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The dynamics of spatiotemporal patterns in oscillatory reaction-diffusion systems subject to
periodic forcing with a spatially random forcing amplitude field are investigated. Quenched disorder
is studied using the resonantly forced complex Ginzburg—Landau equation in the 3:1 resonance
regime. Front roughening and spontaneous nucleation of target patterns are observed and

characterized. Time dependent spatially varying

forcing fields are studied in the 3:1 forced

FitzHugh—Nagumo system. The periodic variation of the spatially random forcing amplitude breaks
the symmetry among the three quasi-homogeneous states of the system, making the three types of
fronts separating phases inequivalent. The resulting inequality in the front velocities leads to the
formation of “compound fronts” with velocities lying between those of the individual component
fronts, and “pulses” which are analogous structures arising from the combination of three fronts.
Spiral wave dynamics is studied in systems with compound front20@0 American Institute of

Physics[S1054-150000)00703-5

Spatially inhomogeneous reaction-diffusion equations
may be used to model pattern formation and wave propa-
gation in a variety of physical systems. We consider situ-
ations where the spatial inhomogeneity is externally im-
posed; for example, by inhomogeneous illumination of a
light-sensitive chemical reaction. The focus of the inves-
tigation is on resonantly forced oscillatory systems where
the resonant forcing is applied to the system in a spatially
inhomogeneous fashion. Earlier experimental investiga-
tions of the light-sensitive BelousowvZhabotinsky reac-
tion under spatially homogeneous resonant forcing by an
external light source revealed phase locked spatial pat-
terns. We study wave propagation, pattern formation
and spiral wave dynamics in oscillatory reaction-
diffusion systems where the applied light field has a spa-
tially random intensity pattern but varies periodically in
time. The phenomena we observe include roughening of
fronts separating phase locked domains, nucleation of
phase locked target patterns and compound fronts with
distinct properties that give rise to unusual spiral wave
dynamics. It should be possible to verify the phenomena
described here by suitably designed experiments on light-
sensitive reacting systems.

I. INTRODUCTION

distributed systems is the ruthenium-catalyzed Belousov—
Zhabotinsky(BZ) reaction? This reaction is light-sensitive
and thus the kinetics may be modulated by projecting a pat-
tern of illumination of varying intensity onto the reaction
medium.

Recent studies have made use of the light-sensitive BZ
system to investigate wavefront propagation in systems with
spatially disordered excitability. Kiar et al. studied stochas-
tic resonance in a system with a periodically regenerated
noise patterri. Sendira-Nadalet al. studied percolation and
roughening of wavefronts in systems with quenched spatially
disordered excitability;® excitable spiral waves in the pres-
ence of time-varying disorder were also studiethe dy-
namics of reaction-diffusion waves in inhomogeneous excit-
able media is thought to be relevant to cardiac fibrillation
since electrical waves may be disrupted by irregularities in
the heart muscle mediufmNoise is thought to play a role in
initiation and propagation of waves in neural tis§ugarlier
investigations into spatially inhomogeneous excitable sys-
tems include a study of a BZ medium containing catalyst-
coated resin beads which served as nucleation sites for
wavefronts’ numerical simulations of a spatially-distributed
network of coupled excitable elements which exhibited spon-
taneous wave initiation, stochastic resonance and fragmenta-
tion of wavefronts:®!! and an excitable cellular automaton
in which the refractory times of the elements were assigned

Patterns in reaction-diffusion systems where the kineticgandomly*? The effect of stochastic spatial inhomogeneities
are spatiotemporally modulated can display a variety of phepn other types of reaction-diffusion systems has been much

nomena that are not found in homogeneous systeltany

reaction-diffusion processes of practical interest take place in

less studied.
Periodically forced reaction-diffusion systems have also

inhomogeneous media or may be coupled to external proseen investigated. Petraat al. and Lin et al. subjected an
cesses that affect the kinetics in a nonuniform manner. Ayscillatory version of the light-sensitive BZ reaction to peri-
convenient experimental system for studying the effect ofgic spatially uniform illuminatiort>~2% As the ratio of the

spatiotemporal modulations on pattern dynamics in Spatia”Yorcing frequency to the natural frequency neared various
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resonances patterns were observed. In subsequent numerical
studies the observed transition between labyrinthine and non-
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labyrinthine two-phased patterns at the 2:1 resonance waagith n stable states, defined by the phase of the oscillations
reproduced in the periodically forced Brusseldfbrt® Bel-  rather than by the system’s location in phase space.
monteet al. observed a transition from a stable spiral to tur-  The general form of an oscillatory reaction-diffusion
bulence in a BZ reaction when resonant forcing wassystem with spatially inhomogeneous periodic forcing is
applied!’ Resonantly forced oscillatory systems have been

investigated by numerical simulation as well as theoretically M=R(c(r t):a,b(r,t))+DV2c(r,t) ®)

by Coullet and Emilssotf!® Coullet et al,?® Elphick at e o

et al,??2and Chateet al>® These systems exhibit a number

of interesting pattern-forming phenomena. _ parameters responsible for the periodic forcg,t) now
Given the wide range of phenomena arising from Spat'aﬁepend on space as well as time and are of the tofrt)

disorder in excitable systems and resonant forcing of oscil— 7(r,)®(wit). The random variabley(r,t) accounts for

latory systems, one might expect that oscillatory systemge fact that the forcing amplitude may vary stochastically in
with spatially inhomogeneous forcing have the potential tospace and time.

exhibit interesting new features. The research presented here |, 5 spatially distributed system with spatially uniform
explores qual?tatively the phenomenology of suc;h ?yStem%rcing, b(r,t)=b(t)= 7P (wit), the diffusive coupling
and characterizes some of the phenomena quantitatively. We, the stability of then limit cycles to phase perturbations
restrict the focus of our study to systems in two spatial diqgaqs o the formation of domains of the different phase
mensions. locked states. At the domain walls separating the different
phase locked states the phase of the oscillations shifts by an
amount determined by the character of the phase locking. In
1. PERIODICALLY FORCED OSCILLATORY SYSTEMS two dimensionsp-armed spiral waves may form, given suit-
able initial conditions, if the domain walls have nonzero ve-
Consider an externally forced oscillatory reacting systemocity. The core of the spiral wave is a phase singularity at

whereD is a diagonal matrix of diffusion coefficients. The

described by the ordinary differential equation, which all n states meet and around which the phase advances
de(t) by 2ms. The rotation of these phase locked spirals is a
TR R(c(t);a,b(t)), (1) result of the propagation of the phase dislocations compris-

ing the domain walls; thus, they rotate much more slowly

wherec(t) is a vector containing the concentrations of re-than spiral waves in the unforced system, where the spiral
agents. The reaction rates are described by the nonlinear vewtation frequency is equal to the frequency of the local os-
tor functionR which depends on a collection of parameterscillations.
a, such as rate constants and constant concentrations of pool In this article we investigate systems subjected to peri-
chemicals, as well as parametdr&) which comprise the odic forcing with a stochastic component, either quenched
periodic forcing and are of the form(t) = 5,® (wst), with  disorder,#(r,t)=5(r), where the periodically applied per-
10 the constant forcing amplitude adea 2m-periodic func-  turbation has a random distribution in space which does not
tion giving the form of the forcing. As mentioned above, change in the course of the evolution, and systems with dy-
such forcing may be implemented by periodic illumination namic disorderg(r,t), where the spatial distribution of the
of the system if the reaction is light-sensitive. perturbation may change with time. The reduction of a reso-

If b(t)=0 we suppose the unforced reacting system hasantly forced oscillatory system to a complex Ginzburg—
a stable limit cyclecy(t) with periodTo=2m/wq. In such a  Landau (CGL) equation by Gambaud® and by Elphick
system there exists an infinite number of limit cycle solu-et al?® may be simply extended to systems with quenched
tions, cy(t) = co(t+ At) which differ from cy(t) only by an  disorder and consequently we have employed the CGL equa-
arbitrary phase shift 2 At/T,. Limit cycle attractors are tions in our studies of this case. For time-varying disorder,
neutrally stable to phase perturbations corresponding tone must reconsider the derivation of the appropriate CGL
translations along the orbit. A system following a limit cycle equation because of the presence of another time scale asso-
will, in general, have undergone a phase shift when it returnsiated with the noise process; hence, we have chosen instead
to the limit cycle after experiencing a small perturbation. to study the FitzHugh—Nagumo system as a typical example

These characteristics of the unforced oscillator may bef an oscillatory reaction-diffusion system.
contrasted with those of the forced oscillatdif w¢/w, is In such cases a new length,, related to the spatial
sufficiently close to an irreducible ratio of integerém, and  correlation range of the noise distribution enters the problem.
if the forcing amplitude is sufficiently large, then the oscil- The behavior of the system will depend on the magnitude of
lations may become entrained to the external forcing and ththis length relative to that of other important lengths in the
system possess@sstable limit cycle solutions of periodl  system; such as the diffusion lendthand the typical width
=nT;=2n7/w=mT, which are mapped into each other of a domain wall or propagating frontvy. If |4 is suffi-
under phase shifts—t+kT/n for k=0,1,2,.... A system ciently small compared to both of these lengths the system
following one of these limit cycles will return to it with no will appear effectively homogeneous and behave as if it were
phase shift after a small perturbation. This discrete, finitesubject to periodic forcing with amplitude determined by the
collection of limit cycles may be contrasted with the infinite spatial averagey of 5(r). If |5 is very large compared to
and continuous collection of limit cycles in the unforced these lengths then the system dynamics may be simply rep-
case. The entrained resonantly forced oscillator is a systemesented in terms of the dynamics of a collection of uni-
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formly forced patches. The interesting regime is when these ' ! '
length scales are comparable and our studies focus on these
cases. Lzt i
Ill. FORCED CGL WITH QUENCHED DISORDER R, 987 e
In the vicinity of the Hopf bifurcation point a periodi-
cally forced oscillatory reaction-diffusion system may be re- 0.4 1 ]
duced to its normal form, the forced complex Ginzburg—
Landau equation(FCGL).?>?® This reduction is valid 0 l . l l
provided the system is near anm resonance, wher@ 0 0.5 ]
=1,2,3,4. Such a reduction may also be carried out for the ¥
case of quenched disordey(r,t)=#(r), and the FCGL
takes the form FIG. 1. The modulusR,, of the stable(solid line) and unstablé¢dashed
line) fixed points of Eq(4) as a function of forcing intensity. The param-
AA(r,t) ) ) 5 — 1 eter values ar@=3, | 8|=0.6, u=1, »=0. The three arrows indicate the
g (ntiv)A—(1+ipB)|AlA+ y(r)A valuesy=0.0, 0.6 and 1.0, which were used in simulations described in Sec.
Ill. The vertical dotted line is located at., the critical value for phase
+(1+ia)V?A, (3  locking.

where y(r) accounts for the spatial variation of the forcing

amphtude. The complex amphtudA(r,t)_ describes .SIO\.N was partitioned into square cells and the valueyéf) in
modulations in the frequency and amplitude of oscnlauonse‘,jmh cell was chosen to be eithgy, with probability p, or
of the original system in Poincaganes taken at the forcing ' P yp.

—— ) , v> with probability g=1—p. More precisely, if the noise
period; A denotes the complex conjugate AfEquation(3)  ¢e|is have dimensiosx s and the system’s dimensions are

With v(r)=vg, a con_stan'_[, has been u;ed as a model_ for agy« L=sNyXsN, , then
oscillatory reaction-diffusion system with spatially uniform N
resonant forcing®23 R
Consider the normal form of a single resonantly forced y(r)_i; ,Z‘l &ij0i;(r), (6)
oscillator obtained by omitting the diffusion terms and spa-
tial dependence iny(r), where
dA(t) . y1, Wwith probability p, .
— ; _ H 2 n—1 = . .
—gp = (wHiv)A (1+iB)|A]PA+ yA" L, (4) &ij v,. with probability q=1—p, (7)
For Eq.(4) a critical y, exists such that foy< y, the equa- and
tion exhibits a stable limit cycle solution, while for= vy, 0,(N=0;(xy)
there aren stable fixed points. These correspond to the " e
stable limit cycle solutions of the original system and can be =0(x—(i—1)s)8(is—x)08(y—(j—1)s)0(js—VY),
mapped into each other by phase shits>Ae?™". More ®)

specifically, the fixed points can be found from the stationary

solutions of Eq(4) by expressing the complex amplitude in Where ¢ is the Heaviside function andj) are the discrete
the form A=Réd?¢. The modulusR,, of the nonzero fixed coordinates of a noise cell. For quenched disorder this distri-

points of Eq.(4) depends ony according to bution is fixed for all time. The cell size, the valuesygfand
v, and the seeding probabilitigs and g are the relevant
2_(Rg_ﬂ)2+(v—ﬁR3)2 g ~ Parameters to consider. The probabiliieandq were typi-
Y= R3("~2) : ®) cally, but not necessarily, independent of position; excep-

F | f and v E . tiple R tions will be noted as they occur. Thig(r) field has the
or some values oh and y £q. (5) permits multiple 0  mean valuey=pvy;+qy,, and spatial autocorrelation
values, some of which may correspond to unstable fixed

_(oy(r" +1") 8y(r")

points. Figure 1 shows & vs R, curve forn=3; the upper ,
branch corresponds to the stable fixed points while the Iowe(l:(r )= (Sy(r")sy(r"))
branch describes the nonzero unstable fixed points. The pa-

rameter values used to construct this figure arel, =0, (1_ M) ( 1— M) if |x'|<s and |y’'|<s
|B|=0.6. Note the presence of a critical forcing amplitude = S ’

v.~0.58 below which phase locking does not occur. Ror 0, otherwise,

=3, Eq. (5 gives y.=[2((1+B%)(u*+v?)*~2(u

+Br) ]2 ©)

As an example of quenched disorder in resonantly forceadvhere y(r)=y(r)—7y, r'=(x’,y’) and the averag¢) is
oscillatory systems the(r) fields were taken to be dichoto- taken over allr”.
mous random variables. Two values for the forcing ampli-  The studies described in this paper investigate patterns at
tude, y; and y,, were chosen. The two-dimensional systemthe 3:1 resonance. For such systems there are two interesting
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FIG. 2. Interfaces of the 3:1 inhomogeneously forced CGL from a single 0 . . .
realization in a moving frame, at three well separated times. The phase 0 005 01 015 02
the complex amplitudéA=Ré? is shown, using a gray-scale in whigh a1

=—7=+ is white and¢$=0 is black. The system sizexW is 800

x100. The noise grain size sxs=W/25XW/25. Other parameters are FIG. 3. Early time(w(t)) vs t curves for initially planar fronts in the 3:1

given in the text. Boundary conditions are periodic alongnd no-flux  inhomogenously forced CGL rescaled according to the KPZ scaling expo-

alongy. nents. Curves are shown for system sizes100 (dotted ling, 200 (short
dashep 400 (long dashesand 800(solid line). Each curve results from the
average over 80 realizations of the stochastic dynamics.

cases for resonant forcing with a dichotomoy(s) field. In

the first case bothy; and y, lie above the phase locking

threshold,y., so that all regions of the medium are entrainedtimes; the average width of a saturated framf, scales with

to the forcing. In the second case only oneygfor vy, lies ; @ N n_

above the threshold and the medium consists of a mixture Osfyst\?vn; Sr:;?,ea?l,serifli_ea Vtvhhf;(f aKplz/ZSigﬁfg ;:gberties for a

entrained and nonentrained regions. In the simulations dg=cGL system with parameter values+1, 8=0.6, u+iv

scribed below, including those in Sec. IV, numerical integra-zl) and the forcing field parameters;(=0.60, y,=1, p

tion was performed using exp_licit forward differencing and a—0.50) for which the critical forcing amplitude ig.~0.58

second-order discrete Laplacian. (cf. Fig. 1). The front properties were measured in a frame
moving with the front. The system dimensions wené
=100 andL =100, 200, 400 and 800. The noise grain size

A. All sites phase locked; front roughening wassx s=W/25X W/25. The boundary conditions were pe-

When bothy, andy, lie above the phase locking thresh- fiodic along the boundaries perpendicular to the front, and

old v, then all regions of the medium are tristable. The sysN0-flux along the boundaries perpendicular to the direction

tem possesses three guasi-homogeneous stationary state$frfront motion.

which the complex amplitude fluctuates about an average The saturated front widthvg was found to scale with

value. Domain walls separating these phase locked states aggstem size aws~LY2 Plotting (w(t))/L® againstt/L*'#

in general nonstationary in the 3:1 resonant regime since atiollapses théw(t)) versust data for four different onto a

three phases are inequivalent, although their velocity magingle curve when the KPZ valués= 1/2,,2;:1/3 are used,

pass through zero as parameters are tuned. Initially planars shown in Fig. 3. Heré) denotes an average over realiza-

fronts in these inhomogeneously forced systems roughen a@ns.

they propagate. Figure 2 shows an example of a rough inter-  The width temporal autocorrelation function,

face separating two of the three phases. , ,

Front roughening is also observedyfi<y.<7y, (i.e., Cu(t)= {ow(t+1") dw(t )>,
when the medium consists of a mixture of entrained and (ow(t")ow(t"))

nonentrained regionsut is difficult to study because spon- as calculated for fronts in the saturated regime at four sys-
taneously nucleated patterns interfere with propagatingem sizesL =100, 200, 400 and 800. Hele) represents a
fronts. This case will be examined below. . time average within the saturated regime. Temporal correla-
The propagating fronts in this system experience locations were found to decay to zero, with the rate of decay
VeIOCity fluctuations arising from Spatial variations in the decreasing as System size incredm' 4) This is expected’
y(r) field. Diffusion will tend to eliminate front roughness since the larger system size allows larger fluctuations in the
generated by random fluctuations in thér) field; conse-  front profile which require longer times to form and decay.
quently, the front d_ynalecs should obey the Kardar—Parisi-  To investigate the presence of spatial correlations in
Zhang(KPZ) equatiort, saturated front profiles, the height spatial autocorrelation
sh(x,t) _ _ °h function,

Dt = | —
- UtP e z(ax

(11)

2
+(x,t), (10

Ch(x)= (5h(x+x’)5h(x’))>' 12

where h(x,t) is the front positiony is the average front (oh(x")sh(x"))
velocity, D and \ are phenomenological coefficients and as calculated for the various system sizes. In @) the
{(x,1) is Gaussian white noise with zero mean and correlainner (.) refers to averaging over' in a single front profile
tion (£(x",t"){(X",t"))=2I"6(x" —x") 8(t' —t"). In such @  and the outex-) refers to averaging over different saturated
circumstance the interface width(t)=(L"Zi(h(xi,t)  front profiles. Results folL=100 andL=800 are shown
—h(t))?°Ax)Y? increases with time asv(t)~t? for short  (Fig. 5).
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FIG. 4. The width temporal autocorrelation function for saturated interfaces ‘ : ‘

in the 3:1 inhomogenously forced CGL for system sites100 (dotted
line), 200 (short dashes 400 (long dashesand 800(solid line).
In the case of a front free of spatial structure, i.e., a
periodic random walk that returns to its initial positionNh
steps, the height spatial autocorrelation function is of the '
form CE(X)=1—(2D/L)X(L—X), where D is a phenom-
enological diffusion coefficierf® The deviations of the fit of
the numerically determine@,,(x) from a quadratic function
indicate the existence of spatial correlations.
B. A medium with phase locked and oscillatory sites;

spontaneous nucleation of target patterns

Wheny;<vy. andy,>vy,, the system consists of a mix-

ture of tristable regions and oscillatory regions. If the density

of oscillatory sitesp, is low the diffusive coupling maintains

the value ofA within the oscillatory regions near that in the

adjacent tristable regions. The medium behaves essentially

like a tristable medium and supports three quasihomoge- .

neous stable stationary states, traveling kink-like domain
walls and three-armed spiral waves. The oscillatory sites pro-
vide a spatial inhomogeneity that leads to roughening of do-
main walls and to fluctuations of the concentrations within

domains.

With increasingp, target patterns are observéfgig. 6).
They consist of concentric, approximately circular domainrFic. 6. Target patterns generated in the 3:1 forced CGL from spatially
walls moving outward from a central regio(a “pace- homogeneous initial conditions. The phagef the complex amplitudé\
maker”) where they are initiated periodically. Within each =Re” is shown, using a gray-scale in whigh= — 7=+ is white and

. . . . =0 is black. Forcing field parameters arg, &0, y,=1, p=0.30). Other
ring of the target the concentration is quasi-nomogeneous, . ier areu+iv=1. a~1 5=0.6), for whichy,~0.58. The system

size is LXL=200x200, the noise grain size isXs=L/200xL/200.
Boundary conditions are periodic.

0.5 Note that all images in Fig. 6 are from realizations with
R i identical parameters, however, a range of wavelengths is ob-
CL) ot ] served.

The probability of a realization possessing a target pat-
tern was measured as a functionpénd system sizéFig.
7). It was found to approach zero for lopgy one for highp,
and to increase rapidly around some critigal. Figure 7
0 02 04 06 08 1 shows results for the parameter valugsHiv=1, a=1, B8
/L = —0.6) and forcing field parameters{=0, y,=1); quali-

FIG. 5. The heiaht spatial aut \ation functions f wrated front _tatively similar results were also obtained far tiv=1, «

. O. € neignt spatial autocorrelation tunctions t1or saturate ronts |n: — _ — P _

systems of sizé. =100 (solid line) andL =800 (long dashes The best fit 1, B 0.6, 71 0, V2 1) and (u+ v ]_" a=2, B
quadratic functions are shown for= 100 (dotted ling andL=800 (short = ___0-82’ ¥1=0, y,=1). For larger 5y5te_m sizes, the p_rob-
dashes ability of occurrence of a target pattern is higher, consistent
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. ; . L 0.4 | 4
0.1 0.15 02 025 03 035 i
p 0.3 : .
) T . 0 5 10 15
FIG. 7. The fraction of realizations in which one or more pacemakers oc-
curred as a function af, the density of oscillatory = y,=0) sites. Re- R

sults from numerical simulations with noise grain sges=0.5xX0.5 are

shown for system sizes 5060 (A) and 100< 100(¥). The curves predicted  FIG. 8. The solid curve showg,(R); the long-dashed curve g, . Aver-

by the model described in the tekEqgs. (16)—(20)] with the parameter —ages are taken over 20 realizations. The short-dashed curve shoges-

values y* =0.65 and\/,=180 are shown for these same system sizes asculated around points chosen randomly from the realizations. A horizontal

solid and dashed lines, respectively. line indicatesy=0.70. The values/* =0.65, R=23.8, calculated using the
pacemaker model, are also shown.

with a fixed probability per unit area of the medium nucle-

ating a target pattern. . Consider the following simple model of pacemaker for-
The occurrence of target patterns may be explained b}ﬁwation. We divide the system intd/ “sites” of size Ax

supposing that diffusion provides a mecha_nism for averaging< Ax such that the value of is constant over a site; i.e., the
¥(r) over some length scale, and that regions of the medmngites may be noise domains or subdivisions of noise do-
behave qualitatively like a uniform medium with the same  -ins. We assume that. on average, pacemakers have a ra-
local averagey(r). Thus the medium is locally tristable for a dius 01.‘7% and contain/\fp=’ T(RIAX)? s’ites. Thus we divide

high »(r), but if ¥(r) is sufficiently low it will be oscilla- the system intd\/.\/, independent domains which are poten-

tory. As the density of oscillatory sites increases, it become,ﬁal pacemakers. We assume that such a domain is a pace-
increasingly likely that there will exist regions with a local maker if the average value of within it is less than some

suffi\(/:\i/ently |C()thl'O e_xhibit os?illlat(:?;‘ dynamic;. Id q threshold for oscillatory behaviog*. If N, is the number of
© can determine a prolile o1 Ihe averagueld around - gjies on whichy=y, andN,=A,—Nj is the number ofy,

the average pacemaker. We defieas the average vz_ilue_ of sites, then the potential pacemaker is a pacemaker when
v a distanceR from the center of a pacemaker. This is given

by y1iN1+¥2Nz  yaNi+ y2(N,—Ny)
AR =" (16)
_ 1 d ”— P p
7 (R=5 R ar ™R %R, 139 thatis, when
where Yo V"
N;=——N. 1
_ 1 Yy P 17
'}/d(R)_ 7TR2 Lr—roiRy(r)dr 3 (14) Deﬁning
is the average value of over a disk of radius}, averaged Yo y*
) o : . *= Nl (18)
over all pacemakers in all realizations with a given set of Yo— 1 P
parameters. In practicey, is calculated as the discrete de- . L .
rivative, the probability that a domain is a pacemaker is
m(R+AR)Zy4(R+ AR) — mR?74(R) XN
7(R)= m(R+AR)Z- 7R (19 P:ng* ( K [Par (19

Figure 8 showsy, and y4 for p=0.30, system sizé& and it is not a pacemaker with probabili®@=1—7. The
XL=100%x 100, noise grain sizesXs=L/200XL/200 and probability that the entire system possesses no pacemakers is
other parameter values equal to those used to measure t@/"» and it possesses one or more pacemakers with prob-
nucleation probability curves shown in Fig. 7. Qualitatively ability
similar plots, in whichy, andy4 increase from a low value _ y
atR=0 to the mean-fiepld valuey, at highR were observed P(Np)=1-Q"%. (20
for other values op. Also shown in Fig. 8 arey, calculated  The parameterd/, and y* uniquely determine th&(\,p)
from the neighborhoods of points chosen randomly from thesurface. The values giving the best fit to the experimental
realizations rather than from points centered on pacemakerdata werey* =0.65 and\,=180 which impliesR~3.8.
and the mean-field value;. These values are compared with the numerically determined
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Pin

FIG. 9. The fraction of realizations in which target waves were emitted from
the central disk region. Parameter values apart fpoane as in Figs. 7 and
8; the noise grain size is 80.5. Herep,,~ 0.10.

FIG. 11. A spiral wave in the 3:1 inhomogeneously forced CGL. The phase
¢ of the complex amplitudé=Rée? is shown, using a gray-scale in which

v4(R) curve in Fig. 8. The simple model predicts that the ¢=—m=+m is white and¢=0 is black. Parameters:=1, 3=—0.6, u
average pacemaker should h@g{R)Z ‘y*; the point(R, ;;—itlign:sl, v1=0, y,=1, p=0.50,L=100, s=L/200, no-flux boundary con-
v*) lies close to, but not on, thegy curve. '

In order to provide further insight into the criteria nec-
essary fqr a regiqn to _act as a.pacemak.er, a series.of studies The anomalous decrease betw&en3 andR=5 is pos-
was carrl_ed ou_t n Wh'Ch, the field FO”S'Ste‘?' of a Q'Sk_ of sibly related to the fact that the anomalous behavior begins
radiusR sites W|th_ a der_13|tynin .of osmllqtory S|tes.. This dls_k when R~p,, wherelp is the diffusion length of the un-
was embedded in a field with density of oscillatory siteS, cad systeni y(r)=y,=0]. We find the diffusion length

Pout. I all casesp;, was greater thapoy, SO that the disk Ip= JD7~3.24 by taking the diffusion coefficierd to be

could act as a pacemaker. Multiple realizations of the eVOl“Unity and the characteristic timeto be equal to 2/8yu, the

tion were smulated_ at various v_aluesl_?;fpm andpout, an_d period of homogeneous oscillations in the unforced system

the fraction of realizations Ror) in which the central disk ¢ 4 o parametersg= —0.6, u=1 used in these studies

er;]w_lttﬁt‘j‘t;rargst vv,faves into the surroundlr:jg medidire., in Parts of the system separated by a length greater lthan

w 'CF. rezz Ol;]t occut;red was fmea;ure ];R d ; evolve independently over time intervals less thanFor
igure 9 shows Rbr) as a function ofR and p;, for large R one observes that pacemaker nucleation occurs lo-

Pour=0.10. g\sdone would ezpect, @) inc.r(ra]asr:as aRin- .oy on the boundary of the disk. As the disk perimeter
Creases and Jecreases [js decreases, W',t the exception i, -reases withR so does the probability of forming a local
that atp;,=1 the probability of breakout increases with pacemaker on the disk boundary

gntil R=3 far::d then d%c;ealies fo§R<5, ar:ter Vr\]’hiCh, it In addition to the target patterns discussed above, one
increasescf. Figs. 9 and 10 For pi,=0.95, when there is a . may also observe spiral waves if the initial conditions con-

small fraction of tristab_le sites in t_he inner disk, Fhe Magni“tain a phase defect. An example of such a spiral is shown in
tude of the decrease is substfantlally reducefd Fig. 10. Fig. 11. It was formed in a realization with=0.50< y,,
Apart from the anomalous region at lopy, the trends that hence the medium may be thought of as oscillatory, exhibit-

Pr(br) Increases W'th, |ncrea§|n3 and d_ecreases with de- ing three-fold-symmetric relaxational local dynamics, rather
creasingp;, are consistent with the notion that pacemakers[han as tristable

form when the local density of oscillatory sites is high. The

behavior forp,,=0.15 was qualitatively similar.
IV. SYSTEMS WITH TIME-VARYING SPATIAL

DISORDER
1 . . . We now consider situations where the spatial distribu-
tion of forcing amplitudes varies in time. For this purpose we
0.8 | : examine the behavior of the spatially distributed FitzHugh—
Nagumo(FHN) system,
06}
Pr(br) ou(r,t) 4 )
o4 L o u-u v+D,V-u,
02t : du(r,t) ) @D
g =e(u—av+b(r,t))+D, Vv,
0
0 2 4 6 8 subject to such time-varying noise distributions. He(e,t)
R andu(r,t) are the “concentrations,’a and € are constant

FIG. 10. Fraction of realizations in which target waves were emitted frompararneterSDu and DU are the diffusion coefficients and

the central disk region as a function Bf for p,,=0.1 andp,,=1.0(solid  P(r,t) is a forcing function of the formy(r,t)cosw;t with
line) and p;,=0.95 (dashed ling the forcing amplitudexn(r,t) a random variable. We have
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where the updating is on resonance, i.e., where the interval
between updates isT;. We shall not consider the case of
periodic updating where the updating is off-resonance.

The nT;-periodic updating of the forcing amplitude field
may have a phase offset relative to theperiodic forcing
coswit. We describe this offset with the parametewhich
ranges from 0 to 1 and specifies the phase offset in units of
nT;, i.e., as a fraction of period. Thus, updates occur at times

7e=(k—1)+0o)nT;, for k=1,2,3..., (23

in addition to the initial specification of the random forcing
field at 7o=0. To formalize the foregoing: the studies were
carried out withb(r,t) = »(r,t)coswst, where

FIG. 12. The nullclines and limit cycle of the FHN systéEy. (22)], with

a=0.3. The cubicu nullcline and linearv nulicline corresponding td o Ny N_
=0 are shown as solid lines. The dashed lines arevtmailiclines forb _ Kk
rt)= GO(t— 1) O(T 1 — 1) O (1),
=+0.46, for which the system is excitable. The limit cycle tor0, € 7(rY kgo ;1 121 &ij 0 W) (71~ O35 (1)
=0.1 is also shown. (24)

whered is the Heaviside functior®;;(r) is the characteristic
chosen this form to make explicit the periodic component offunction selecting the square with discrete coording¢ss
the external forcing whose amplitude is a periodically or ranin Ed. (8), and

domly updated spatial random variable. In the applications 71, with probabilty p,

described belows(r,t) is updated on a time scale that is &= ) - (25)
some multiple of the forcing period. 72, With probability g=1—p.

Before considering Eq(21) we discuss the associated The spatial average and time average are equal and given by
system of ordinary differential equations: 7(t)=pn1+qn.=(7(r)). The space—time autocorrelation

function is

—u(t)=u—ud-v,

dt Clr b= (Sn(r"+r,t'+t)Sn(r',t"))

q (22) U RO (D))

av(t)=e(u—av+b), Ix Iyl 1t
et =35
in which b is a constant. If 82a<1 the system possesses a S S nT

single fixed point. If, in additionb=0, then the fixed point is =\ it |x=s |y|=s and [t|=nT,, ?®
unstable and the system exhibits a stable limit cycle when-
everae<1. In this article we consider only systems with 0
<a<1 andae<l1. Figure 12 shows the limit cycle for a In the investigations described in this section, we con-
system witha=0.3, e=0.1 andb=0. Also shown are the sidered systems at them=3:1 resonance, using the pa-
cubic u-nulicline and the lineaw-nulicline for differentb  rametersa=0.3, €e=0.1, w¢/wy=3.05,D,=D,=0.25 with
values. The effect of varying is to shift thev-nullcline  the forcing field parameterg,;=0, 7»,=0.92, p=q=0.50
relative to theu-nullcline. As|b| increases from zero the limit and noise grain sizexs=4x4. The corresponding mean
cycle contracts in the phase plane, eventually collapsing to ield system, Eq.(21) with b(r,t)=»ncoswit, 7,=7
stable fixed point at a Hopf bifurcation that occurs when=0.46, lies in the entrained regime and admits three-armed
|b|=by=(1—(2a+a%)/3)((1—ae)/3)*2 For|b|>b, the phase locked spiral wavéig. 13.
system exhibits excitable kinetics. Figure 12 shows  Figure 14 shows an example of a spiral wave in the FHN
v-nullclines corresponding tb= *0.46, which lies just in- system with quenched disorder, analogous to that considered
side the excitable regime. in Sec. Ill B for the CGL equation. For this case thér,t)
Given this background, we consider the dynamics of Eqgfield may be described within Eq&24)—(25) if we take 7,
(21) as an example of an oscillatory reaction-diffusion sys-= +«. Substantial front roughening is apparent. This system
tem with periodic forcing. The forcing amplitude fielg(r,t) exhibits a phenomenon not seen in the studies in the inho-
was similar to they(r) fields used in the quenched disorder mogenously forced CGL described in Sec. lll. In the uni-
studies described earlier in that the system was divided intéormly forced FHN, with 5(r,t)= 7, and other parameters
squares which were randomly assigned one of the two forcthe same, the front velocity passes through zeropgss
ing intensitiesy, and ,. This disordered forcing amplitude varied. Variations in the effective locaj values, combined
field was periodically updated, with the new values of thewith front curvature effects, result in frequent local pinning
amplitude in the spatial distribution drawn from the sameof the fronts. The fronts may be depinned through coupling
dichotomous distribution of amplitudes. The updating periocdto mobile portions of the front, or by the perturbation pro-
was taken to benT; time units, which is the period of the vided by a following front as it approaches near the pinned
correspondingi:m entrained ordinary differential equation. front. Thus, the fronts move with an irregular stop—start mo-
(The investigations described here consider only the casion that is controlled by the pinning and depinning events. It

0, otherwise.
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N . . .. FIG. 15. Front velocity versus in the forced FHN with periodically up-
) ) ~__ dated spatial disorder. Lines of the thinnest width indicate simple fronts:
FIG. 13. A three—grmed splral wave in the forced FHN regctnon—dﬁfuswn [23] (long dashes [31] (short dashes[12] (solid line); medium width lines
system Eq. (21)] with spatially uniform (7(r)= 7,=0.46) forcing near the  indicate compound front§123) (solid line, exists for 0.99=o<1), [312]
311 resonance di/wo=3.05). The gray-scale indicates the value of (dashey thick lines indicate pulse§3123 (dashes, exists for 0.985x0
tan (v/u). The system size is 5%2512; boundary conditions are no-flux. <1), [2312 (dotted line, exists for 54 0<0.985...). In addition, for 5/6
<0=<0.848..., wherey3;>v,3 there should exist §231] compound front;
this front has not been characterized. Velocities were measured in a moving
seems unlikely that the resulting fronts could obey KPZ scal—g ame In & 200 200 system ‘zel_ average front position was m‘zaisuf’_eg omo-
. . . . . i wi ri nd linear regression w rm in
ing; indeed, inspection of Fig. 14 suggests that the front proélc:)spcec’p caly periodtya carregression was periormed to ©
file is unlikely to even remain a single-valued function of
position. Realizations of spirals in a system with smaller size
eventu_ally reached a stationary cpnﬁguratlon where front?rom the system’s symmetry undert+T; and (U,v,t)
were pinned everywhere along their lengths.

e . ; —u,—v,t+T:/2). All three fronts move to the lefposi-
For the FHN system with time-varying disorder and theg/é velocil;w 2) ®
aforemsn'uon%d parT m?te{ﬁ ! tgrﬁe quasrhomotghen(e:(éjl_s sF;ates Depending oro, their velocities rank ag,>v,3>v3;
Wwere observed, simiiar fo the behavior seen in the wi I asv,3>v12>v43. We note that for albr, v1,>v3,. Thus,

quenched disorder. The existence of noise-update evenltlsa system has initial conditions consisting of two plane

breaks the symmetry between the different entrained states ﬂjonts [31...19 (where...represents a region of phagetie

the _system. Similarly, domain .Wa"S are now no Ionger 12] front will move faster than th¢31] front and the dis-
equivalent and may travel at different velocities. Conside

L tance between the two will decrease. Eventually, th2|
the 3:1 forced system and arbitrarily label the phases 1, 2 anl‘?ont will closely approach thé31] front and a new stable
3. In the following discussion, E81] front means a domain

; . ting front isti f a thin | f ph 1 -
wall between phases 3 and 1, with phase 3 on the left; Itgropaga Ing Tron? consisfing of & thin ‘ayer of phase -~ con

) . ecting phases 3 and 2 will result. We term such a front a
opposite fron_t i413], There are thrge front typeg31], [12], compound front and denote[i812]. Similarly, for o values
[23] (and their oppositgsThe velocities of these fronts were

. . . wherev,3>v1,>v3;, the compound fronf123] exists and
measureq asa function of (Fig. 19. It suffices to measure can be obtained from the starting configuratjdg...23.
the velocities for 5/6.0<1, the values for othes follow

As one might expect, compound fronts cannot be made
from a slower moving front following a faster moving front.
For example[231] is not stable; it splits intd23...3] be-
Ccausev ,3=>v3; .

The velocities of these compound fronts were measured
as a function ofo- and, within our numerical accuracy, were
found to lie between the velocities of the two simple fronts
from which they were derived.e., v15>v315>v3; andv,s
>v125>019) (Fig. 15. Depending oro eithervg,>v,3 Or
V3> U312. FOrvz2>v,3 0ne expects the traveling pulse so-
lution [2312] to be stable, and this is indeed the case, while
for vo3>v31o the pulse2312 is unstable(it splits into [23]
and[312]) while the pulsd3123] is stable. The pulse veloci-
ties were measured, they are essentially the same as the ve-
locity of the faster moving component of the pulse.

The existence of stable pulse solutions joing two do-
FIG. 14. A three-armed spiral formed in the inhomogeneously forcedmains of the same phase raises the question of whether a
FitzHugh—Nagumo system with quenched disorder. The parameters arggne-armed” spiral whose arms consist of the pulse can

identical to those in Fig. 13, except for the forcing field parameters which __. . . .
are 7,—0 and 7,=27,~0.92 andp—q=0.50. For this forcing field; exist. Figure 16 shows a stable spiral to=11/12, a regime

— 7o=0.46. The gray-scale indicates the value of ta/u). The system  Where the velocity ordering i81,>v315>v23>v3;. Itis not
size is 51X 512; boundary conditions are no-flux. a “one-armed” spiral with §2312] pulse front but could be
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FIG. 18. A space—time plot of spiral core position versus time for a real-
ization of the forced FHN dynamics with time-varying spatial disorder in a
512x512 system. The updating parameterris 11/12.

FI_G. 16. A spiral wave in the force_d FHN with time-varying spatial disorder values of7 in the dichotomous noise process. Consequently,
with o=11/12. The gray-scale indicates the value of t4w/u). The phases h . . It of the fi . ial di

are 1(light gray, 2 (dark gray, and 3(medium gray. The system size is N€ COré motion is a result of the time-varying spatial disor-
1024x 1024. The noise grain size §< s=L/256x L/256. Boundary condi- ~ der of the forcing amplitude field.

tions are no-flux. We have also investigated time-varying noise where up-
dates occurred at Poisson-distributed intervals instead of pe-
riodically. The Poisson distribution used was Rr(At|<t

viewed as a two-armed spiral with arms consisting of phase§_ iy a1t ol _ : ; ;
3 and 2, with fronts of typ¢23] and[312]. Since the[312] d=(1/)e” Tdt wheret =(At) =nT;. With this choice

front velocity is greater than that of tHe3] front, one ex-
pects that as the waves travel outward phase 3 will shrin
and phase 2 will grow, and far from the core the waves will
become a train of2317] pulses.

Figure 17 shows a spiral far=1. In this regime the

of t the mean time between updates is the same as in the
pn-resonance periodic updating case discussed previously
and corresponds to one period of the entrained system. Thus,
if At, are chosen from this distribution then updates of the
forcing field occur at times

velocity ordering iSvg>v123> V31255 V12> V312> V3g. The K

stable pulse i$3123 rather thar{2312. Far from the core 7=, Aty (27)
we expect the waves to become a trairf 23] pulses and =1

in Fig. 17 this can indeed be seen to happen. in addition to the initial specification of the forcing field at

The motion of the spiral core was recorded for a realiza-ro. With these definitions of, in place of Eq.(23), 7(r,t)
tion of the dynamics witho=11/12. The trajectory of the is as given in Eqs(24)—(25).
core, r(t) = (x(t),yc(t)), describes a “noisy flower pat- We expect that in this system the three phases will be
tern” (Fig. 18). Both the periodic looping motion and distor- equivalent on average on time scales longer than the average
tions of the simple flower pattern due to the noise are eviinterval betweenn(r) field updates. The observed spiral
dent. A plot of (|r¢|?) vs t shows periodic behavior with shown in Fig. 19 confirms this equivalence. The three arms
period~17 000, which is also the mean period of rotation ofseen in the figure are approximately equivalent and, when
the spiral. In the mean field system wif{r,t)=7 the core  the animation of the dynamics is viewed, this equivalence is
is stationary. It is also stationary for the uniformly forced preserved in time.
systems withy(r,t)=#n, and 5(r,t)=7,, the two extreme

v

b

FIG. 19. A spiral wave in the forced FHN system with time-varying spatial
FIG. 17. A spiral wave in the forced FHN with time-varying spatial disorder disorder in which the interval between updates is chosen from a Poisson
with o=1. The gray-scale indicates the value of Th(u/u). The system distribution. The gray-scale indicates the value of f§wu). The system
size is 1024 1024. The noise grain size $<s=L/256X L/256. Boundary  size is 1024 1024. The noise grain size $<s=L/256X L/256. Boundary
conditions are no-flux. conditions are no-flux.
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V. DISCUSSION able BZ reaction involves use of a computer-controlled video

We have explored the phenomenology of resonantI)PrOJeCtor to project a precisely controllable spatiotemporal

forced oscillatory reaction-diffusion systems subject to both_?_";:ttemthc’f |IIu|m|nat|on mtensr,]lty onto theﬂr}eacnon fmt(?\dlulmﬁt
guenched and time-varying disorder in the forcing amplitude us, the only necessary changes are the use ot the fignt-
ensitive BZ in the oscillatory regime and reprogramming of

field. Noteworthy phenomena found when there is quenche . ; o2 o . :
disorder are front roughening and spontaneous nucleation ope p!’OjeC'[OI’ to prowde a per!od|c |II'um|nat|0n signal incor-
target patterns. Spontaneous nucleation of target patterr'? rating appropriate stochastic spatiotemporal modulation of
arises because diffusion effectively causes averaging of the light intensity.

locally over some length scale; hence, the medium locally
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