnetic field case, only the physically relevantndicated above. Although one can improve the approxima-
roots of the characteristic equation must be retained. Thedéon leading to Eq(A2) for the super-Ohmic case to arbitrary

arel’ +iQ with higher order iny, we restrict our study to the leading order in
this parameter.
= i(g + i _ ) ' = é(g _ i) , (A5) Since theu, , andv , solutions are now known, we have
6y\4 D 6y\4 D all the information needed to compute the various quantities
where necessary to obtain the numerical results. In particular, the
expression for the matrix elements afin Eq. (28) for a
D =2(1+54(yow,)?+ \108yw, 27 yw,) 2+ 1)*2. general environment can be fouri@ee Refs. 22, 26, and 27

(AB)  for an Ohmic bath. In our computations, we neeal;(t)
Retaining the physically relevant roots of the characteristiovhich has the form
equation, the solution fog--(s) for the super-Ohmic case . sh
has the same form as EGA3) but with the above values of _ * w
I and Q). In the weak coupling limit that we consider in our an(t)= 2792 (1) Jo dodg(@)coth—7—=A(w,1), (A8)
calculations]'— yw? and Q) — o, .

In our model, Eq(A4) can be reduced to a second-orderwhere A(w,t) was defined in Eq(43). The evaluation of

ordinary differential equation by differentiating the homoge-A(w,t) is straightforward and leads to

Alw,t)=

1 .
502 (Qz_w2)2+41ﬂ2w2[292+e*“[2 cog wt){(I'*+ w, w_)cog Qt)—2I'Q sin(Qt)}
r

—(T?+ w?)cod w, t)— (I'+w?)cogw_t)]+e 2 Q%+ 02+ 2T'Q sin(2Qt) — (I'?+ 0, ©_)cog 201)}],

(A9)
|
where w.=w+Q and Q?=02+T2. Using this result, in 1 (= Bhw
the asymptotic limit we obtain A — 5 fo dwJg(w)coth——
2M yw o) X {2+ (I'=Q cot(8)) 2 A (w,).
V:
B (QF~ 0?)?+4y%0° Using these results we can compute the asymptotic proper-
Ja(@)A(w,%)= 2M yw® ' ties of Q needed in the calculations presented in the text.

(v=3)
02— 022+ 4260
S re APPENDIX B: EFFECTIVE SPECTRAL DENSITY

In writing this equation, we used the fact that the distribution  In this Appendix we derive the relation between the ef-

Je(w)A(w,») is highly peaked around, for small y. fective spectral density for th@ B system and the dynamical
Similarly, for long times we may write the elementsaof susceptibility of subsysten® using an argument that by-
as passes the actual diagonalization procedure. A similar argu-

ment is given in Refs. 35 and 36. From the Hamiltonian

22Tt Bho given in Eq.(1), we can write the equation of motion f@
agy(t)— WJ daJg(w)coth——A(w,*) with a harmonic potential in the form

X(w)=xc(w)Fc(w), (B1)

alz(t)=a21(t) in the complex Fourier representation with a susceptibility
function yc(w). The force Fc(w)=—0dVac(w)/ox
-3 Qt f dwlg(w) =—\o(w) is the external force from subsystekacting on

7 Sin C. On the other hand, the equation of motion for subsystem

Bho A gives

xcothT(F—Q cot(Qs))A(w,») (A10) Ma@?0 ()~ AX() = FA(0), (B2)
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with Fa(w)=—dV(o)/do. Here we assumeHl, has the
form p2/2ma+ V(o) for simplicity. Our argument does not
depend on the form ofl, as clear from the context. Com-
bining with Eq.(B1), we have

[ M =N xc(w)]o(w)=Fa(w). (B3)

Emergence of quantum-classical dynamics 7863

10y, May and O. Kihn, Charge and Energy Transfer Dynamics in Molecu-
lar SystemgWiley, New York, 2000.
J. C. Tully, in Modern Methods for Multidimensional Dynamics Compu-
tations in Chemistryedited by D. L. ThompsoriWorld Scientific, NY,
1998, p. 34.

2M. F. Herman, Annu. Rev. Phys. Che#b, 83 (1994; M. F. Herman, J.
Chem. Phys87, 4779(1987.

Now, suppose we have already diagonalized last thre&J. C. Tully, J. Chem. Phy€3, 1061(1990; J. C. Tully, Int. J. Quantum

terms of Eq.(1) and replaced them witN + 1-harmonic os-
cillators

Py m,:w;qu). o0

N
Hc+VCB+HB—>HI:E ( 7
B 2m,, 2

n=0
We write the interaction ternv ¢ in terms of new coordi-
natesq;,
N

Vac—Vag= an§=)0 cla,. (B5)

Assuming that the system described by the Hamiltonian in
Eq. (1) reaches thermal equilibrium in the asymptotic limit,

we can replace the effect of the combined sys@Bby the

equivalent thermal batirl; at the same temperature. Al-
though this diagonalization procedure is straightforward, for;

Chem.25, 299 (1992); D. S. Sholl and J. C. Tully, J. Chem. Phyi€9,
7702(1998.

L. Xiao and D. F. Coker, J. Chem. PhyK00, 8646(1994; D. F. Coker
and L. Xiao,ibid. 102 496 (1995; H. S. Mei and D. F. Coketibid. 104,
4755(1996.

15F. Webster, P. J. Rossky, and P. A. Friesner, Comput. Phys. Con@8un.
494 (1991); F. Webster, E. T. Wang, P. J. Rossky, and P. A. Friesner, J.
Chem. Phys100, 4835(1994.

167, J. Martinez, M. Ben-Nun, and R. D. Levine, J. Phys. Chenil(4,
6389(1997).

170. V. Prezhdo and V. V. Kisil, Phys. Rev. 86, 162 (1997.

18C. C. Martens and J.-Y. Fang, J. Chem. Phy66, 4918 (1996; A.
Donoso and C. C. Martens, J. Phys. Chdi®2, 4291(1998.

19R. Kapral and G. Ciccotti, J. Chem. Phyid.0, 8919(1999; S. Nielsen, R.

Kapral, and G. Ciccottiibid. 112, 6543(2000; S. Nielsen, R. Kapral, and

G. Ciccotti, J. Stat. Phy<.01, 225(2000; S. Nielsen, R. Kapral, and G.

Ciccotti, J. Chem. Physl15 5805(2001); D. Mac Kernan, G. Ciccotti,

and R. Kapral, J. Chem. Phykl16, 2346 (2002.

20C, Wan and J. Schofield, J. Chem. Phy&3 7047(2000.

R. Kapral, J. Phys. Cheni05 2885(2001).

our purpose, we only need the form of the equation of mo<25 o caideira and A. J. Leggett, Physical&1, 587 (1983.

tion for o expressed by the dissipation coefficiepts(w)
for the effective bath EqB4)

[—Maw’~imawycp(w)]o(w)=Fa(w). (B6)
Comparing the above with E¢B3) we have
AMxc(w)=imawycp(®). (B7)

2V, Hakim and V. Ambegaokar, Phys. Rev.3®, 423(1985.

24H. Grabert, P. Schramn, and G. L. Ingold, Phys. R&§8 115(1988.

BW. G. Unruh and W. H. Zurek, Phys. Rev. 4D, 1071(1989.

2B, L. Hu, J. P. Paz, and Y. Zhang, Phys. Rev4) 2843(1992.

ZT\W. H. Zurek, S. Habib, and J. P. Paz, Phys. Rev. [#1187(1993; B.
L. Hu and Y. Zhang, Int. J. Mod. Phys. 20, 4537(1995; J. J. Halliwell
and A. Zoupas, Phys. Rev. B2, 7294(1995; C. Anastopoulos and J. J.
Halliwell, ibid. 51, 6870(1995.

Recall that the spectral density is related to the dissipatioi’W. H. Zurek, Phys. Rev. 24, 1516(1981); 26, 1862(1982; E. Joos and

coefficient by

Jep(@)=Mawycp(w), (B8)
for real w. From this the desired relation follows:
Jea(®) =Ny w). (B9)

1See, e.g., E. B. DavisQuantum Theory of Open SysterfAscademic,
London, 1976, B. J. Lindenberg and B. J. Westhe Nonequilibrium
Statistical Mechanics of Open and Closed SystéWSH, New York,
1990); T. Dittrich, P. Hanggi G.-L. Ingold, B. Kramer, G. Scimp and W.
Zwerger,Quantum Transport and Dissipatidiwiley, New York, 1998.

2S. Mukamel,Principles of Nonlinear Optical Spectroscop@xford Uni-
versity Press, New York, 1995

3U. Weiss, Quantum Dissipative Systeni$Vorld Scientific, Singapore,
1999.

4S. Nakajima, Prog. Theor. Phya0, 948 (1958.

5R. Zwanzig, Lect. Theor. Phy8, 106 (1961).

SR. P. Feynman and F. L. Vernon, Ann. Phg81, 547 (2002.

"P. Pechukas and U. Weig&ditors, Special IssueQuantum Dynamics of
Open Systemsn Chem. Phys268 (2001).

8D. E. Makarov and N. Makri, Chem. Phys. Le&21, 482 (1994; N.
Makri and D. E. Makarov, J. Chem. Phys02 4600, 4611(1995; N.
Makri, J. Math. Phys36, 2430(1995; E. Sim and N. Makri, Comput.
Phys. Commun99, 335 (1997; N. Makri, J. Phys. Chem102 4414
(1998.

9S. A. Egorov, K. F. Everitt, and J. L. Skinner, J. Phys. Cher08 9494
(1999.

H. D. Zeh, Z. Phys. B: Condens. Mattg®, 223 (1985.

2Decoherence and the Apperance of the Classical World in Quantum
Theory edited by D. Giuliniet al. (Springer, Berlin, 1996

30C. Itzykson and J.-B. ZubeQuantum Field TheoryMcGraw Hill, New
York, 1980.

1A, J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and
W. Zwerger, Rev. Mod. Phy$®9, 1 (1987. B

S2E. Wigner, Phys. Rew0, 749 (1932; K. Imre, E. Qrizmir, M. Rosen-
baum, and P. F. Zwiefel, J. Math. Phys.1097(1967).

3M. A. Huerta and H. S. Robertson, J. Stat. Phls393(1969; M. Teg-
mark and H. S. Shapiro, Phys. Rev5B, 2538(1994).

34M. Toda, N. Saito, R. Kubo, and H. Hashizun®tatistical Physics I, I
(Springer, Berlin, 1991

35A. J. Leggett, Phys. Rev. B0, 1208(1984.

38A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. PB@s.4491
(1985.

STA. Garg and G. H. Kim, Phys. Rev. Le#3, 2512(1989.

38p. M. V. B. Barone and A. O. Caldeira, Phys. Rev43, 57 (1991).

3%E. R. Bittner and P. J. Rossky, J. Chem. PHy@3 8130(1995; O. V.
Prezhdo and P. J. Rossky, Phys. Rev. L&11.5294(1998.

405 A. Egorov and B. J. Berne, J. Chem. Ph}87, 6050(1997).

413, D. JacksonClassical ElectrodynamicgNiley, New York, 19735.

42B, V. Chirikov, in Chaos and Quantum Physit¢ss Houches Lectures
Session LI, edited by M. J. Giannoni, A. Voros, and J. Zinn-Jugtiorth-
Holland, Amsterdam, 1991

43K. Shiokawa and B. L. Hu, Phys. Rev. &, 2497(1999; S. Habib, K.
Shizume, and W. H. Zurek, Phys. Rev. L&, 4361(1998.

44J. P. Paz and W. H. Zurek, i@oherent Matter Waves es Houches Lec-
tures Session LI{North-Holland, Amsterdam, 1999

Downloaded 21 Oct 2002 to 142.150.225.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



