
CHAOS VOLUME 10, NUMBER 3 SEPTEMBER 2000
Resonantly forced inhomogeneous reaction-diffusion systems
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The dynamics of spatiotemporal patterns in oscillatory reaction-diffusion systems subject to
periodic forcing with a spatially random forcing amplitude field are investigated. Quenched disorder
is studied using the resonantly forced complex Ginzburg–Landau equation in the 3:1 resonance
regime. Front roughening and spontaneous nucleation of target patterns are observed and
characterized. Time dependent spatially varying forcing fields are studied in the 3:1 forced
FitzHugh–Nagumo system. The periodic variation of the spatially random forcing amplitude breaks
the symmetry among the three quasi-homogeneous states of the system, making the three types of
fronts separating phases inequivalent. The resulting inequality in the front velocities leads to the
formation of ‘‘compound fronts’’ with velocities lying between those of the individual component
fronts, and ‘‘pulses’’ which are analogous structures arising from the combination of three fronts.
Spiral wave dynamics is studied in systems with compound fronts. ©2000 American Institute of
Physics.@S1054-1500~00!00703-5#
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Spatially inhomogeneous reaction-diffusion equations
may be used to model pattern formation and wave propa-
gation in a variety of physical systems. We consider situ-
ations where the spatial inhomogeneity is externally im-
posed; for example, by inhomogeneous illumination of a
light-sensitive chemical reaction. The focus of the inves
tigation is on resonantly forced oscillatory systems where
the resonant forcing is applied to the system in a spatially
inhomogeneous fashion. Earlier experimental investiga-
tions of the light-sensitive Belousov–Zhabotinsky reac-
tion under spatially homogeneous resonant forcing by an
external light source revealed phase locked spatial pat
terns. We study wave propagation, pattern formation
and spiral wave dynamics in oscillatory reaction-
diffusion systems where the applied light field has a spa
tially random intensity pattern but varies periodically in
time. The phenomena we observe include roughening o
fronts separating phase locked domains, nucleation o
phase locked target patterns and compound fronts with
distinct properties that give rise to unusual spiral wave
dynamics. It should be possible to verify the phenomena
described here by suitably designed experiments on light
sensitive reacting systems.

I. INTRODUCTION

Patterns in reaction-diffusion systems where the kine
are spatiotemporally modulated can display a variety of p
nomena that are not found in homogeneous systems.1 Many
reaction-diffusion processes of practical interest take plac
inhomogeneous media or may be coupled to external
cesses that affect the kinetics in a nonuniform manner
convenient experimental system for studying the effect
spatiotemporal modulations on pattern dynamics in spati
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distributed systems is the ruthenium-catalyzed Belouso
Zhabotinsky~BZ! reaction.2 This reaction is light-sensitive
and thus the kinetics may be modulated by projecting a p
tern of illumination of varying intensity onto the reactio
medium.

Recent studies have made use of the light-sensitive
system to investigate wavefront propagation in systems w
spatially disordered excitability. Ka´dár et al.studied stochas-
tic resonance in a system with a periodically regenera
noise pattern.3 Sendiña-Nadalet al. studied percolation and
roughening of wavefronts in systems with quenched spati
disordered excitability;4,5 excitable spiral waves in the pres
ence of time-varying disorder were also studied.6 The dy-
namics of reaction-diffusion waves in inhomogeneous ex
able media is thought to be relevant to cardiac fibrillati
since electrical waves may be disrupted by irregularities
the heart muscle medium.7 Noise is thought to play a role in
initiation and propagation of waves in neural tissue.8 Earlier
investigations into spatially inhomogeneous excitable s
tems include a study of a BZ medium containing cataly
coated resin beads which served as nucleation sites
wavefronts,9 numerical simulations of a spatially-distribute
network of coupled excitable elements which exhibited sp
taneous wave initiation, stochastic resonance and fragme
tion of wavefronts,10,11 and an excitable cellular automato
in which the refractory times of the elements were assig
randomly.12 The effect of stochastic spatial inhomogeneiti
on other types of reaction-diffusion systems has been m
less studied.

Periodically forced reaction-diffusion systems have a
been investigated. Petrovet al. and Lin et al. subjected an
oscillatory version of the light-sensitive BZ reaction to pe
odic spatially uniform illumination.13–15 As the ratio of the
forcing frequency to the natural frequency neared vario
resonances patterns were observed. In subsequent num
studies the observed transition between labyrinthine and n
© 2000 American Institute of Physics
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721Chaos, Vol. 10, No. 3, 2000 Reaction-diffusion systems
labyrinthine two-phased patterns at the 2:1 resonance
reproduced in the periodically forced Brusselator.14–16 Bel-
monteet al. observed a transition from a stable spiral to tu
bulence in a BZ reaction when resonant forcing w
applied.17 Resonantly forced oscillatory systems have be
investigated by numerical simulation as well as theoretica
by Coullet and Emilsson,18,19 Coullet et al.,20 Elphick
et al.,21,22 and Chate´ et al.23 These systems exhibit a numb
of interesting pattern-forming phenomena.

Given the wide range of phenomena arising from spa
disorder in excitable systems and resonant forcing of os
latory systems, one might expect that oscillatory syste
with spatially inhomogeneous forcing have the potential
exhibit interesting new features. The research presented
explores qualitatively the phenomenology of such syste
and characterizes some of the phenomena quantitatively
restrict the focus of our study to systems in two spatial
mensions.

II. PERIODICALLY FORCED OSCILLATORY SYSTEMS

Consider an externally forced oscillatory reacting syst
described by the ordinary differential equation,

dc~ t !

dt
5R„c~ t !;a,b~ t !…, ~1!

wherec(t) is a vector containing the concentrations of r
agents. The reaction rates are described by the nonlinear
tor functionR which depends on a collection of paramete
a, such as rate constants and constant concentrations of
chemicals, as well as parametersb(t) which comprise the
periodic forcing and are of the formb(t)5h0F(v ft), with
h0 the constant forcing amplitude andF a 2p-periodic func-
tion giving the form of the forcing. As mentioned abov
such forcing may be implemented by periodic illuminati
of the system if the reaction is light-sensitive.

If b(t)50 we suppose the unforced reacting system
a stable limit cyclec0(t) with periodT052p/v0 . In such a
system there exists an infinite number of limit cycle so
tions, c08(t)5c0(t1Dt) which differ from c0(t) only by an
arbitrary phase shift 2p Dt/T0 . Limit cycle attractors are
neutrally stable to phase perturbations corresponding
translations along the orbit. A system following a limit cyc
will, in general, have undergone a phase shift when it retu
to the limit cycle after experiencing a small perturbation.

These characteristics of the unforced oscillator may
contrasted with those of the forced oscillator.24 If v f /v0 is
sufficiently close to an irreducible ratio of integersn/m, and
if the forcing amplitude is sufficiently large, then the osc
lations may become entrained to the external forcing and
system possessesn stable limit cycle solutions of periodT
5nTf52np/v f'mT0 which are mapped into each oth
under phase shiftst→t1kT/n for k50,1,2,... . A system
following one of these limit cycles will return to it with no
phase shift after a small perturbation. This discrete, fin
collection of limit cycles may be contrasted with the infini
and continuous collection of limit cycles in the unforce
case. The entrained resonantly forced oscillator is a sys
Downloaded 02 Nov 2001 to 142.150.225.29. Redistribution subject to AI
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with n stable states, defined by the phase of the oscillati
rather than by the system’s location in phase space.

The general form of an oscillatory reaction-diffusio
system with spatially inhomogeneous periodic forcing is

]c~r ,t !

]t
5R„c„r ,t);a,b„r ,t)…1D¹2c~r ,t !, ~2!

whereD is a diagonal matrix of diffusion coefficients. Th
parameters responsible for the periodic forcingb(r ,t) now
depend on space as well as time and are of the formb(r ,t)
5h(r ,t)F(v ft). The random variableh(r ,t) accounts for
the fact that the forcing amplitude may vary stochastically
space and time.

In a spatially distributed system with spatially unifor
forcing, b(r ,t)5b(t)5h0F(v ft), the diffusive coupling
and the stability of then limit cycles to phase perturbation
leads to the formation of domains of the different pha
locked states. At the domain walls separating the differ
phase locked states the phase of the oscillations shifts b
amount determined by the character of the phase locking
two dimensions,n-armed spiral waves may form, given sui
able initial conditions, if the domain walls have nonzero v
locity. The core of the spiral wave is a phase singularity
which all n states meet and around which the phase advan
by 2mp. The rotation of these phase locked spirals is
result of the propagation of the phase dislocations comp
ing the domain walls; thus, they rotate much more slow
than spiral waves in the unforced system, where the sp
rotation frequency is equal to the frequency of the local
cillations.

In this article we investigate systems subjected to p
odic forcing with a stochastic component, either quench
disorder,h(r ,t)5h(r ), where the periodically applied per
turbation has a random distribution in space which does
change in the course of the evolution, and systems with
namic disorder,h(r ,t), where the spatial distribution of th
perturbation may change with time. The reduction of a re
nantly forced oscillatory system to a complex Ginzburg
Landau ~CGL! equation by Gambaudo25 and by Elphick
et al.26 may be simply extended to systems with quench
disorder and consequently we have employed the CGL eq
tions in our studies of this case. For time-varying disord
one must reconsider the derivation of the appropriate C
equation because of the presence of another time scale
ciated with the noise process; hence, we have chosen ins
to study the FitzHugh–Nagumo system as a typical exam
of an oscillatory reaction-diffusion system.

In such cases a new length,l s , related to the spatia
correlation range of the noise distribution enters the proble
The behavior of the system will depend on the magnitude
this length relative to that of other important lengths in t
system; such as the diffusion lengthl D and the typical width
of a domain wall or propagating front,wd . If l s is suffi-
ciently small compared to both of these lengths the sys
will appear effectively homogeneous and behave as if it w
subject to periodic forcing with amplitude determined by t
spatial averageh̄ of h(r ). If l s is very large compared to
these lengths then the system dynamics may be simply
resented in terms of the dynamics of a collection of u
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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722 Chaos, Vol. 10, No. 3, 2000 C. J. Hemming and R. Kapral
formly forced patches. The interesting regime is when th
length scales are comparable and our studies focus on t
cases.

III. FORCED CGL WITH QUENCHED DISORDER

In the vicinity of the Hopf bifurcation point a periodi
cally forced oscillatory reaction-diffusion system may be
duced to its normal form, the forced complex Ginzbur
Landau equation~FCGL!.25,26 This reduction is valid
provided the system is near ann:m resonance, wheren
51,2,3,4. Such a reduction may also be carried out for
case of quenched disorder,h(r ,t)5h(r ), and the FCGL
takes the form

]A~r ,t !

]t
5~m1 in!A2~11 ib!uAu2A1g~r !Ān21

1~11 ia!¹2A, ~3!

whereg(r ) accounts for the spatial variation of the forcin
amplitude. The complex amplitudeA(r ,t) describes slow
modulations in the frequency and amplitude of oscillatio
of the original system in Poincare´ planes taken at the forcin
period; Ā denotes the complex conjugate ofA. Equation~3!
with g(r )[g0 , a constant, has been used as a model fo
oscillatory reaction-diffusion system with spatially unifor
resonant forcing.18–23

Consider the normal form of a single resonantly forc
oscillator obtained by omitting the diffusion terms and sp
tial dependence ing(r ),

dA~ t !

dt
5~m1 in!A2~11 ib!uAu2A1gĀn21. ~4!

For Eq.~4! a criticalgc exists such that forg,gc the equa-
tion exhibits a stable limit cycle solution, while forg>gc

there aren stable fixed points. These correspond to then
stable limit cycle solutions of the original system and can
mapped into each other by phase shiftsA→Aei2p/n. More
specifically, the fixed points can be found from the station
solutions of Eq.~4! by expressing the complex amplitude
the form A5Reif. The modulus,R0 , of the nonzero fixed
points of Eq.~4! depends ong according to

g25
~R0

22m!21~n2bR0
2!2

R0
2~n22! . ~5!

For some values ofn and g Eq. ~5! permits multipleR0

values, some of which may correspond to unstable fi
points. Figure 1 shows ag vs R0 curve forn53; the upper
branch corresponds to the stable fixed points while the lo
branch describes the nonzero unstable fixed points. The
rameter values used to construct this figure arem51, n50,
ubu50.6. Note the presence of a critical forcing amplitu
gc'0.58 below which phase locking does not occur. Fon
53, Eq. ~5! gives gc5@2„(11b2)(m21n2)…1/222(m
1bn)#1/2.

As an example of quenched disorder in resonantly for
oscillatory systems theg(r ) fields were taken to be dichoto
mous random variables. Two values for the forcing amp
tude,g1 andg2 , were chosen. The two-dimensional syste
Downloaded 02 Nov 2001 to 142.150.225.29. Redistribution subject to AI
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was partitioned into square cells and the value ofg(r ) in
each cell was chosen to be eitherg1 , with probability p, or
g2 with probability q512p. More precisely, if the noise
cells have dimensions3s and the system’s dimensions a
W3L5sNW3sNL , then

g~r !5(
i 51

NW

(
j 51

NL

j i j Q i j ~r !, ~6!

where

j i j 5H g1 , with probability p,

g2 , with probability q512p,
~7!

and

Q i j ~r !5Q i j ~x,y!

5u„x2~ i 21!s…u~ is2x!u„y2~ j 21!s…u~ js2y!,

~8!

where u is the Heaviside function and~ij ! are the discrete
coordinates of a noise cell. For quenched disorder this dis
bution is fixed for all time. The cell size, the values ofg1 and
g2 and the seeding probabilitiesp and q are the relevant
parameters to consider. The probabilitiesp andq were typi-
cally, but not necessarily, independent of position; exc
tions will be noted as they occur. Thisg(r ) field has the
mean valueḡ5pg11qg2 , and spatial autocorrelation

C~r 8!5
^dg~r 81r 9!dg~r 9!&

^dg~r 9!dg~r 9!&
,

5H S 12
ux8u
s D S 12

uy8u
s D , if ux8u<s and uy8u<s

0, otherwise,

~9!

wheredg(r )5g(r )2ḡ, r 85(x8,y8) and the averagê•& is
taken over allr 9.

The studies described in this paper investigate pattern
the 3:1 resonance. For such systems there are two intere

FIG. 1. The modulus,R0 , of the stable~solid line! and unstable~dashed
line! fixed points of Eq.~4! as a function of forcing intensityg. The param-
eter values aren53, ubu50.6, m51, n50. The three arrows indicate th
valuesg50.0, 0.6 and 1.0, which were used in simulations described in S
III. The vertical dotted line is located atgc , the critical value for phase
locking.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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723Chaos, Vol. 10, No. 3, 2000 Reaction-diffusion systems
cases for resonant forcing with a dichotomousg(r ) field. In
the first case bothg1 and g2 lie above the phase lockin
threshold,gc , so that all regions of the medium are entrain
to the forcing. In the second case only one ofg1 or g2 lies
above the threshold and the medium consists of a mixtur
entrained and nonentrained regions. In the simulations
scribed below, including those in Sec. IV, numerical integ
tion was performed using explicit forward differencing and
second-order discrete Laplacian.

A. All sites phase locked; front roughening

When bothg1 andg2 lie above the phase locking thres
old gc then all regions of the medium are tristable. The s
tem possesses three quasi-homogeneous stationary sta
which the complex amplitude fluctuates about an aver
value. Domain walls separating these phase locked state
in general nonstationary in the 3:1 resonant regime since
three phases are inequivalent, although their velocity m
pass through zero as parameters are tuned. Initially pla
fronts in these inhomogeneously forced systems roughe
they propagate. Figure 2 shows an example of a rough in
face separating two of the three phases.

Front roughening is also observed ifg1,gc,g2 ~i.e.,
when the medium consists of a mixture of entrained a
nonentrained regions! but is difficult to study because spon
taneously nucleated patterns interfere with propaga
fronts. This case will be examined below.

The propagating fronts in this system experience lo
velocity fluctuations arising from spatial variations in th
g(r ) field. Diffusion will tend to eliminate front roughnes
generated by random fluctuations in theg(r ) field; conse-
quently, the front dynamics should obey the Kardar–Pari
Zhang~KPZ! equation,27

]h~x,t !

]t
5 v̄1D

]2h

]x2 1
l

2 S ]h

]xD 2

1z~x,t !, ~10!

where h(x,t) is the front position,v̄ is the average fron
velocity, D and l are phenomenological coefficients an
z(x,t) is Gaussian white noise with zero mean and corre
tion ^z(x8,t8)z(x9,t9)&52Gd(x82x9)d(t82t9). In such a
circumstance the interface widthw(t)5(L21S i„h(xi ,t)

2h̄(t)…2Dx)1/2 increases with time asw(t);t b̂ for short

FIG. 2. Interfaces of the 3:1 inhomogeneously forced CGL from a sin
realization in a moving frame, at three well separated times. The phasef of
the complex amplitudeA5Reif is shown, using a gray-scale in whichf
52p51p is white andf50 is black. The system sizeL3W is 800
3100. The noise grain size iss3s5W/253W/25. Other parameters ar
given in the text. Boundary conditions are periodic alongx and no-flux
alongy.
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times; the average width of a saturated front,ws , scales with
system size asws;L â, whereâ51/2 andb̂51/3.

We have verified these KPZ scaling properties for
FCGL system with parameter values (a51, b50.6, m1 iv
51) and the forcing field parameters (g150.60, g251, p
50.50) for which the critical forcing amplitude isgc'0.58
~cf. Fig. 1!. The front properties were measured in a fram
moving with the front. The system dimensions wereW
5100 andL5100, 200, 400 and 800. The noise grain si
wass3s5W/253W/25. The boundary conditions were pe
riodic along the boundaries perpendicular to the front, a
no-flux along the boundaries perpendicular to the direct
of front motion.

The saturated front widthws was found to scale with
system size asws;L1/2. Plotting ^w(t)&/L â againstt/L â/b̂

collapses thêw(t)& versust data for four differentL onto a
single curve when the KPZ valuesâ51/2, b̂51/3 are used,
as shown in Fig. 3. Herê•& denotes an average over realiz
tions.

The width temporal autocorrelation function,

Cw~ t !5
^dw~ t1t8!dw~ t8!&

^dw~ t8!dw~ t8!&
, ~11!

was calculated for fronts in the saturated regime at four s
tem sizesL5100, 200, 400 and 800. Here^•& represents a
time average within the saturated regime. Temporal corr
tions were found to decay to zero, with the rate of dec
decreasing as system size increases~Fig. 4!. This is expected,
since the larger system size allows larger fluctuations in
front profile which require longer times to form and deca

To investigate the presence of spatial correlations
saturated front profiles, the height spatial autocorrelat
function,

Ch~x!5 K ^dh~x1x8!dh~x8!&

^dh~x8!dh~x8!& L , ~12!

was calculated for the various system sizes. In Eq.~12! the
inner ^•& refers to averaging overx8 in a single front profile
and the outer̂•& refers to averaging over different saturat
front profiles. Results forL5100 andL5800 are shown
~Fig. 5!.

e

FIG. 3. Early time^w(t)& vs t curves for initially planar fronts in the 3:1
inhomogenously forced CGL rescaled according to the KPZ scaling ex
nents. Curves are shown for system sizesL5100 ~dotted line!, 200 ~short
dashes!, 400 ~long dashes! and 800~solid line!. Each curve results from the
average over 80 realizations of the stochastic dynamics.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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724 Chaos, Vol. 10, No. 3, 2000 C. J. Hemming and R. Kapral
In the case of a front free of spatial structure, i.e.
periodic random walk that returns to its initial position inN
steps, the height spatial autocorrelation function is of
form Ch

R(x)512(2D/L)x(L2x), where D is a phenom-
enological diffusion coefficient.28 The deviations of the fit of
the numerically determinedCh(x) from a quadratic function
indicate the existence of spatial correlations.

B. A medium with phase locked and oscillatory sites;
spontaneous nucleation of target patterns

Wheng1,gc andg2.gc , the system consists of a mix
ture of tristable regions and oscillatory regions. If the dens
of oscillatory sites,p, is low the diffusive coupling maintains
the value ofA within the oscillatory regions near that in th
adjacent tristable regions. The medium behaves essen
like a tristable medium and supports three quasihomo
neous stable stationary states, traveling kink-like dom
walls and three-armed spiral waves. The oscillatory sites p
vide a spatial inhomogeneity that leads to roughening of
main walls and to fluctuations of the concentrations with
domains.

With increasingp, target patterns are observed~Fig. 6!.
They consist of concentric, approximately circular doma
walls moving outward from a central region~a ‘‘pace-
maker’’! where they are initiated periodically. Within eac
ring of the target the concentration is quasi-homogeneo

FIG. 4. The width temporal autocorrelation function for saturated interfa
in the 3:1 inhomogenously forced CGL for system sizesL5100 ~dotted
line!, 200 ~short dashes!, 400 ~long dashes! and 800~solid line!.

FIG. 5. The height spatial autocorrelation functions for saturated front
systems of sizeL5100 ~solid line! andL5800 ~long dashes!. The best fit
quadratic functions are shown forL5100 ~dotted line! and L5800 ~short
dashes!.
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Note that all images in Fig. 6 are from realizations wi
identical parameters, however, a range of wavelengths is
served.

The probability of a realization possessing a target p
tern was measured as a function ofp and system size~Fig.
7!. It was found to approach zero for lowp, one for highp,
and to increase rapidly around some criticalpc . Figure 7
shows results for the parameter values (m1 in51, a51, b
520.6) and forcing field parameters (g150, g251); quali-
tatively similar results were also obtained for (m1 in51, a
51, b50.6, g150, g251) and (m1 in51, a52, b
520.82,g150, g251). For larger system sizes, the pro
ability of occurrence of a target pattern is higher, consist

s

in

FIG. 6. Target patterns generated in the 3:1 forced CGL from spati
homogeneous initial conditions. The phasef of the complex amplitudeA
5Reif is shown, using a gray-scale in whichf52p51p is white and
f50 is black. Forcing field parameters are (g150, g251, p50.30). Other
parameters are (m1 in51, a51, b50.6), for whichgc'0.58. The system
size is L3L52003200, the noise grain size iss3s5L/2003L/200.
Boundary conditions are periodic.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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725Chaos, Vol. 10, No. 3, 2000 Reaction-diffusion systems
with a fixed probability per unit area of the medium nuc
ating a target pattern.

The occurrence of target patterns may be explained
supposing that diffusion provides a mechanism for averag
g(r ) over some length scale, and that regions of the med
behave qualitatively like a uniform medium with the sam
local averageḡ(r ). Thus the medium is locally tristable for
high ḡ(r ), but if ḡ(r ) is sufficiently low it will be oscilla-
tory. As the density of oscillatory sites increases, it becom
increasingly likely that there will exist regions with a localg
sufficiently low to exhibit oscillatory dynamics.

We can determine a profile of the averageg field around
the average pacemaker. We defineḡp as the average value o
g a distanceR from the center of a pacemaker. This is giv
by

ḡp ~R!5
1

2pR

d

dR
pR2ḡd~R!, ~13!

where

ḡd~R!5K 1

pR2 E
ur2r0u<R

g~r !dr L , ~14!

is the average value ofg over a disk of radiusR, averaged
over all pacemakers in all realizations with a given set
parameters. In practice,ḡp is calculated as the discrete d
rivative,

ḡp~R!5
p~R1DR!2ḡd~R1DR!2pR2ḡd~R!

p~R1DR!22pR2 . ~15!

Figure 8 showsḡp and ḡd for p50.30, system sizeL
3L51003100, noise grain sizes3s5L/2003L/200 and
other parameter values equal to those used to measur
nucleation probability curves shown in Fig. 7. Qualitative
similar plots, in whichḡp and ḡd increase from a low value
at R50 to the mean-field value,ḡ, at highR were observed
for other values ofp. Also shown in Fig. 8 areḡp calculated
from the neighborhoods of points chosen randomly from
realizations rather than from points centered on pacemak
and the mean-field value,ḡ.

FIG. 7. The fraction of realizations in which one or more pacemakers
curred as a function ofp, the density of oscillatory (g5g150) sites. Re-
sults from numerical simulations with noise grain sizes3s50.530.5 are
shown for system sizes 50350 ~n! and 1003100~.!. The curves predicted
by the model described in the text@Eqs. ~16!–~20!# with the parameter
valuesg* 50.65 andNp5180 are shown for these same system sizes
solid and dashed lines, respectively.
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Consider the following simple model of pacemaker fo
mation. We divide the system intoN ‘‘sites’’ of size Dx
3Dx such that the value ofg is constant over a site; i.e., th
sites may be noise domains or subdivisions of noise
mains. We assume that, on average, pacemakers have
dius ofR and containNp5p(R/Dx)2 sites. Thus we divide
the system intoN/Np independent domains which are pote
tial pacemakers. We assume that such a domain is a p
maker if the average value ofg within it is less than some
threshold for oscillatory behavior,g* . If N1 is the number of
sites on whichg5g1 andN25Np2N1 is the number ofg2

sites, then the potential pacemaker is a pacemaker when

g1N11g2N2

Np
5

g1N11g2~Np2N2!

Np
<g* , ~16!

that is, when

N1>
g22g*

g22g1
Np . ~17!

Defining

N* 5 dg22g*

g22g1
Npe, ~18!

the probability that a domain is a pacemaker is

P5 (
k5N*

Np S Np

k D pkqNp2k, ~19!

and it is not a pacemaker with probabilityQ512P. The
probability that the entire system possesses no pacemake
QN/Np and it possesses one or more pacemakers with p
ability

P~N,p!512QN/Np. ~20!

The parametersNp andg* uniquely determine theP(N,p)
surface. The values giving the best fit to the experimen
data wereg* 50.65 andNp5180 which impliesR'3.8.
These values are compared with the numerically determi

-

s

FIG. 8. The solid curve showsḡp(R); the long-dashed curve isḡd . Aver-
ages are taken over 20 realizations. The short-dashed curve showsḡp cal-
culated around points chosen randomly from the realizations. A horizo
line indicatesḡ50.70. The valuesg* 50.65,R53.8, calculated using the
pacemaker model, are also shown.
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ḡd(R) curve in Fig. 8. The simple model predicts that t
average pacemaker should haveḡd(R)5g* ; the point ~R,
g* ! lies close to, but not on, theḡd curve.

In order to provide further insight into the criteria ne
essary for a region to act as a pacemaker, a series of stu
was carried out in which theg field consisted of a disk o
radiusR sites with a densitypin of oscillatory sites. This disk
was embedded in a field with density of oscillatory sit
pout. In all casespin was greater thanpout, so that the disk
could act as a pacemaker. Multiple realizations of the evo
tion were simulated at various values ofR, pin andpout, and
the fraction of realizations Pr~br! in which the central disk
emitted target waves into the surrounding medium~i.e., in
which ‘‘breakout’’ occurred! was measured.

Figure 9 shows Pr~br! as a function ofR and pin for
pout50.10. As one would expect, Pr~br! increases asR in-
creases and decreases aspin decreases, with the exceptio
that at pin51 the probability of breakout increases withR
until R53 and then decreases for 3,R,5, after which it
increases~cf. Figs. 9 and 10!. For pin50.95, when there is a
small fraction of tristable sites in the inner disk, the mag
tude of the decrease is substantially reduced~cf. Fig. 10!.
Apart from the anomalous region at lowpin the trends that
Pr~br! increases with increasingR and decreases with de
creasingpin are consistent with the notion that pacemak
form when the local density of oscillatory sites is high. T
behavior forpout50.15 was qualitatively similar.

FIG. 9. The fraction of realizations in which target waves were emitted fr
the central disk region. Parameter values apart fromp are as in Figs. 7 and
8; the noise grain size is 0.530.5. Herepout50.10.

FIG. 10. Fraction of realizations in which target waves were emitted fr
the central disk region as a function ofR, for pout50.1 andpin51.0 ~solid
line! andpin50.95 ~dashed line!.
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The anomalous decrease betweenR53 andR55 is pos-
sibly related to the fact that the anomalous behavior beg
when R' l D , where l D is the diffusion length of the un-
forced system@g(r )[g150#. We find the diffusion length
l D5ADt'3.24 by taking the diffusion coefficientD to be
unity, and the characteristic timet to be equal to 2p/bm, the
period of homogeneous oscillations in the unforced sys
for the parametersb520.6, m51 used in these studies
Parts of the system separated by a length greater thal D

evolve independently over time intervals less thant. For
large R one observes that pacemaker nucleation occurs
cally on the boundary of the disk. As the disk perime
increases withR so does the probability of forming a loca
pacemaker on the disk boundary.

In addition to the target patterns discussed above,
may also observe spiral waves if the initial conditions co
tain a phase defect. An example of such a spiral is show
Fig. 11. It was formed in a realization withḡ50.50,gc ,
hence the medium may be thought of as oscillatory, exhi
ing three-fold-symmetric relaxational local dynamics, rath
than as tristable.

IV. SYSTEMS WITH TIME-VARYING SPATIAL
DISORDER

We now consider situations where the spatial distrib
tion of forcing amplitudes varies in time. For this purpose w
examine the behavior of the spatially distributed FitzHug
Nagumo~FHN! system,

]u~r ,t !

]t
5u2u32v1Du ¹2u,

~21!
]v~r ,t !

]t
5e„u2av1b~r ,t !…1Dv ¹2v,

subject to such time-varying noise distributions. Hereu(r ,t)
and v(r ,t) are the ‘‘concentrations,’’a and e are constant
parameters,Du and Dv are the diffusion coefficients an
b(r ,t) is a forcing function of the formh(r ,t)cosvf t with
the forcing amplitudeh(r ,t) a random variable. We hav

FIG. 11. A spiral wave in the 3:1 inhomogeneously forced CGL. The ph
f of the complex amplitudeA5Reif is shown, using a gray-scale in whic
f52p51p is white andf50 is black. Parameters:a51, b520.6, m
1 in51, g150, g251, p50.50,L5100,s5L/200, no-flux boundary con-
ditions.
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chosen this form to make explicit the periodic component
the external forcing whose amplitude is a periodically or ra
domly updated spatial random variable. In the applicatio
described belowh(r ,t) is updated on a time scale that
some multiple of the forcing period.

Before considering Eq.~21! we discuss the associate
system of ordinary differential equations:

d

dt
u~ t !5u2u32v,

~22!
d

dt
v~ t !5e~u2av1b!,

in which b is a constant. If 0,a,1 the system possesses
single fixed point. If, in addition,b50, then the fixed point is
unstable and the system exhibits a stable limit cycle wh
everae,1. In this article we consider only systems with
,a,1 and ae,1. Figure 12 shows the limit cycle for
system witha50.3, e50.1 andb50. Also shown are the
cubic u-nullcline and the linearv-nullcline for different b
values. The effect of varyingb is to shift thev-nullcline
relative to theu-nullcline. Asubu increases from zero the limi
cycle contracts in the phase plane, eventually collapsing
stable fixed point at a Hopf bifurcation that occurs wh
ubu5bH5„12(2a1a2e)/3…„(12ae)/3…1/2. For ubu.bH the
system exhibits excitable kinetics. Figure 12 sho
v-nullclines corresponding tob560.46, which lies just in-
side the excitable regime.

Given this background, we consider the dynamics of
~21! as an example of an oscillatory reaction-diffusion s
tem with periodic forcing. The forcing amplitude fieldh(r ,t)
was similar to theg(r ) fields used in the quenched disord
studies described earlier in that the system was divided
squares which were randomly assigned one of the two f
ing intensitiesh1 andh2 . This disordered forcing amplitud
field was periodically updated, with the new values of t
amplitude in the spatial distribution drawn from the sam
dichotomous distribution of amplitudes. The updating per
was taken to benTf time units, which is the period of the
correspondingn:m entrained ordinary differential equation
~The investigations described here consider only the c

FIG. 12. The nullclines and limit cycle of the FHN system@Eq. ~22!#, with
a50.3. The cubicu nullcline and linearv nullcline corresponding tob
50 are shown as solid lines. The dashed lines are thev nullclines for b
560.46, for which the system is excitable. The limit cycle forb50, e
50.1 is also shown.
Downloaded 02 Nov 2001 to 142.150.225.29. Redistribution subject to AI
f
-
s

-

a

s

.
-

to
c-

d

se

where the updating is on resonance, i.e., where the inte
between updates isnTf . We shall not consider the case o
periodic updating where the updating is off-resonance.!

ThenTf-periodic updating of the forcing amplitude fiel
may have a phase offset relative to theTf-periodic forcing
cosvft. We describe this offset with the parameters which
ranges from 0 to 1 and specifies the phase offset in unit
nTf , i.e., as a fraction of period. Thus, updates occur at tim

tk5„~k21!1s…nTf , for k51,2,3..., ~23!

in addition to the initial specification of the random forcin
field at t050. To formalize the foregoing: the studies we
carried out withb(r ,t)5h(r ,t)cosvft, where

h~r ,t !5 (
k50

`

(
i 51

NW

(
j 51

NL

j i j
k u~ t2tk!u~tk112t !Q i j ~r !,

~24!

whereu is the Heaviside function,Q i j (r ) is the characteristic
function selecting the square with discrete coordinates~ij ! as
in Eq. ~8!, and

j i j
k 5H h1 , with probability p,

h2 , with probability q512p.
~25!

The spatial average and time average are equal and give
h̄(t)5ph11qh25^h(r )&. The space–time autocorrelatio
function is

C~r ,t !5
^dh~r 81r ,t81t !dh~r 8,t8!&

^dh~r 8,t8!dh~r 8,t8!&

5H S 12
uxu
s D S 12

uyu
s D S 12

utu
nTf

D ,

if uxu<s, uyu<s and utu<nTf ,

0, otherwise.

~26!

In the investigations described in this section, we co
sidered systems at then:m53:1 resonance, using the pa
rametersa50.3, e50.1, v f /v053.05, Du5Dv50.25 with
the forcing field parametersh150, h250.92, p5q50.50
and noise grain sizes3s5434. The corresponding mea
field system, Eq.~21! with b(r ,t)5h0 cosvf t, h05h̄
50.46, lies in the entrained regime and admits three-arm
phase locked spiral waves~Fig. 13!.

Figure 14 shows an example of a spiral wave in the FH
system with quenched disorder, analogous to that consid
in Sec. III B for the CGL equation. For this case theh(r ,t)
field may be described within Eqs.~24!–~25! if we take t1

51`. Substantial front roughening is apparent. This syst
exhibits a phenomenon not seen in the studies in the in
mogenously forced CGL described in Sec. III. In the u
formly forced FHN, withh(r ,t)[h0 and other parameter
the same, the front velocity passes through zero ash0 is
varied. Variations in the effective localh values, combined
with front curvature effects, result in frequent local pinnin
of the fronts. The fronts may be depinned through coupl
to mobile portions of the front, or by the perturbation pr
vided by a following front as it approaches near the pinn
front. Thus, the fronts move with an irregular stop–start m
tion that is controlled by the pinning and depinning events
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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seems unlikely that the resulting fronts could obey KPZ sc
ing; indeed, inspection of Fig. 14 suggests that the front p
file is unlikely to even remain a single-valued function
position. Realizations of spirals in a system with smaller s
eventually reached a stationary configuration where fro
were pinned everywhere along their lengths.

For the FHN system with time-varying disorder and t
aforementioned parameters, three quasi-homogeneous s
were observed, similar to the behavior seen in the CGL w
quenched disorder. The existence of noise-update ev
breaks the symmetry between the different entrained state
the system. Similarly, domain walls are now no long
equivalent and may travel at different velocities. Consid
the 3:1 forced system and arbitrarily label the phases 1, 2
3. In the following discussion, a@31# front means a domain
wall between phases 3 and 1, with phase 3 on the left
opposite front is@13#. There are three front types:@31#, @12#,
@23# ~and their opposites!. The velocities of these fronts wer
measured as a function ofs ~Fig. 15!. It suffices to measure
the velocities for 5/6,s,1, the values for others follow

FIG. 13. A three-armed spiral wave in the forced FHN reaction-diffus
system@Eq. ~21!# with spatially uniform (h(r )[h050.46) forcing near the
3:1 resonance (v f /v053.05). The gray-scale indicates the value
tan21(v/u). The system size is 5123512; boundary conditions are no-flux

FIG. 14. A three-armed spiral formed in the inhomogeneously for
FitzHugh–Nagumo system with quenched disorder. The parameters
identical to those in Fig. 13, except for the forcing field parameters wh
are h150 and h252h050.92 andp5q50.50. For this forcing fieldh̄
5h050.46. The gray-scale indicates the value of tan21(v/u). The system
size is 5123512; boundary conditions are no-flux.
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from the system’s symmetry undert→t1Tf and (u,v,t)
→(2u,2v,t1Tf/2). All three fronts move to the left~posi-
tive velocity!.

Depending ons, their velocities rank asv12.v23.v31

or asv23.v12.v13. We note that for alls, v12.v31. Thus,
if a system has initial conditions consisting of two pla
fronts, @31...12# ~where...represents a region of phase 1!, the
@12# front will move faster than the@31# front and the dis-
tance between the two will decrease. Eventually, the@12#
front will closely approach the@31# front and a new stable
propagating front consisting of a thin layer of phase 1 co
necting phases 3 and 2 will result. We term such a fron
compound front and denote it@312#. Similarly, for s values
wherev23.v12.v31, the compound front@123# exists and
can be obtained from the starting configuration@12...23#.

As one might expect, compound fronts cannot be ma
from a slower moving front following a faster moving fron
For example,@231# is not stable; it splits into@23...31# be-
causev23.v31.

The velocities of these compound fronts were measu
as a function ofs and, within our numerical accuracy, wer
found to lie between the velocities of the two simple fron
from which they were derived~i.e., v12.v312.v31 and v23

.v123.v12) ~Fig. 15!. Depending ons either v312.v23 or
v23.v312. For v312.v23 one expects the traveling pulse s
lution @2312# to be stable, and this is indeed the case, wh
for v23.v312 the pulse@2312# is unstable~it splits into @23#
and@312#! while the pulse@3123# is stable. The pulse veloci
ties were measured, they are essentially the same as th
locity of the faster moving component of the pulse.

The existence of stable pulse solutions joing two d
mains of the same phase raises the question of wheth
‘‘one-armed’’ spiral whose arms consist of the pulse c
exist. Figure 16 shows a stable spiral fors511/12, a regime
where the velocity ordering isv12.v312.v23.v31. It is not
a ‘‘one-armed’’ spiral with a@2312# pulse front but could be

d
re

h

FIG. 15. Front velocity versuss in the forced FHN with periodically up-
dated spatial disorder. Lines of the thinnest width indicate simple fro
@23# ~long dashes!, @31# ~short dashes!, @12# ~solid line!; medium width lines
indicate compound fronts:@123# ~solid line, exists for 0.99...<s<1), @312#
~dashes!; thick lines indicate pulses:@3123# ~dashes, exists for 0.985...<s
<1), @2312# ~dotted line, exists for 5/6<s<0.985...). In addition, for 5/6
<s<0.848..., wherev31.v23 there should exist a@231# compound front;
this front has not been characterized. Velocities were measured in a mo
frame in a 2003200 system; the average front position was measured s
boscopically with periodnTf and linear regression was performed to find t
slope.
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729Chaos, Vol. 10, No. 3, 2000 Reaction-diffusion systems
viewed as a two-armed spiral with arms consisting of pha
3 and 2, with fronts of type@23# and @312#. Since the@312#
front velocity is greater than that of the@23# front, one ex-
pects that as the waves travel outward phase 3 will sh
and phase 2 will grow, and far from the core the waves w
become a train of@2312# pulses.

Figure 17 shows a spiral fors51. In this regime the
velocity ordering isv23.v123.v3123.v12.v312.v31. The
stable pulse is@3123# rather than@2312#. Far from the core
we expect the waves to become a train of@3123# pulses and
in Fig. 17 this can indeed be seen to happen.

The motion of the spiral core was recorded for a reali
tion of the dynamics withs511/12. The trajectory of the
core, r c(t)5„xc(t),yc(t)…, describes a ‘‘noisy flower pat
tern’’ ~Fig. 18!. Both the periodic looping motion and disto
tions of the simple flower pattern due to the noise are e
dent. A plot of ^ur cu2& vs t shows periodic behavior with
period;17 000, which is also the mean period of rotation
the spiral. In the mean field system withh(r ,t)[h̄ the core
is stationary. It is also stationary for the uniformly force
systems withh(r ,t)[h1 andh(r ,t)[h2 , the two extreme

FIG. 16. A spiral wave in the forced FHN with time-varying spatial disord
with s511/12. The gray-scale indicates the value of tan21(v/u). The phases
are 1~light gray!, 2 ~dark gray!, and 3~medium gray!. The system size is
102431024. The noise grain size iss3s5L/2563L/256. Boundary condi-
tions are no-flux.

FIG. 17. A spiral wave in the forced FHN with time-varying spatial disord
with s51. The gray-scale indicates the value of tan21 (v/u). The system
size is 102431024. The noise grain size iss3s5L/2563L/256. Boundary
conditions are no-flux.
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values ofh in the dichotomous noise process. Consequen
the core motion is a result of the time-varying spatial dis
der of the forcing amplitude field.

We have also investigated time-varying noise where
dates occurred at Poisson-distributed intervals instead of
riodically. The Poisson distribution used was Pr(t<Dt l<t

1dt)5(1/t̄ )e21/t̄dt where t̄ 5^Dt l&5nTf . With this choice
of t̄ the mean time between updates is the same as in
on-resonance periodic updating case discussed previo
and corresponds to one period of the entrained system. T
if Dt l are chosen from this distribution then updates of
forcing field occur at times

tk5(
l 51

k

Dt l , ~27!

in addition to the initial specification of the forcing field a
t0 . With these definitions oftk in place of Eq.~23!, h(r ,t)
is as given in Eqs.~24!–~25!.

We expect that in this system the three phases will
equivalent on average on time scales longer than the ave
interval betweenh(r ) field updates. The observed spir
shown in Fig. 19 confirms this equivalence. The three ar
seen in the figure are approximately equivalent and, w
the animation of the dynamics is viewed, this equivalence
preserved in time.

FIG. 18. A space–time plot of spiral core position versus time for a re
ization of the forced FHN dynamics with time-varying spatial disorder in
5123512 system. The updating parameter iss511/12.

FIG. 19. A spiral wave in the forced FHN system with time-varying spat
disorder in which the interval between updates is chosen from a Poi
distribution. The gray-scale indicates the value of tan21(v/u). The system
size is 102431024. The noise grain size iss3s5L/2563L/256. Boundary
conditions are no-flux.
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V. DISCUSSION

We have explored the phenomenology of resonan
forced oscillatory reaction-diffusion systems subject to b
quenched and time-varying disorder in the forcing amplitu
field. Noteworthy phenomena found when there is quenc
disorder are front roughening and spontaneous nucleatio
target patterns. Spontaneous nucleation of target patt
arises because diffusion effectively causes averaging ofg(r )
locally over some length scale; hence, the medium loc
behaves like a uniform system with the sameḡ. Alterna-
tively but equivalently, we may describe the dynamics
arising from competition between two regimes selected
the dichotomous forcing values which lie on either side o
bifurcation point. In some spatial regions one regime do
nates the dynamics while in other regions the second reg
dominates.

For time-varying disorder, the symmetry of the system
three states is broken, and thus the velocities of differ
domain walls differ. As a result, traveling front structur
other than simple kink-like fronts may exist. These are
compound fronts and pulses. The velocities of the dom
walls depend on the phase of the forcing field updati
therefore the updating parameters selects between regime
in which different sets of compound fronts and pulses ex
This asymmetry among states also leads to spiral waves
inequivalent arms.

Meandering core motion with a noisy flower-like traje
tory is seen with a time-varying disorder. This core moti
arises purely from inhomogeneities inh(r ,t) since none of
the uniformly forced systems withh(r ,t)[h̄,h1 ,h2 exhibit
core meandering.

Some of the effects described herein may arise from
spatial inhomogeneity of the forcing, and not necessa
from its disordered nature. One may also consider reg
patterns of inhomogeneous forcing and investigations of
type are in progress. Many of the effects found in this stu
such as target pattern nucleation, KPZ front roughening,
front dynamics for time-varying disorder arise from the s
chastic nature of the forcing field and would not be found
a system with a regular pattern of forcing.

There are opportunities for further exploration of sp
tially disordered resonantly forced systems; for example,
effects of noise on various phenomena or bifurcations kno
in spatially uniform resonantly forced systems have not b
studied. Additionally, one may investigate oscillatory sy
tems possessing richer limit cycle dynamics than the r
tively uncomplicated examples considered in this paper.

Systems of the types described here could be rea
realized in an experimental setup. Standard methodology
investigation of spatial disorder in the light-sensitive exc
Downloaded 02 Nov 2001 to 142.150.225.29. Redistribution subject to AI
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able BZ reaction involves use of a computer-controlled vid
projector to project a precisely controllable spatiotempo
pattern of illumination intensity onto the reaction medium
Thus, the only necessary changes are the use of the l
sensitive BZ in the oscillatory regime and reprogramming
the projector to provide a periodic illumination signal inco
porating appropriate stochastic spatiotemporal modulatio
the light intensity.
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