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Emergence of quantum-classical dynamics in an open
quantum environment
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The conditions under which an open quantum-mechanical system may be described by mixed
quantum-classical dynamics are investigated. Decoherence is studied using influence functional
methods in a model composite quantum system comprising two coupled systems,A and C,
interacting with a harmonic bath with Ohmic and super-Ohmic spectral densities. SubsystemA is
directly coupled to subsystemC, while C is coupled directly to the bath. Calculations are presented
for a model where subsystemA is taken to be a two-level system which is bilinearly coupled to a
single harmonic oscillatorC subsystem. The loss of quantum coherence in each subsystem is
discussed in the extreme nonadiabatic regime where the intrinsic dynamics of subsystemA is
essentially frozen. SubsystemC is shown to lose its coherence rapidly, while subsystemA maintains
coherence for longer time periods sinceC modulates the influence of the bath onA. Thus, one may
identify situations where the coupledAC system evolution effectively obeys mixed
quantum-classical dynamics. ©2002 American Institute of Physics.@DOI: 10.1063/1.1509745#
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I. INTRODUCTION

Since it is often impossible to isolate a quantum syst
completely from its environment, the study of open quant
dynamical systems is necessary in many circumstan
Techniques used to treat open quantum systems have
developed extensively and used in numerous application1–3

Projection operator techniques4,5 and influence functiona
methods6 have been actively used in chemical physics
studies of electron, proton, and exciton transfer processe
the condensed phase and in biological systems.7–10

In this paper, we investigate some of the circumstan
under which an open quantum system can be described u
mixed quantum-classical dynamics. Quantum-classical
namics is used to study condensed phase many-b
systems,11,12especially in the context of methods for treatin
nonadiabatic dynamics.13–20In the studies presented here, w
consider a composite quantum-mechanical systemAC com-
prising two coupled subsystemsA and C; subsystemC is
assumed to be in direct contact with a thermal quantu
mechanical bathB. Systems with this structure can arise
condensed phase dynamics where certain quantum de
of freedom (A), for example, those associated with proto
or electrons, may interact directly with neighboring solve
molecules (C), which in turn interact with the rest of th
solvent (B). It is interesting to determine if the composi
system may be treated as a mixed quantum-classical sy
where the dynamics of subsystemC, which is in direct con-
tact with the heat bath, is classical in character while s
systemA retains its quantum nature. Some aspects of
dynamics of such quantum-classical composite systems
been investigated.21

In order to investigate this problem we study a simp

a!Electronic mail: rkapral@gatto.chem.utoronto.ca
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model system where subsystemA depends on spin degree
of freedom and subsystemC is a single harmonic oscillato
bilinearly coupled both to subsystemA and the bath. The
bath is a collection of independent harmonic oscillato
While this is a highly simplified model of the realistic sy
tems discussed above, it does capture some essential fea
of real coupled systems and is amenable to detailed anal
Due to its interaction with the bath, the dynamics of su
systemC is dissipative and executes Brownian motion. T
brownian motion of a quantum particle governed by differe
potential functions and immersed in a thermal harmonic
cillator bath has been studied extensively by influence fu
tional methods.22–27 The character of its dynamics is dete
mined by the system–bath coupling and the spectral den
and temperature of the bath. In the composite system
study, the dynamics of theC subsystem oscillator is als
influenced by the quantum dynamics of subsystemA. The
dynamics of subsystemA is more complicated. It is also
dissipative but its energy must be transmitted through s
systemC to the bath. Our results on the applicability o
mixed quantum-classical dynamics are based on the na
of decoherence28,29 in the coupled system: When one su
system behaves quantum-mechanically and the other cl
cally, there must be a mechanism making the former de
here slowly and the latter quickly.

The outline of this paper is as follows: In Sec. II w
specify the model in detail and outline the application of t
influence functional formalism to it. Although we use influ
ence functional techniques, similar results can be obtaine
other methods. Section III considers the equilibration of
CB system in the absence ofA and establishes that thi
composite system can be described by an effective spe
density. The emergence of mixed quantum-classical dyn
ics is investigated in Sec. IV. In this section we use the
2 © 2002 American Institute of Physics
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sults developed in the previous sections, specialized t
two-level system in the strongly nonadiabatic regime wh
the populations change very slowly. We study the decoh
ence of the off-diagonal elements of the subsystemA re-
duced density matrix in this regime and show under w
conditions one may observe quantum-classical dynam
The conclusions of the study are presented in Sec. V.
Appendices contain additional details of the calculations
Ohmic and super-Ohmic spectral densities.

II. GENERAL FORMULATION

A. Composite system in a thermal bath

The compositeACB quantum system consists of thre
coupled subsystems: SubsystemA is coupled directly to sub-
systemC, while subsystemC is in direct contact with a
thermal bathB. TheACB system Hamiltonian is

Ĥ5ĤA1V̂AC1ĤC1V̂CB1DĤC1ĤB . ~1!

The thermal bath is taken to be a set ofN independent
harmonic oscillators with frequenciesvn , massesmn ,
and coordinates and conjugate momenta (q̂,p̂)
[(q̂1 , . . . ,q̂N ,p̂1 , . . . ,p̂N) so that the Hamiltonian is

ĤB5 (
n51

N S p̂n
2

2mn
1

1

2
mnvn

2q̂n
2D . ~2!

SubsystemC consists of a single harmonic oscillator wi
renormalized massM and frequencyv r , with coordinate
and momentum operators (x̂,p̂), so that the Hamiltonian
reads

ĤC5
p̂2

2M
1

M

2
v r

2x̂2. ~3!

The interaction potential betweenC and the bath is assume
to be bilinear

V̂CB5 x̂(
n51

N

cnq̂n , ~4!

wherecn is the coupling constant to thenth oscillator. The
coupling constants are related to the spectral density of
bath by

JB~v![p(
n

cn
2

2mnvn
d~v2vn!. ~5!

We suppose the spectral density has the form

JB~v!5hvne2v/L, ~6!

and consider both Ohmic (n51) and super-Ohmic (n53)
cases. A counter termDĤC has been added to the Ham
tonian. It depends oncn , mn , vn , p̂, andx̂ and is given by

DĤc5H hL x̂2/p ~n51!

hL p̂2/M2p1hL3x̂2/p ~n53!
. ~7!

This term is introduced to cancel the shift of the mass a
frequency of theC subsystem oscillator due to the intera
tion with the bath which will become divergent when th
frequency cutoffL goes to infinity. As is customary, we con
Downloaded 21 Oct 2002 to 142.150.225.29. Redistribution subject to A
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sider the renormalized quantities after including a coun
term as physical observables with specified values in
analysis.30 The Hamiltonian of subsystemA, ĤA(s), de-
pends on spin variabless and we assume subsystemA is
bilinearly coupled to subsystemC, V̂AC5ls x̂.

The dynamical properties of interest can be compu
from the density matrix of the system at timet. In the coor-
dinate representation$x,q% of the C subsystem and bathB,
the density matrix takes the form,r̂(x,x8,q,q8,t)
[^x qur̂(t)ux8 q8&, which is still an operator in theA sub-
system degrees of freedom. The density matrix may be w
ten more explicitly in integral form in terms of the propag
tor

K̂~x,q;tux0 ,q0 ;0![^x que2 iĤ t/\ux0 q0&, ~8!

as

r̂~x,x8,q,q8,t !5E dx0dx08dq0dq08K̂~x,q;tux0 ,q0 ;0!

3 r̂~x0 ,x08 ,q0 ,q08 ,0!K̂* ~x8,q8;tux08 ,q08 ;0!.

~9!

We are primarily interested in the dynamics of the co
positeAC subsystem under the influence of the thermal ba
In such a circumstance the reduced density matrixr̂ r , ob-
tained by integrating over the bath degrees of freedom, is
relevant quantity. Such a reduction is appropriate if the ch
acteristic time scale for the bath is much shorter than th
for the A andC subsystems. We assume a factorized init
condition between theAC subsystem and the bath

r̂~x0 ,x08 ,q0 ,q08 ,0!5 r̂AC~x0 ,x08 ,0! ^ rB~q0 ,q08,0!, ~10!

and the bath is always taken to be initially in thermal eq
librium. Under these conditions the integral form of the r
duced density matrix at timet is

r̂ r~x,x8,t !5E dx0dx08Ĵr~x,x8;tux0 ,x08 ;0!r̂AC~x0 ,x08 ,0!,

~11!

where the time evolution kernelJr is given by

Ĵr~x,x8;tux0 ,x08 ;0!5E dqdq0dq08K̂~x,q;tux0 ,q0 ;0!

3rB~q0 ,q08,0!K̂* ~x8,q;tux08 ,q08 ;0!.

~12!

Given the initial conditions discussed above, this exact
pression for the reduced density matrix specifies a n
Markovian time evolution since the solution at timet de-
pends on its past history. Approximate Markovian evoluti
equations may miss essential features of the quant
classical correspondence and tend to underestimate the
of quantum coherence. In addition, a Markovian approxim
tion is not generally valid for a harmonic oscillator mode
except for systems with Ohmic type dissipation in the hi
temperature regime. Below we use influence functio
methods where the exact solution is expressed as a pat
tegral in order to deal with the nonlocal time evolution.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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B. Influence functional method

The formulation of the reduced density matrix in term
of an influence functional for the compositeACB system
parallels that for spin-boson models often discussed in
literature.3,31 Consequently the presentation of the gener
zation to our system will be brief. In order to write the r
duced density matrix in terms of an influence functional,
first introduce a basis of spin functions with labelss ands8
to represent the states of theA subsystem. In this basis w
may write Eq.~11! as

r r~s,s8,x,x8,t !5E ds0ds08E dx0dx08

3Jr~s,s8,x,x8;tus0 ,s08 ,x0 ,x08 ;0!

3r r~s0 ,s08 ,x0 ,x08 ,0!. ~13!

For the factorized initial condition~10! the kernelJr can be
written in the path integral form as

Jr~s,s8,x,x8;tus0 ,s08 ,x0 ,x08 ;0!

5E
(s0s08)

(ss8) DsDs8K@s#K* @s8#JC
ss8~x,x8;tux0 ,x08 ;0!,

~14!

whereK@s# is a probability amplitude for subsystemA fol-
lowing the paths in the absence of the subsystemC and the

environment. The evolution kernelJC
ss8 for subsystemC in

the presence of external sources (s,s8) is

JC
ss8~x,x8;tux0 ,x08 ;0![E

(x0x08)

(xx8) DxDx8eiS[s,s8,x,x8]/\.

~15!

The actionS@s,s8,x,x8# consists of several contribution
and can be decomposed as follows:

S@s,s8,x,x8#5SC@x,x8#1SAC@s,s8,x,x8#

1DSC@x,x8#1SIF@x,x8#. ~16!

The actions for subsystemC, plus its counter action, and th
interaction between subsystemsA andC are

~SC1DSC!@x,x8#5E
0

t

dsS M0

2
ẋ2~s!2

M0

2
v0

2x2~s!

2
M0

2
ẋ82~s!1

M0

2
v0

2x82~s! D ,

~17!

SAC@s,s8,x,x8#5lE
0

t

ds~x~s!s~s!2x8~s!s8~s!!,

where, for notational convenience, we used the bare m
M0 and bare frequencyv0 as M05M and M0v0

25Mv r
2

12hL/p for n51 while M05M12hL/p and M0v0
2

5Mv r
212hL3/(3p) for n53.

The influence actionSIF@x,x8# accounts for the effect o
the bath onC and is given by
Downloaded 21 Oct 2002 to 142.150.225.29. Redistribution subject to A
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SIF@x,x8#5 i E
0

t

dsE
0

s

ds8@x~s!2x8~s!#

3@a~s2s8!x~s8!2a* ~s2s8!x8~s8!#,

~18!

wherea(t) is a complex kernel whose realaR(t) and imagi-
nary a I(t) parts, respectively, are given by

aR~ t !5
1

p E
0

`

dvJB~v!coth
b\v

2
cosvt, ~19!

a I~ t !52
1

p E
0

`

dvJB~v!sinvt. ~20!

We define new variables asR[(x1x8)/2, r[x2x8, s6

[s6s8, and write the actions in these new variables as

SAC@s6 ,R,r #5
l

2 E
0

t

ds~s1~s!r ~s!12s2~s!R~s!!,

~SC1DSC!@R,r #5E
0

t

ds$M0Ṙ~s! ṙ ~s!

2M0v0
2R~s!r ~s!%, ~21!

SIF@R,r #5 i E
0

t

dsE
0

s

ds8r ~s!aR~s2s8!r ~s8!

22E
0

t

dsE
0

s

ds8r ~s!a I~s2s8!R~s8!.

C. Euler–Lagrange equations and solution

From Eqs.~21! the Euler–Lagrange equations forR and
r are

M0R̈c~s!1M0v0
2Rc~s!12E

0

s

ds8a I~s2s8!Rc~s8!

5
1

2
ls1~s!, ~22!

M0r̈ c~s!1M0v0
2r c~s!22E

s

t

ds8a I~s2s8!r c~s8!5ls2~s!.

~23!

The initial and final conditions for Eq.~22! @Eq. ~23!# areR0

andRt (r 0 andr t). If we let the two independent solutions o
the homogeneous part of Eq.~22! @Eq. ~23!# be ui(s)
(v i(s)), i 51, 2, with boundary conditionsu1(0)51, u1(t)
50, u2(0)50, u2(t)51, (v1(0)51, v1(t)50, v2(0)50,
v2(t)51), the solutions of these uncoupled equations can
written as

Rc~s!5R0u1~s!1Rtu2~s!1
m

2
s1~g~s!!,

~24!
r c~s!5r 0v1~s!1r tv2~s!1ms2~g~s!!,

where we have used the notation
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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s1~g~s!![E
0

s

ds8g1~s2s8!s1~s8!2u2~s!

3E
0

t

ds8g1~ t2s8!s1~s8!,

~25!

s2~g~s!![E
0

s

ds8g2~s2s8!s2~s8!2v2~s!

3E
0

t

ds8g2~ t2s8!s2~s8!,

and definedm[l/M . The solutionsv1 and v2 satisfy the
homogeneous part of the backward time Eq.~23! and are
related tou1 and u2 by v1(s)5u2(t2s) and v2(s)5u1(t
2s). The functiong1(s) (g2(s)) also satisfies the homoge
neous part of Eq.~22! @Eq. ~23!# with boundary conditions
g6(0)50, ġ6(0)51.

The solutions forg6 are given in Appendix A for Ohmic
and super-Ohmic spectral densities. From these solutionsu1,2

andv1,2 can be determined.

D. Reduced density matrix solution

Since the potentials in our model are harmonic, an ex
evaluation of the path integral can be carried out. It is do
es
n

Downloaded 21 Oct 2002 to 142.150.225.29. Redistribution subject to A
ct
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nated by the classical solution given in Eq.~24!. The s de-
pendence in Eq.~24! arises from the back reaction of theA
subsystem on theC subsystem. To separate out the contrib
tion from this back reaction, we expandS in powers ofs and
write

S@s6 ,Rc ,r c#5S (0)@Rc ,r c#1S (1)@s6 ,Rc ,r c#

1S (2)@s6#. ~26!

The zeroth-order term ins takes the form

S (0)@Rc ,r c#5~Mu̇1~ t !R01Mu̇2~ t !Rt!r t

2~Mu̇1~0!R01Mu̇2~0!Rt!r 0

1 i ~a11~ t !r 0
21~a12~ t !1a21~ t !!r 0r t

1a22~ t !r t
2!, ~27!

and is an influence action for a damped harmo
oscillator.24,26 Here

akl~ t !5
1

2 E0

t

dsE
0

t

ds8vk~s!aR~s2s8!v l~s8!, ~28!

for (k,l 51,2) contains the effects of fluctuations due to t
bath on subsystemC. The term linear ins is
S (1)@s6 ,Rc ,r c#5lE
0

t

ds~u1~s!R01u2~s!Rt!s2~s!1 imr 0E
0

t

dsE
0

t

ds8$v1~s!aR~s2s8!s2~g~s8!!%

1 imr tE
0

t

dsE
0

t

ds8$v2~s!aR~s2s8!s2~g~s8!!%1
lr 0

2 E
0

t

dsv1~s!s1~s!1
lr t

2 E
0

t

dsv2~s!s1~s!. ~29!
ed
This term arises from the interaction between subsystemA
and the bath, modulated by the trajectory of subsystemC.
The quantum back reaction of subsystemA on C induces
self-coupling inA, which is contained in the last term

S (2)@s6#5
lm

2 E
0

t

dss2~s!s1~g~s!!1 im2

3E
0

t

dsE
0

s

ds8s2~g~s!!aR~s2s8!s2~g~s8!!.

~30!

Using the results above,JC
ss8 in Eq. ~15! can be written

in the compact form

JC
ss8~Rt ,r t ;tuR0 ,r 0 ;0!5N~ t !expH i

\
LJ , ~31!

whereL5RTur1 i rTar1su
TR1sv

Tr1S (2)@s6# andN(t) is
a normalization factor independent of dynamical variabl
In writing this equation we have introduced the notation a
(a) i j 5ai j , RT5(R0 ,Rt) andrT5(r 0 ,r t), whereT stands for
the transpose. The matrixu is defined as
.
d

u5S u11 u12

u21 u22
D[M S 2u̇1~0! u̇1~ t !

2u̇2~0! u̇2~ t !
D , ~32!

while the vectorssu andsv are given by

su5lS s2~u1!

s2~u2! D , sv5lS s~v1!

s~v2! D . ~33!

In Eqs.~33! we have used the symbolic notation

s2~ui ![E
0

t

dsui~s!s2~s!,

s~v i ![E
0

t

dsv i~s!Fs1~s!/2

1E
0

t

ds8iaR~s2s8!s2~g~s8!!/M G , ~34!

for i 51,2.

Having derived the expression forJC
ss8 in Eq. ~31!, we may

use it to obtain the partial Wigner transform of the reduc
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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density matrix. The density matrix in the partial Wign
representation32 over theC subsystem degrees of freedom
defined by

r rW~s,s8,R,P,t !5
1

2p\ E dre2 iPr /\

3r r~s,s8,R1r /2,R2r /2,t !. ~35!

Wigner transforming Eq.~13! and using this definition we
obtain

r rW~s,s8,R,P,t !5E ds0ds08E
(s0s08)

(ss8) DsDs8K@s#K* @s8#

3E dR0dP0KC
ss8~R,P;tuR0 ,P0 ;0!

3r rW(s0 ,s08 ,R0 ,P0,0), ~36!

where the kernelKC
ss8(R,P;tuR0 ,P0 ;0) is defined by

KC
ss8~R,P;tuR0 ,P0 ;0!5

1

2p\ E drdr0e2 i (Pr2P0r 0)/\

3JC
ss8~R,r ;tuR0 ,r 0 ;0!. ~37!

Inserting the expression forJC
ss8 in Eq. ~31!, the time

evolution kernelKC
ss8 for the Wigner function is given by

KC
ss8~Rt ,Pt ;tuR0 ,P0 ;0!

5
N~ t !

2p\ E drdr0ei (2Ptr t1P0r 01L)/\

5NW~ t !expF2dXW
T Q21dXW1

i

\
su

TR1
i

\
S (2)@s6#G ,

~38!

whereNW(t)5N(t)/2\Auau and uau is the determinant ofa.
The vectordXW5XW2^XW&, with

XW5S Rt

Pt2ls~v2! D , ~39!

and

^X&5S ^R&
^P& D5

21

u21
S u11 1

uuu u22
D S R0

P01ls~v1! D . ~40!

The matrixQ is given by

Q5
4\

u21
2 S a11 a12u212a11u22

a12u212a11u22 a11u22
2 22a12u21u221a22u21

2 D .

~41!

In the next section we shall needQ11 and the explicit expres
sion for this matrix element is

Q11~ t !5
2\

pM2 E
0

`

dv cothS b\v

2 D JB~v!D~v,t !, ~42!

whereD(v,t) is given by
Downloaded 21 Oct 2002 to 142.150.225.29. Redistribution subject to A
D~v,t ![E
0

t

dsE
0

t

ds8g1~ t2s!cosv~s2s8!g1~ t2s8!.

~43!

These results provide the tools needed to analyze the co
tions under which passage to the quantum-classical l
may be carried out. In the next sections we present exp
results for both the Ohmic and super-Ohmic bath spec
densities.

III. THERMALIZATION OF QUANTUM
BROWNIAN MOTION

Whether a linear or nonlinear system interacting with
bath will eventually reach thermal equilibrium or not is on
of the fundamental issues in statistical mechanics. For lin
quantum brownian motion, from a general class of init
conditions, the state ofC is known to reach asymptotically
the Gaussian form.33 In this section, first, we will show tha
the C subsystem evolution, starting from an arbitrary initi
condition, possesses an asymptotic limit. We then study
influence of such a thermalized quantum system on A.
our analysis, we shall need the results for a system compo
of the particleC and the thermal bathB in the absence ofA.
In this case Eq.~36! takes the form

r rW~Rt ,Pt ,t !5E dR0dP0KC~Rt ,Pt ;tuR0 ,P0 ;0!

3r rW~R0 ,P0,0!. ~44!

In the absence of subsystemA, from Eq. ~38! the time evo-
lution kernel for the Wigner function is

KC~Rt ,Pt ;tuR0 ,P0 ;0!5NW~ t !exp@2dXW
T Q21dXW#,

~45!

whereXW
T 5(R,P) and

^X&5S ^R&
^P& D5

21

u21
S u11 1

uuu u22
D S R0

P0
D . ~46!

For a harmonic potential, as a result of the Ehrenf
theorem, the center phase space coordinate^X& of this dis-
tribution function follows a classical trajectory and will de
cay because of energy dissipation into the bath. Using
exact expressions for the matrix elements ofu, obtained
from the formulas given in Appendix A, one may show th
^X& vanishes in the long time limit for both Ohmic an
super-Ohmic baths. As a result, in both cases, for times l
compared to the characteristic relaxation time for this dec
the time evolution kernel reduces to

KC~Rt ,Pt ;tuR0 ,P0 ;0!→NW~ t !exp@2XW
T Q21XW#,

[KC~Rt ,Pt ;t ! ~47!

which is independent ofR0 andP0 . Consequently, Eq.~44!
reduces to

r rW~Rt ,Pt ,t !5KC~Rt ,Pt ;t !, ~48!

thus, for an arbitrary initial condition, the Wigner tran
formed reduced density matrix is uniquely determined by
time evolution kernelKC . Furthermore, the off-diagonal el
ements ofQ vanish in this limit and we obtain a Gaussia
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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form for the density matrix whose widths are uniquely spe
fied and given by^(DR)2&5Q11/2 and ^(DP)2&5Q22/2.
The width ^(DR)2(`)& can be obtained from Eq.~42! as

^~DR!2~`!&5
\

pM2 E
0

`

dv cothS b\v

2 D JB~v!D~v,`!.

~49!

We show in Appendix A, for the Ohmic case and for t
weak coupling limit of the super-Ohmic case, th
JB(v)D(v,`)5M2xC9 (v), where

xC9 ~v!5
1

M

vg8~v!

~v r
22v21vg9~v!!21v2g82~v!

, ~50!

is the dynamical susceptibility forC. For the spectral density
defined in Eq.~5!, the explicit form of the frequency depen
dent dissipation coefficientg~v! is given by

Mg~v!→H h ~n51!

hv2 ~n53!
, ~51!

in the limit of a large cutoff parameterL, whereg9(v) was
absorbed in the mass renormalization for then53 case.
Consequently, we may writê(DR)2(`)& as

^D2R~`!&5
\

p E
0

`

dv cothS b\v

2 DxC9 ~v!. ~52!

Equation ~52! is a statement of the fluctuation–dissipati
relation.34 The form in Eq.~52! suggests that the combine
systemCB is now in thermal equilibrium with spectrum
specified byxC9 (v) but the systemC itself is not in equilib-
rium. The fluctuation–dissipation relation is violated at fin
t while the system is still far from equilibrium and holds on
asymptotically. This result generalizes the result previou
obtained by Caldeira and Leggett for an Ohmic bath.22

When theCB system is in thermal equilibrium, we sho
in Appendix B using linear response theory thatJCB(v)
5l2xC9 (v): The effective spectral density is proportional
the dynamical susceptibility of theC system. If we use the
relation

JB~v!5Mvg8~v!, ~53!

for the bath spectral density assumed in Eq.~5!, we see that
the effective spectral density in the combined systemCB can
be written as

JCB~v!5
l2JB~v!

M2~v r
22v21vg9~v!!21JB

2~v!
. ~54!

This relation can also be obtained by solving the class
equations of motion as suggested earlier6,35,36 owing to the
linear coupling assumed between theC system and the bath

IV. EMERGENCE OF QUANTUM-CLASSICAL
DYNAMICS VIA DECOHERENCE

The investigation of the emergence of quantum-class
dynamics presented here will be restricted to cases where
dynamics of subsystemA occurs on time scales which ar
Downloaded 21 Oct 2002 to 142.150.225.29. Redistribution subject to A
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very long compared to those that characterize subsystemC.
We suppose that subsystemA is a two-level system withs
561 and focus on the extreme nonadiabatic regime wh
the population dynamics of subsystemA is essentially frozen
on the time scales of interest so thatrA(21,21,t)5rA

(21,21,0),rA(1,1,t)5rA(1,1,0). We further assume tha
subsystemsA andC are decoupled initially and use the fa
torized initial condition

r̂AC~x0 ,x08 ,0!5 r̂A~0! ^ rC~x0 ,x08 ,0!. ~55!

This is a reasonable assumption if they are weakly coup

A. Decoherence in A interacting with an equilibrium
CB bath

If the interaction between theA system and the com
bined systemCB is turned on after an equilibrium state
reached, the effect ofCB on A is given simply by the har-
monic bath directly coupled to theA subsystem but with its
spectrum characterized by the effective spectral density.
der these conditions, the off-diagonal part of the density m
trix can be obtained from Eq.~13! by dropping the depen
dence on (x,x8), omitting the integrals over spin variable
and by making the variable replacementsx→s and JB

→JCB in Eq. ~18! for the influence functional. We find

rA~21,1,t !5e2DA
(0)(t)rA~21,1,0!, ~56!

whereDA
(0)(t) is a decoherence factor forA and is defined as

DA
(0)~ t !5

4

p\ E
0

`

dvJCB~v!cothS b\v

2 D S 12cos~vt !

v2 D .

~57!

Thus, as mentioned above, the dynamics of the compo
system is equivalent to that of a two-level spin–boson s
tem coupled to a harmonic bath, with an effective spec
density.

Using these results we may examine the coherenceA
under the influence of the effective bathCB and the coher-
ence ofA under the influence of the bathB separately. In
Figs. 1~a! and 1~b!, the off-diagonal part of the density ma
trix of subsystemA is plotted for an Ohmic environment. Fo
reference, we note that in our calculations the cut-off f
quency was chosen to be sufficiently large to include
relevant molecular vibrational frequencies for typical co
densed phase systems. The characteristic frequency of tC
system oscillator was taken to bev r;50 cm21 in conven-
tional units.

The solid line corresponds to our system while t
dashed line is the ordinary spin–boson model withoutC.
The time evolution ofrA(21,1,t) for the ordinary ordinary
spin–boson model is characterized by~1! an initial period
where subsystemA system has not yet felt the existence
the environment and its coherence is maintained;~2! a quan-
tum regime fort.1/L where the system begins to intera
with the vacuum fluctuations of the environment and, fina
~3! a thermal regime fort.\b where the effects of therma
fluctuations on subsystemA have set in. For 1/L,t,\b,
only vacuum fluctuations interact with the system.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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By contrast, the existence of the intermediate subsys
C changes the evolution ofrA(21,1,t) significantly. Sub-
systemC is characterized by its harmonic oscillator fr
quency and mass. Fluctuations originating in the bathB are
modulated byC through these parameters. For a large m
M , the effective modes of the combinedCB system are con-
centrated in the neighborhood ofv r and the decoherenc
behavior of subsystemA is governed by these modes. Ther
fore, after the initial period, decoherence will begin to occ
at t;1/v r .

Although some systems are approximately character
by an Ohmic spectral density, generic systems will have n
Ohmic spectral densities. The density of states typically v
ies asvn with n depending on the spatial dimensionD. We
consider the three-dimensional~3D! super-Ohmic case with
n53. Such an environment is relevant for the study
polarons,31 macroscopic magnetization tunneling
crystals,37 and radiation damping of atoms.38 A super-Ohmic
environment affects subsystemA evolution on short time
scales more significantly than an Ohmic environment. A s
Ohmic environment induces nontrivial long time behavi

FIG. 1. The temporal behavior of the off-diagonal element of the redu
density matrixrA(21,1,t) for subsystemA is plotted in panel~a! vs time.
The initial value rA(21,1,0)51. Parameters are:b50.66, L5500, v r

51, g50.3, M51, and\51. The same quantity is shown in panel~b!
using a logarithmic time scale. In both figures the solid line correspond
A under the influence ofCB with the effective Ohmic spectral density, whil
the dashed line shows the influence of Ohmic bathB without C. ~1! l2

50.1 and~2! l250.3.
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Results for the super-Ohmic case withn53 are shown in
Figs. 2~a! and 2~b!.

For the super-Ohmic high-dimensional environment,
vacuum fluctuations play a more significant role than for
Ohmic environment, reflecting the fact that there is larg
number of high-frequency modes in the higher dimensio
environment. The same effect is also responsible for
large difference in the behavior of correlation functions
the system in quantum and classical baths when the ba
super-Ohmic.9 The dynamics ofA in the presence of the
intermediate subsystemC is worth noting. For the presen
choice of parameters,rA(21,1,t) asymptotically reaches a
nonzero value indicating that quantum coherence in theA
system will never be lost completely. The origin of this b
havior can be understood in terms of the time-dependenc
the diffusion coefficient~see Ref. 26!. SystemC initially
executes brownian motion with a time-dependent diffus
coefficient as a result of the non-Markovian time evoluti
of the reduced density matrix. This time-dependent diffus
coefficient ofC, which also determines the decoherence ra
exhibits a rapid increase at early timest.1/L and then as-
ymptotically vanishes. This initial increase can be lar
enough to wash away the quantum coherence ofC directly
coupled to the bath. Owing to the modulation effect fromC,

d

to

FIG. 2. Plot ofrA(21,1,t) vs time ~a! and vs log(t) ~b! for a super-Ohmic
environment withn53. Parameters and labeling are the same as in Fig
The dashed line in panel~a! for super-Ohmic bathB without C overlaps the
vertical axis. The behavior is visible in panel~b! using the logarithmic time
scale.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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these high frequency modes are filtered out and do not
rectly affectA if v r!L. The late time value of the diffusion
coefficient is too small to eliminate the quantum cohere
from subsystemA completely. Hence, the non-Markonvia
nature of the density matrix evolution for the super-Ohm
case is responsible for the significant difference in the
namics of coherence between theA andC subsystems.

B. Decoherence in A for arbitrary C initial conditions

Thus far we have considered only the asymptotic lim
where CB has reached equilibrium and the fluctuation
dissipation relation holds. It is interesting to consider t
coherence ofA under the influence of the intrinsic dynamic
of C starting from arbitraryC initial conditions. As an ex-
ample of this situation, we assume thatC is initially in a
Gaussian coherent state given by the wave function

c x̄p̄~x!5
1

~pe2!1/4expF2
~x2 x̄!2

2e2 1 i
p̄x

\ G , ~58!

with width e51/Av r wherex̄ and p̄ are parameters. TheC
subsystem density matrix at the initial time is then given

rC~x0 ,x08 ,0!5
1

Ape2
expF2

~R02 x̄!2

e2 2
r 0

2

4e2 1 i
p̄r 0

\ G .
~59!

We may now use this expression forrC(x0 ,x08 ,0) in the fac-
torized initial condition forAC given in Eq.~55!. The off-
diagonal element of reduced density matrix for subsystemA
in the nonadiabatic limit can then be determined from E
~13! and~14! for r r(s,s8,x,x8,t) for AC by integrating over
the C variables. The result is

rA~21,1,t !5E dxdx8F E dx0dx08

3JC
21,1~x,x8,tux0 ,x08,0!rC~x0 ,x08 ,0!G

3rA~21,1,0!. ~60!
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Changing integration variables (x,x8)→(R,r ) and (x0 ,x08)
→(R0 ,r 0) and using Eq.~31! for JC

21,1(R,r ,tuR0 ,r 0,0) we
may write this as

rA~21,1,t !5E dRdrF E dR0dr0

3N~ t !expH i

\
LJ rC~R0 ,r 0 ,0!G

3rA~21,1,0!. ~61!

Making use of the expression forL evaluated fors521
ands851 and carrying out the integrations we find

rA~21,1,t !5rA~21,1,0!e2DA(t)

3expF i

\
~ f R~ t !x̄1 f P~ t ! p̄!G

3expF2
1

\
~ f R

2~ t !/Mv r1 f P
2 ~ t !Mv r !G ,

~62!

where

f R~ t !5lE
0

t

ds
u11~s!

u21~s!
, f P~ t !5lE

0

t

ds
1

u21~s!
~63!

and

DA~ t !5
2l2

p\M2 E
0

`

dvJB~v!cothS b\v

2 DDA~v,t !. ~64!

The explicit expression forDA(v,t) can be computed from
the solutions presented in Appendix A by a lengthy b
straightforward calculation. We find
r
n

DA~v,t !5
1

~V r
22v2!214G2v2 F2

12cos~vt !

v2 1
2

VV r
2

12cos~vt !

v
~vV~12e2Gt cos~Vt !!2vGe2Gt sin~Vt !!

1
2

VV r
2

sin~vt !

v
~2GV~12e2Gt cos~Vt !!1~V22G2!e2Gt sin~Vt !!

1
1

V2V r
4 $~v214G2!V2~12cos~Vt !e2Gt!222GV~v212G222V2!~12cos~Vt !e2Gt!sin~Vt !e2Gt

1~v2G21~V22G2!2!sin2~Vt !e22Gt%G . ~65!

Equations~62!–~65! are our main results. The first term in Eq.~62! is the initial condition forA, the second term accounts fo
the decoherence arising from thermal fluctuations of the bath mediated byC. The third term arises from the initial conditio
for C and the last term is responsible for the decoherence ofA due to the averaged damped oscillatory motion ofC.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The modulus of the off-diagonal reduced density mat
element forA is shown in Figs. 3~a! and 3~b! as a function of
time. The solid line shows the second term Eq.~62!, S
[e2DA(t), which gives the decoherence due to the quantu
back-reaction-induced self-interaction of subsystemA. The
dashed line shows the last term,L[exp@2 1/\ ( f R

2(t)/Mv r

1 f P
2 (t)Mv r)#, the decoherence due to the motion ofC. The

latter effect is not strong enough to eliminate coherence oA
completely. Since, initially, theCB is far from equilibrium,
those modes that affectA are not necessarily near resona
modes aroundv r . Consequently, the decoherence ofA is
more rapid in this case than in the case of evolution from
thermal equilibrium initial condition studied in Sec. IV A
This tendency is more evident in a super-Ohmic bath tha
an Ohmic bath. With generic initial conditions forC, A is
under the influence of the nonequilibrium bathCB, which is
no longer equivalent to the effective thermal bath with t
spectral densityJCB .

Now let us consider the situation where the decohere
of C is fast and that ofA is slow. This may occur at high
temperatures and for weak coupling betweenA and C. In
such a case, the back reaction fromA on C may be ne-

FIG. 3. Plot of contribution to the modulus ofrA(21,1,t) versus time for an
Ohmic bath@Fig. 3~a!# and for a super Ohmic bath@Fig. 3~b!#. SubsystemC
is in a coherent state initially. In both figures the solid line correspond
the second term S, while the dashed line corresponds to the last term L
right-hand side in Eq.~62!. l250.1 for S1, L1 andl250.3 for S2, L2.
Parameters values are the same as in Fig. 1.
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glected. In this circumstance, we may consider the deco
ence ofC in the absence ofA. Quantum brownian motion
and decoherence of a damped harmonic oscillator has b
studied previously.22,24–27 Using the result in Eq.~3.9! of
Ref. 26, the reduced density matrix may be approximated

r r~s,s8,x,x8,t !;e2(x2x8)2DC(t)r r~s,s8,x,x8,0!, ~66!

whereDC(t)5*0
t ds*0

sds8aR(s8)cosvrs8 is the decoherence
factor for C.

In Fig. 4, the decoherence factors forA andC are plot-
ted. For an Ohmic bath@Fig. 4~a!#, initially, the quantum
coherence is lost faster inC than in A; hence, theA sub-
system behaves more quantum mechanically than theC sub-
system during this initial period. Figure 4~a! shows that there
is a crossover, and for longer times,t.1/v r , subsystemA
experiences stronger decoherence thanC. The decoherence
factor forC varies linearly witht indicating that the dynam-
ics of C asymptotically approaches Markovian evolution
the high temperature Ohmic bath. Quantum-classical
proximations are expected to be valid on intermediate ti
scales where subsystemA maintains its coherence while th
subsystemC has lost coherence~regime in Fig. 4 bounded
by the solid and dashed lines!.

o
the

FIG. 4. Plot of the decoherence factors vs time. The solid line correspo
to the negative of the logarithm of the modulus of the density matrixrA in
Eq. ~62!, while the dashed line isDC . System parameters are:x2x851,
v r51, g50.3, M51, \51. Panel ~a! is for the Ohmic bath withb
50.002, L5500. Panel~b! is for the n53 super-Ohmic bath withb
50.02, L520.
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For a super-Ohmic bath@Fig. 4~b!#, a substantial portion
of the quantum coherence inC is lost during the initial pe-
riod due to large fluctuations coming from the bath, whileA
retains quantum coherence for a long time. The dynamic
the coupled system can be approximated by mixed quant
classical evolution for long times after the short transi
period. The qualitative coherence behavior shown in Fig
appears to be independent of the precise choice of pa
eters.

Finally, we note that the closed systemAC, without
bath, exhibits rather different behavior. SinceC is a single
harmonic oscillator, its influence onA will be periodic and
its coherence will be preserved indefinitely. The coupling
C to the bath degrees of freedom provides the mechanism
decoherence in theAC subsystem. The results in this sectio
suggest that weak coupling of A to C~which may arise from
a large mass disparity in the two subsystems! and a high-
temperature, high-dimensional environment with large ch
acteristic frequencies will favor a quantum-classical desc
tion.

V. CONCLUSION

An appreciation of the conditions under which a qua
tum mechanical system may be approximated as a quan
classical system is essential in many applications to the
namics of many-body systems. Adopting an open quan
system point of view has provided a natural way to expl
this issue based on the decoherence of the superpositio
quantum states into a statistical mixture under the influe
of the environment.28,29 Indeed, considerations of decohe
ence have played an important role in discussions of sche
for the simulation of condensed phase systems.39

Using influence functional methods, we have shown
our simple model system that the decoherence time sc
that characterize theA andC subsystems can differ signifi
cantly. In particular, in the limit of nonadiabatic dynamics w
have identified the following three regimes:~1! The full
quantum regime where both theA andC subsystems behav
quantum mechanically;~2! the quantum-classical regim
where subsystemA maintains coherence owing to its indire
coupling to the bath, whileC has lost its coherence an
behaves effectively classically;~3! the classical regime
where the quantum coherence of both theA and C sub-
systems has been lost and the compositeAC subsystem ex-
hibits effectively classical dynamics.

Our results show that for an Ohmic bath one may o
serve quantum-classical dynamics for some finite time in
val, but eventually the decoherence factors for both theA
and C subsystems increase, leading to classical behavio
the AC subsystem. For a super-Ohmic bath the strong
crease in theC subsystem decoherence factor and the wea
increase of that forA implies that one may observe quantum
classical evolution for a longer initial time interval to a hig
degree of accuracy before classical behavior ensues@see Fig.
4~b!#. Furthermore, since the decoherence factor of s
systemA saturates at a finite value which depends on
system parameters, it is possible to find regimes wh
quantum-classical evolution holds indefinitely because thA
decoherence factor is small for all times. Thus, while
Downloaded 21 Oct 2002 to 142.150.225.29. Redistribution subject to A
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three regimes are found to exist for an Ohmic bath for
parameter ranges, only regimes~1! and ~2! exist for a 3D
super-Ohmic bath for some parameter choices.

In most applications where a condensed phase envi
ment is modeled by a bath of harmonic oscillators an Ohm
spectral density is assumed with the dissipation coeffic
determined from experiment. Super-Ohmic spectral dens
have also been used to model vibrational relaxation
acoustic phonons in a crystalline host9,40 or systems where a
degree of freedom couples linearly through its momentum
an effective isotropic elastic medium.37,38

We also saw that a different choice of initial condition
will modify above picture. When the initial condition forC
is chosen to be a pure gaussian coherent state,CB can no
longer be considered to be a thermal bath and the coher
of A will be lost in a shorter time scale than times given
the inverse characteristic frequency ofC.

Quantum–classical correspondence in nonlinear s
tems, in particular, in chaotic systems, has many nontriv
features.42 The quantum open system approach adopted
this paper can also shed light on this problem.43,44While the
model system studied here is very simple and the extre
nonadiabatic regime is only one limiting case to consid
our results nevertheless have provided some insight into
emergence of quantum-classical dynamics and should
useful in the study of the quantum dynamics of more co
plex systems.
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APPENDIX A: SOLUTIONS OF EQUATIONS OF
MOTION

In this Appendix we give some details of the solutions
the equations of motion discussed in Sec. II C which are u
in the calculations presented in Sec. IV. We require the fu
tions u1,2(s) @and v1,2(s)] which are the solutions of the
homogeneous parts of the Euler–Lagrange equations~22!
and ~23!. These functions can be found ifg6(s), which are
also solutions of the homogeneous parts Eqs.~22! and ~23!,
are known, since

u1~s!5ġ1~s!2
g1~s!

g1~ t !
ġ1~ t !, u2~s!5

g1~s!

g1~ t !
, ~A1!

in order to satisfy the boundary conditions on these fu
tions. Using the spectral density for an Ohmic bath, the eq
tion thatg6(s) satisfies is

g̈6~s!1v r
2g6~s!62Gġ6~s!50. ~A2!

The solution of Eq.~A2! is

g6~s!5
sinVs

V
e7Gs, ~A3!

whereG5g andV2[v r
22g2.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Using the spectral density for a super-Ohmic bath w
n53, the equations of motion forg6(s) can be written as

g̈6~s!1v r
2g6~s!72g ĝ6~s!50. ~A4!

Thus, the equation of motion has the form of the Abraha
Lorentz equation.41 This equation is an approximation to th
full equation of motion with nonlocal time dependence. As
the electromagnetic field case, only the physically relev
roots of the characteristic equation must be retained. Th
areG6 iV with

G[
1

6g S D

4
1

1

D
21D , V[

)

6g S D

4
2

1

D D , ~A5!

where

D52~1154~gv r !
21A108gv rA27~gv r !

211!1/3.
~A6!

Retaining the physically relevant roots of the characteri
equation, the solution forg6(s) for the super-Ohmic cas
has the same form as Eq.~A3! but with the above values o
G andV. In the weak coupling limit that we consider in ou
calculations,G→gv r

2 andV→v r .
In our model, Eq.~A4! can be reduced to a second-ord

ordinary differential equation by differentiating the homog
on
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neous part of the Euler–Lagrange equations with respec
time as

ĝ6~s!52v r
2ġ6~s!1O~g!, ~A7!

which may be substituted into Eq.~A4! to give ~A2! with
G5gv r

2 and V5v r in the leading order approximation a
indicated above. Although one can improve the approxim
tion leading to Eq.~A2! for the super-Ohmic case to arbitrar
higher order ing, we restrict our study to the leading order
this parameter.

Since theu1,2 andv1,2 solutions are now known, we hav
all the information needed to compute the various quanti
necessary to obtain the numerical results. In particular,
expression for the matrix elements ofa in Eq. ~28! for a
general environment can be found.~See Refs. 22, 26, and 2
for an Ohmic bath.! In our computations, we needa11(t)
which has the form

a11~ t !5
1

2pg1
2 ~ t !

E
0

`

dvJB~v!coth
b\v

2
D~v,t !, ~A8!

where D(v,t) was defined in Eq.~43!. The evaluation of
D(v,t) is straightforward and leads to
D~v,t !5
1

2V2

1

~V r
22v2!214G2v2 @2V21e2Gt @2 cos~vt !$~G21v1v2!cos~Vt !22GV sin~Vt !%

2~G21v2
2 !cos~v1t !2~G21v1

2 !cos~v2t !#1e22Gt$V r
21v212GV sin~2Vt !2~G21v1v2!cos~2Vt !%#,

~A9!
per-
.

ef-
l
-
rgu-
an

lity

em
where v6[v6V and V r
2[V21G2. Using this result, in

the asymptotic limit we obtain

JB~v!D~v,`!55
2Mgv

~V r
22v2!214g2v2 ~n51!

2Mgv3

~V r
22v2!214g2v6 ~n53!

.

In writing this equation, we used the fact that the distributi
JB(v)D(v,`) is highly peaked aroundv r for small g.

Similarly, for long times we may write the elements ofa
as

a11~ t !→ V2e2Gt

2p sin2 Vt E0

`

dvJB~v!coth
b\v

2
D~v,`!

a12~ t !5a21~ t !

→ VeGt

2p sinVt E0

`

dvJB~v!

3coth
b\v

2
~G2V cot~Vs!!D~v,`! ~A10!
a22~ t !→ 1

2p E
0

`

dvJB~v!coth
b\v

2

3$v21~G2V cot~Vs!!2%D~v,`!.

Using these results we can compute the asymptotic pro
ties of Q needed in the calculations presented in the text

APPENDIX B: EFFECTIVE SPECTRAL DENSITY

In this Appendix we derive the relation between the
fective spectral density for theCB system and the dynamica
susceptibility of subsystemC using an argument that by
passes the actual diagonalization procedure. A similar a
ment is given in Refs. 35 and 36. From the Hamiltoni
given in Eq.~1!, we can write the equation of motion forC
with a harmonic potential in the form

x~v!5xC~v!FC~v!, ~B1!

in the complex Fourier representation with a susceptibi
function xC(v). The force FC(v)52]VAC(v)/]x
52ls(v) is the external force from subsystemA acting on
C. On the other hand, the equation of motion for subsyst
A gives

2mAv2s~v!2lx~v!5FA~v!, ~B2!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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with FA(v)52]VA(s)/]s. Here we assumedHA has the
form pA

2/2mA1VA(s) for simplicity. Our argument does no
depend on the form ofHA as clear from the context. Com
bining with Eq.~B1!, we have

@2mAv22l2xC~v!#s~v!5FA~v!. ~B3!

Now, suppose we have already diagonalized last th
terms of Eq.~1! and replaced them withN11-harmonic os-
cillators

HC1VCB1HB→HB85 (
n50

N S pn8
2

2mn8
1

mn8vn8
2qn8

2

2 D . ~B4!

We write the interaction termVAC in terms of new coordi-
natesqn8

VAC→VAB8 5s (
n50

N

cn8qn8 . ~B5!

Assuming that the system described by the Hamiltonian
Eq. ~1! reaches thermal equilibrium in the asymptotic lim
we can replace the effect of the combined systemCB by the
equivalent thermal bathHB8 at the same temperature. A
though this diagonalization procedure is straightforward,
our purpose, we only need the form of the equation of m
tion for s expressed by the dissipation coefficientgCB(v)
for the effective bath Eq.~B4!

@2mAv22 imAvgCB~v!#s~v!5FA~v!. ~B6!

Comparing the above with Eq.~B3! we have

l2xC~v!5 imAvgCB~v!. ~B7!

Recall that the spectral density is related to the dissipa
coefficient by

JCB~v!5mAvgCB8 ~v!, ~B8!

for real v. From this the desired relation follows:

JCB~v!5l2xC9 ~v!. ~B9!
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