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The evolution of scroll waves in excitable media with spherical shell geometries is studied as a
function of shell thickness and outer radius. The motion of scroll wave filaments that are the locii
of phaseless points in the medium and organize the wave pattern is investigated. When the inner
radius is sufficiently large the filaments remain attached to both the inner and outer surfaces. The
minimum size of the sphere that supports spiral waves and the maximum number of spiral waves
that can be sustained on a sphere of given size are determined for both regular and random initial
distributions. When the inner radius is too small to support spiral waves the filaments detach from
the inner surface and form a curved filament connecting the two spiral tips in the surface. In certain
parameter domains the filament is an arc of a circle that shrinks with constant shape. For parameter
values close to the meandering border, the filament grows and collisions with the sphere walls lead

to turbulent filament dynamics. @001 American Institute of Physic§DOI: 10.1063/1.1406537

Geometry often plays a role in determining the nature of
pattern structure and dynamics. Our interest is in excit-
able systems where wave propagation may be strongly
influenced by geometrical features. Such systems are
common in nature and the propagation of electrochemi-
cal waves in the heart is an especially important example.
It is known that factors such as the topology, thickness,
and inhomogeniety of cardiac tissue can strongly influ-
ence wave propagation and give rise to fibrillation or flut-
ter. In this paper we do not consider such complex sys-
tems but instead examine the much simpler case of
excitable media with spherical shell geometries. For this
highly idealized case we are able to study in quantitative
detail the effects of geometry on the nature of the wave
propagation processes. The work provides insight into
some of the geometrical factors that determine wave dy-
namics which may be relevant for more complicated sys-
tems.

I. INTRODUCTION

nature of the dynamics depends on the geometry in a non-
trivial manner. The focus of this study is on the effects of
geometry on scroll wave dynamics.

One of our motivations for studying this problem is to
develop a theoretical basis for understanding the dynamics of
cardiac arrhythmias which are abnormal rhythms in the
heart. In normal hearts cardiac arrhythmias are rare, but in
diseased hearts cardiac arrhythmias can become more com-
mon. For example, if chambers of the heart become abnor-
mally large, they are susceptible to serious arrhythmias in
which waves are believed to circulate in a fashion that is
similar to the circulation of the BZ waves in a chemical
medium. Although such arrhythmias are most likely associ-
ated with changes both in the physiological properibss
translates into the associated nonlinear kinetics in reaction
diffusion models of cardiac propagatjoof the tissue as well
as the geometry of the tissue, abnormal heart geometries
confer significant risk for serious arrhythmidsor instance,
therapies that target specific anatomical regions of the heart
for radio-frequency ablation often owe their success to the
destruction of anatomical features that are necessary either

Spiral waves are one of the most commonly found patfor sustaining or initiating arrhythmia. Thus, it becomes im-

terns in chemical and biological excitable media. Spiral andnediately of interest to investigate the possible types of
scroll waves have been studied extensively in chemicallyvave organization and their dynamics as a function of the
reacting media such as the Belousov—Zhabotin&&) sys- geometry of the excitable medium in which waves propa-
tem in a variety of two- and three-dimensional geometries.gate. Real human hearts are enormously complex three-
In biological systems they play an important role in pro-dimensional structures. Although there have been investiga-
cesses like dictyostelium discoideum aggregation and movdions of the dynamics in these complex geometrical
ment, C&" wave propagation in xenopus oocytes and othedomains® in the current study we investigate propagation in
contexts> and electrochemical wave propagation in thean extremely simple geometry—a spherical shell. Even this
heart>* In many of these examples the geometry in whichproblem presents challenges and its complete solution is
the spiral wave dynamics takes place is complex and thé&cking.
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There have been theoretical studies of a pair of counterextend inwards forming two straight filaments connecting the
rotating spiral waves whose tips are located at opposite poldaner and outer surfaces of the spherical shell.
of a spherical surfac€® A class of asymmetric counter- Since the dynamics are locally periodic and the phase
rotating spiral waves on the surface of a sphere has beespace trajectory is a closed loop, it is possible to introduce a
studied using the eikonal approximatithNumerical solu- phase variableb(r,t)=arctan{(r,t)/u(r,t)) which param-
tions of the reaction—diffusion equations on spherical geometrizes the trajectory. A phase mapl associates to each
etries have been used to study the dynamics of a spiral waymint in a well-defined two-dimensional domalh a phase
pair!! More complicated, even chaotic, behavior was foundying on the unit circle® e S'. Suppose the domain is the
in numerical studies in inhomogeneous media with a spherisurface of a sphere. Consider any closed cu@re,D, not
cal geometry? Spiral wave patterns have also been observegassing through singularities of the phase map. The idex
in experiments on the BZ reaction on spherical bédds. of C is defined in the following way. A€ is traversed once
Our investigations of scroll waves in spherical shell ge-in a clockwise orientation, we compute
ometries are organized as follows: Section Il describes the
evolution of scroll wave pairs in the FitzHugh—Nagumo sys- 24| = % vVo-dl. (4
tem as a function of the thickness of the spherical shell for a c

fixed value of the outer radius of the surface. Section Il iSBy continuity, | must be an integer. The index of a singular
devoted to an investigation of the maximum number of spirabomt is defined by drawing a small circke around the sin-

waves that a thin spherical shell can support starting botyj5r point that contains no other singular points. The index
from regular and random initial conditions. The case of scroll;, topological charge of the singular point is equal to the

wave filament evolution in solid spheres is the topic of Sec;jex of A. The following results may be deduced from this

IV where parameter values leading both to filament shrink<gnstruction. The index of any closed cur@enot passing

age and turbulence are studied. The conclusions of the stud),,gh any singularities is equal to the sum of the indices of

are presented in Sec. V. the singular points contained @. The sum of the indices of
the singular points of a two-dimensional medium with peri-
Il. THE MODEL odic boundary conditions is invariatt Further, for a closed

oriented two-dimensional manifold, the sum of the indices of
all singular points is equal to zet8.If the medium is three
dimensional, the arguments apply to every two-dimensional
au ud surface bounded only bg.1’ These results place constraints

We consider the FitzHugh—Nagumo model for two sca-
lar fieldsu andv:

St g tuTut D,VZu, on the dynamics of the filaments discussed in the following
(1) sections. In particular, on the surface of the sphere, spirals
appear as pairs, one with indexl and the other with index
—1, so that the net index of each pair is 0. In other contexts,
singularities in phase maps have been called défeatsd

the index is sometimes called the topological chadfge.

Jv

E:E(U—CKU-FIB)-FDUVZU.

In this modele is the ratio of the time scales associated with

the two fields and, andD, are the constant diffusion co- In order to investigate the effect of geometry on the evo-

efficients. The parametersand s characterize the local dy- lution of the spiral scroll waves, various values of the outer

namics. In this paper we concentrate on the excitable regime . . )
bap g radius, R, and thicknessA=R,—R; were considered. We
and take B<e<1.

We solve Eq.(1) numerically using an algorithm that have chosen the initial conditions such that one tip forms

automatically adjusts the time step to achieve an efficient o ON€ of the poles and the other on the equator,¢e.,

simulation while controlling the error in the solutidhThe =0, A¢=/4, andA §=10. For small values of the thick-

. . ! . . ness the filaments remain attached to the inner and outer
reaction medium is a spherical shell whose outer and inner

radii we denote bR, andR; , respectively. Any point in the surfaces of the spherical shell for all times and the system

. . : l?ehaves essentially as a two-dimensional surface: the scroll
medium can be unambiguously defined by the usual set Qvave dynamics are similar to that of spiral waves on a
spherical coordinatespe[R;,R.], 0€[0,27r], and ¢ Y P

spherical surfact: An instantaneous picture of a scroll wave

- [O';j;]e. initial condition was taken to be a domain of exc:itedin a thi_n spherical shell is shown in Figea. In this case the
state _eXC|tat|on pattern on the outer surface matches that on the
' inner surface.

{p,0,0:Ri<p<R.,00<0<0y+ A0, o< <o+ A}, Keeping the outer radius fixed while increasing the
(2)  thickness, the scroll wave filaments remain attached to the

adjacent to a domain of the refractory state, inner and outer surfaces of the spherical shell until a critical

inner radiusR;(min), is reached at which point an important
{p,0,$:Ri=p=Re,l0— A=< 0<0p,po<p= ot A} - qualitative change is observed. FRy< R;(min), after some

transient time, the two filaments collide and merge to form a

This initial condition produces a pair of counter-rotating spi-single curved filament. In certain parameter ranges this

ral waves. Observing the outer surface of the shell, one seesngle filament shrinks and finally disappears. An instanta-

the formation of two spiral wave tips: one locatedéat 6, neous picture of such a scroll wave is shown in Fig)1

and ¢= ¢y and the other ab= 6, and p=pg+A¢. They  Thus, under these conditions the scroll wave pattern is desta-
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earlier in the context of spiral waves in cardiac tisUEor
the set of parameters chosen in our simulations the radius of
the smallest sphere that still supports spiralRjs= 10.

A rough estimate oR,,, can be obtained in the following
way: Monitoring the local dynamics at fixed spatial points on
the spherical surface, one may determine the rotation period
of the pattern,. The wave propagation velocity,,, was
FIG. 1. Scroll wave pair in a spherical shell. System parametersd.2, calculated from the times of excitation of two spatial points
B=0.75,€=02,D,=2, andD,=0. (a) Thin shell: R;>R(min), and(b)  separated by a known fixed distance. The wavelength is then
thick shell,R;<R;(min). In this figure(and in Figs. 3 and Jsisosurfaces 0 )\=7'Cp and R, can be estimated from the condition

<®d(r,t)<d* are shown, where the threshole* was chosen to display a4 .
the essential features of the scroll waves. In pdhgelthe curved filament ZWRm/)\Nl’ i.e., when the Wavelength is of the same order

connecting the two spiral tips on the outer surface of the spherical shell i©f magnitude as the perimeter.
shown as a thick line. Also in this panel, the small circular region in the Simulations show that~ 17 time units and that it varies

center corresponds to the inner surface of the spherical shell. onIy very inghtIy with R. in the interval investigated 12
e 1
<R,=<68. The wavelength ~ 38 space units and its depen-

bilized by a factor entirely dependent on the geometry of thél€Nce ONRe was also found to be very weak. For large

medium. It is the inability of the inner surface to accommo-SPNeres the rati®@=2m7R./\ is large and there is enough
date the scroll wave dynamics that is responsible for the,c.urface to sustain the spiral wave dynamics. However, as the
destabilization of the pattern radius decreases the denominator of this expression changes

For the set of parameters employed here, the value of th'g‘UCh_ more slowly than the numgrator aRtdecreases. In
critical radius was found to bR;(min)=9 and independent Y simulations we found that spiral waves cannot be sus-
of the value of the outer radius, as shown in Fig. 2, where thé@inéd forR<1.6, in reasonable agreement with the crude

stimate of the critical value given above. It may be possible

line marking the transition from persistent to transient spiral§ ; for th tical X
is parallel to the bisectrigthe line corresponding t&, =0). to construct more accurate estimates for the critical radius

Transient scroll waves of the form in Fig(kd are found in L_lsing properties of the spiral core like its size and the effec-
the region “T,” while persistent spirals of the form of Fig. tive range of core—core interactions.

1(a) are found in region “P.” We study thin spherical shells
in Sec. Il and thick spherical shells in Sec. IV.

B. Regular distribution of many spirals

IIl. THIN SPHERICAL SHELL We now consider the humber of spirals that can fit on a
_ . _ spherical surface with a given radiBs. To study this prob-
_ Inthis section we focus on the properties of scroll waveggm, e yse a particular class of initial conditions: a regular
in thin spherical shells wittR,—R;=2 where the scroll 5 5ngement op domains of excited and refractory regions
waves behave as spiral waves on the surface of a sphere wif 1,0 type considered in Eqf) and (3). The spiral tips are
radiusRe . initially located on opposite poles of the sphere and the ex-
A. Minimum spherical shell size cited and refractory regions positioned so that all spirals
propagate in the same direction. The angular separation be-
: . ; . tween two consecutive domains in this regular arrangement
which self-sustained spiral waves cannot exist. From pureI),'S 2m/p. We describe now what is observed for different
geometric considerations this critical siRg, can be related numbers of initial spiral pairsp, on a thin shell R,— R,
to the spiral wavelength. This problem has been considered =2) with R,=44. ' e

There is a critical size of the thin spherical shell below

For p<7 all tips recede from the poles and stabilize at
. . ——— an anglegg(p) with respect to a line passing through the
20| * | poles. The resulting pattern consists pfequivalent spiral
+ wave pairs that propagate on the spherical surface. A quali-
A tative change in behavior occurs fa=8. The resulting
g ] stable pattern is shown in Fig. 3. The system rapidly evolves
into a pattern of alternating long and short spiral pairs. The
20 A T spiral tips are distributed in a set of two different(8)
angles. This state is very sensitive: small deviations from the
10 H” 1 regular angular separation in the initial condition rapidly lead
to the annihilation of some of the pairs.
, , , , For the parameters considered here, the maximum num-
0 10 0, % 40 ber of spiral pairs that is stable under this configuration is
eight. For 8<p<13 the system evolves into a pattern with
FIG. 2. Regions of existence of persistent and transient spirals separated kyyven or fewer spiral pairs. For instance, a pattern with 12
the transition line denoted by crosses. The solid line is the Rpe0. Lnitial spiral pairs evolves to a pattern with eight pairs and
Permanent spirals exist in region P while transient spirals exist in region T.. . . .
Jgjally to a stable pattern with four spiral pairs. A pattern

The patterns observed in each of these regions correspond to those of Figs. - : - _
1(a) and 1b), respectively. with 13 initial spiral pairs quickly evolves to a completely

30
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FIG. 3. Phase isosurfaces at one time instant showing a regular distribution . .
of eight spirals in the thin spherical shell with alternating short and longF!G- 5. Instantaneous picture of the phase isosurfaces for a system where 20
spiral pairs. spiral pairs were randomly initiated.

quiescent state by annihilation of all spiral pairs. The angle As a result of annihilation and creation events the num-

¢<(p) versusp is shown in Fig. 4. ber of singularities in the system may vary with time but for
this parameter value any realization of the evolution from the
C. Random distribution of many spirals random initial condition evolves to a state with a fixed num-

N o o ] ~ ber of singularities. We definey(«) to be the average num-
In addition to regular distributions of initial spiral pairs, par of singularities which survive starting from an initial

we have considered random distributions where the initial'configuration withn(0)=2p singularities. A plot ofn()

condition domains used to generate spiral pairs are ra”domb’ersusns(O) is shown in Fig. 6.
distributed on the surface of the sphere. We again ®ke When the initial number of singularities is small,
=44 andA=2. The random initial condition was generated , ()~n_(0) since most of the initially formed spiral pairs
in the following way: the tips of the initial-condition do- gre Jikely to survive. Howevem(=) saturates for large
mains are taken to hawgand 6 values ur_uformly distributed ny(0)>40 due to the annihilation of closely spaced defect
on O<¢<m/2 and O<f<2m, respectively. After such a pajrs From the figure we may estimate this saturation value
domain is chosen, a rigid-body rotation of the domain was,, beng(sc)=n* ~17.55+ 3.22. Thus, the average maximum
: _ *~17. 22. :
performed with Euler angles chosen randomly. This procen mper of randomly distributed spiral pairs that can fit on a
dure was repeated for each of thenitial spiral pairs with  gphere withR,= 44 is about nine, which is very close to the
no attempt to avoid overlap of the initial-condition domains., 5j,e of eight obtained for a regular initial configuration.

During the evolution from the initial state, pairs of sin- From these results we may estimate the maximum aver-
gu!arltles ywth |n.d'ex+1 and —1 may annihilate or NeW age density of spiral waves on the sphere s
pairs of singularities may form as a result of breaking of

wave fronts. As a result a complicated pattern of spiral wave

pairs can form on the sphefsee Fig. 5. 30 , : :
60 1 20 f 1
. f11
50| | ny(e°) %
+
o) + " or 1
40 L i
n
sl il 0 . . .
+ 0 20 40 60 80
+ n.(0)
20 S S ’

P FIG. 6. Number of surviving singularitias() as a function of the initial
numberng(0) for a spherical shell withiR,=44 andR;=42. Each point is
FIG. 4. The angleps(p) versusp. The maximum number of stable spiral the average of 14 realizations and the vertical bars have length of twice the
pairs isp=8 for which there are two different angles. standard deviation. The solid is the bisectrix.
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=n§/41-rRi2, where we have usel; since the inner surface “shrinking,” (b) a component in the direction of the binor-
of the thin spherical shell is smaller. For the spherical shelmal unit vector,dR(t,s)/dtb, or “drifting,” and (c) a me-
with R;=42 we findp?} =7.9x 10 “. If the spiral density is andering motion.

constant for a fixed set of parameter values, one may then A simplification of the dynamics occurs whéh,=D,
determine the maximum average number of spiral waves orD. In this casec=D anda=b=0. A planar filament re-

a sphere of any size. For example, we predict that a sphericatains in the same plane at all times and the normal velocity
shell with R;=28 will support, on average, a maximum of is proportional to the diffusion coefficient. This law has been
eight (n% =47-rRi2p;c =7.8) spiral waves, while simulations confirmed experimentally in the context of spirals in
show thatn} =8.15+ 3.0. Belousov—Zhabotinsky reagefitin the more general case

One may use? even to estimate the size of a sphereof unequal diffusion coefficientd is not zero, and a planar
that will support a single spiral wave paRy,=(p%7) Y2 filament will not remain planar unless the filament is initially
Taking the above value gff we find R;,=14.2, which is  exactly a circle. Similarly, ifa is not zero an untwisted fila-
comparable to but somewhat larger than the valu®gf,  ment will develop twist as time proceeds unless it is exactly
=10 found in Sec. lllA. circular initially.??

We now describe the behavior of a scroll wave in a
system where the internal radius is below the critical value
R;(min) so that the inner surface of the spherical shell cannot
IV SCROLL WAVES IN A THICK SPHERICAL SHELL support a spiral pair. Using the initial conditions described
A. Scroll wave dynamics earlier, the two straight filaments connecting the the outer
hand inner surfaces detach from the inner surface after some
can be described by a parametric equati(t,s) interval and merge to form a_smgle cu_rved filament as in Fig.
= (x(t,5),y(t,5),2(t,S)) wheret is the time ands is the arc 1(b). The subsequent evolution of this flament depends on
length, O=s=<L (t) with L(t) the total length of the filament. (1€ values of the parameters of the model. For valugfof
An orthogonal coordinate system can be attached to eacWh'Ch the amplitude of the meandering is small, the filament

point of the curve with tangen(s), normaln(s), and binor- rapidly attains the shape of an arc circle with radius of cur-
mal b(s) unit vectors defined by, ' vaturep(t) and shrinks until it disappears. For values®f

close to the meandering transition, where the amplitude of
dR dt/ds the meandering is large, the filament enters a turbulent re-
=gs’ Ne)= [dt/ds]’ b(s)=t(s)Xn(s). (5  gime: this case is studied in detail in Sec. IVE.
o _ - In the calculations reported in the remainder of this sec-
A full description of a scroll wave requires a specifica- tion the internal radius was set to zero and we consider a
tion of the local phase or “twist.?! This is accomplished in  ggjig sphere witiR,=R. Similar results obtain provideg
the following manner. In the plane normal to the fiIament<Ri(min), well into the transient region of Fig. 2. We con-
(spanned byn and b), the scroll wave appears as a two- gjger nitial conditions that generate spiral pairs whose tips
dimens_ional spiral rotating around the point wherg the fila e 10cated on opposite poles of the sphere; i.e., initially the
ment pierces the plane. The local phase of the spiral can bfament is a straight line passing through the center of the
defined as the angle between some unit vedtorotating  gphere. We choose the Cartesian axes so that initially the

rigidly with the spiral and some local reference direction.fijament runs along the axis and the center of the sphere is
Choosing V=ncos¢+bsing, where ¢ is the angleV  ihe origin of the Cartesian coordinate system.
makes with the normalh), we may write the local twist rate

as

The filament of the scroll wave is a space curve whic

t(s)

" B. Meandering

dv d
w(s)= as WXV= 7(s)+ ds’ ©) We have studied the meandering of the filament for vari-
) ) ous values ofB. There have been many investigations of
where(s) is the torS|qn,r(s)=|db/ds|. , meandering in two-dimensional mediaee, for instance,
Theoretical investigations of the dynamics of three-pet 1 and articles therairand explicit calculations of the

dimensional scroll waves with a filament of arbitrary Shapemeandering Be-phase diagram” for the FitzHugh—Nagumo
were carried out by Keen@rwho derived its equation of

) ] - ) 1 I system have been carried ditdere we simply focus on the
motion. For an untwisted filament in a plane his equationg, st re of the meandering of the filament in our three-

reduce to dimensional solid sphere geometry for the selected values of
do drR dRrR B employed in our study. . . . .
T T b=bx, gt "=ck (7) Figure 7 shows the trajectories of the intersection of the

filament with thexy plane,z=0 for three values of3 and
where k=|dt/dg| is the curvature and the coefficieras b, €=0.2 in a solid sphere with radil®=90. For3=0.75, the
andc can be determined from a knowledge of the eigenvaluemplitude of the meandering motion is about nine space
problem corresponding to the linearized reaction—diffusiorunits which is small compared to the sphere dimensions. The
equation. In general, at any moment of time the motion ofmeander amplitude increases@approaches the edge of the
the filament has three componenta) a component in the meandering region in th8e-phase diagram. The largest me-
direction of the normal unit vectordR(t,s)/dtn, or  ander amplitude shown in Fig. 7 corresponds to a value of
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FIG. 7. Trajectories of the intersection of the filament with the plan®
for various values of3. (a) B=0.75, (b) B=0.90, and(c) 8=1.0. The
straight line has length 10 and is shown as reference.

B=1.0, very close to the meander border. With further
change ofB three borders are crossed in succession in the
following order: the meander border, the rotor border and
finally the propagation border, as described by Winffee.
Although no attempt has been made to locate precisely these
points, it was verified that foB=1.05 the system is outside
the propagation region.
When the meander amplitude is small, as B+ 0.75 r P
(see Fig. 7, the effect of meander on the overall motion of \
the filament is not important; it simply introduces noticeable
dispersion about the mean filament position. For phislue R S p
we have found that all segments of the filament move in z
phase so that in this regime the filament meanders as a nearly
rigid body. In the next section we discuss the shrinkage and 4)\
disappearance of the filament. We note that the meandering
period is about 30 time units which is small compared to theriG. 8. (a) Fit of the filament(dense set of pointswith an auxiliary circle
total lifetime of the filament of approximately 7200 time (short dashed lineof radiusp(t). The left circle(thick black ling is a cut
units. These observations suggest that meandering has littlegrough the physical sphere with radilts=90 and center a® by a plane

sy e . _containing the filament(b) Detail showing the intersection of the filament
effect on the results for shrinking and drifting in these pa with the sphere surface, poift
rameter values.

C

C. Shrinking intersection poinP in Fig. 8 of the filament with the surface

Starting with an initially straight filament passing where various simple trigonometric relations apply. Figure
through the poles of the sphere, f@=0.75, after some 8(b) shows the geometry at some particular tié the
transient time, the filament adopts the shape of an arc of plane of the filament. The thick black line represents the
circle and maintains this shape as it shrinks. Since the filaphysical sphere of radiuR and the dotted line is a sketch of
ment tangent vectdrat the surface of the sphere is normal to the filament at that particular time. Letdenote the distance
the sphere surface, one can readily calculate the radius of the tip of the filament to the axis. It is easy to see that
curvature of the filament at any time. We have done this for R Rz
two different sphere radiiR=90 and 45. Figure @ shows p=—RZ—r?=—. (8)
a cross section of the physical sphere taken in the plane in r r
which the filament lies, as well as an auxiliary circle that fits Applying Egs.(7), point P moves in the direction of the
the filament and from which we may extract the radius ofnormaln (tangent to the surfagevith speed
curvature. The filament is taken to lie in thgzs plane. Since
initially the filament lies on the sphere axis and remains v =Ci= E_ (9)
parallel to this axis at all times, the plane of the filament is P
always perpendicular to they plane and theg andz axes
always coincide.

We may use Eqs(7) to derive equations for the time by = SiNG= UnZ (10
evolution of the filament. The calculation is easier for the neeon R’

The horizontal component of this velocity is
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FIG. 9. Time evolution of the radius of curvature of the filament. Pluses are

values from the simulation in a sphere wk=90 while crosses are fdR
=45. The solid lines are calculated using Ety) with c=6.5.

where the anglep is defined in Fig. 8. Substitution of Egs.

(9) and (8) yields a differential equation far,

dr ¢
Un,r:azﬁr: (13)
which can be readily solved to give
r(t)=r(0)e'R’, (12)

This equation can be expressed in terms of the lifetipisy
noticing thatr (t;) =R. Thus,

r(t)=Ref(- /R, (13)
Finally, substituting into Eq(8) we obtain
p(t)= R(eZC(tf—t)/R2_1)1/2l (14)

Scroll waves 763

FIG. 11. Projection of the system on tlxg plane. The thick line is the
perimeter of the physical sphere. Pluses indicate the filament at three differ-
ent times, from bottom to topg~=350,1200,1750.

D. Drifting

Lateral drifting of scroll rings has been observed when
the diffusion coefficients are uneqé@f®as is the case in this
work. However, the presence of a spherical surface intro-
duces an important qualitative difference. Because of the cur-
vature of the surface at which both tips of the filament are
attached, the binormal component of the filament results in a
slow rotation of the filament plane around the axis of sym-
metry of the sphere. The situation is illustrated in Fig. 11
where the projection of the filament on thg plane is shown
for three different times. The plane of this figure is perpen-
dicular to that of Fig. 8.

The rotation of the filament plane can be described by an

From this equation, other features, such as the length of tn@ngle 6 with respect to an arbitrary axis. As shown in Fig.

filament,L, can be calculated. We have

L(t)=2R(e2( /R~ 1)12arcsines /R (15)

The results are shown in Figs. 9 and 10, where it can be se

8(b), the intersection of the filament with the sphere is lo-
cated at poinP at a distance from thez axis. The analysis
is similar to that for the shrinkage of the filament, but in this

&ase both proportionality constanbsandc in Eq. (7), enter

that the agreement with the numerical simulation is excelthe equation of motion. From Figs. 8 and 11 the component

lent. Equations(14) and (15) should be used only after a

of the velocity vector in the direction of the axis is

transient time when the filament adopts the shape of an arc of dx

a circle.
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FIG. 10. Time evolution of the length of the filament. Pluses are values from

Uy=v,C0SOSINp—v,Sin6

cVR%—r2

b
=———C0Sf— —siné. (16)
pr p

a:

Using dx/dt=(dr/dt)cos#—r sinf(dé/dt) and Eg.(8), we
obtain a differential equation fod,

dé b b

dt RVR2—r2 B Rz\/l_ezc(t—tf)/RZ' (17)
This equation can be integrated to obtain
b b 1+\1-e U/
6(t)=6(0)+ QHE"‘IH\/W' (18)

Results from this equation are compared to those from

the simulation in a sphere witR=90 and the solid line is the length from the& numerical simulation in Fig. 12 and the agreement is very

Eq. (15) with c=6.5.

good. We have found that the drifting velocity is small com-
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FIG. 12. Time evolution of the angle of the filament plane with respect to an
arbitrary axis. Pluses are results from the simulation and the solid line is the
solution of EQ.(18) with b=1.45.
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FIG. 14. Time evolution of the total length of the filament segments in the
turbulent regime.

pared to the shrinking velocity. With the choice of param-

eters made here/b~4.5. Furthermore, Eq18) shows that length attains a constant average value about which there are
at early times the rotation rate is dominated by the lineatarge fluctuations. Major filament annihilation events occur
term bt/R? which is small for large spheres. Indeed, in ourwhen the newly formed filament segments are so small that
case the plane of the filament rotates only about 24° beforthey disappear soon after their formation. In addition to
vanishing. shrinkage of small filament segments, in this turbulent re-
gime we have observed occasionally the formation of ex-
panding scroll rings. Expanding scroll rings near the mean-

For values of3 close to the meander border, the filamentdering transition have been observed eaffiéf. Equations
neither shrinks nor remains planar as described in the pr&7) support expanding scroll rings if the coefficidnis nega-
ceding section but instead its dynamics becomes turbulentive, which may occur if the diffusion coefficients are not
The elongation and bending of the initially straight filamentequal®?
is shown in Fig 13. In this parameter regime, the filament  Since turbulent filament dynamics occur throughout the
continues to stretch and bend until a segment of the filamergpherical volume, if the radius of the sphere is large enough
collides with the surface of the sphere. At this point the fila-the surface to volume ratio will be small and the character of
ment breaks into new shorter filaments whose dynamics, ithe filament turbulence is expected to be similar for different
turn, follow the same pattern. Through this process manyeometries. However, for smaller spheres the dynamics of
filament segments with different lengths are created. If thdilaments which are connected to the surface will play a sig-
resulting filament segments are too small they shrink andhificant role and we expect that the turbulent evolution will
disappear. depend on the geometry. To fully investigate this problem

Figure 14 shows the time evolution of the total length of studies of filament turbulence as a function of sphere size
the filament segments. After a long transient period, themust be carried out and compared with those for different
geometries.

Filament instabilities have been studied in models of ex-
citable medi&® and in models of anisotropic cardiac tissde.
Filament turbulence has also been observed in the complex
9 Ginzberg—Landau equatidf.

E. Turbulent regime

V. DISCUSSION

For thin spherical shells the vortex filaments remain at-
tached to the inner and outer surfaces. In this quasi-two-
dimensional case the mean number of spiral pairs that a
sphere with given radius can support may be determined. For
thick spherical shells the filaments may detach from the
smaller inner surface and the resulting dynamics may result
either in simple shrinkage or in turbulent filament dynamics,
depending on the system parameters.

Part of the motivation for the present study stems from
the application of such scroll wave dynamics to the physiol-
FIG. 13. Instantaneous configuration of the filament in the region close t?dYy Of cardiac arrhythmias. Although a real heart is inhomo-
the meandering transitiofg=1.0. geneous and has a very complicated geometry and local dy-

90 3o ) Y
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