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The structure and dynamics of vortex filaments that form the cores of scroll waves in three-
dimensional oscillatory media described by the complex Ginzburg–Landau equation are investi-
gated. The study focuses on the role that twist plays in determining the bifurcation structure in
various regions of the �� ,�� parameter space of this equation. As the degree of twist increases,
initially straight filaments first undergo a Hopf bifurcation to helical filaments; further increase in
the twist leads to a secondary Hopf bifurcation that results in supercoiled helices. In addition,
localized states composed of superhelical segments interspersed with helical segments are found. If
the twist is zero, zigzag filaments are found in certain regions of the parameter space. In very large
systems disordered states comprising zigzag and helical segments with positive and negative senses
exist. The behavior of vortex filaments in different regions of the parameter space is explored in
some detail. In particular, an instability for nonzero twist near the �=� line suggests the existence
of a nonsaturating state that reduces the stability domain of straight filaments. The results are
obtained through extensive simulations of the complex Ginzburg–Landau equation on large do-
mains for long times, in conjunction with simulations on equivalent two-dimensional reductions of
this equation and analytical considerations based on topological concepts. © 2008 American Insti-
tute of Physics. �DOI: 10.1063/1.2940439�

Scroll waves, the three-dimensional analogs of spiral
waves, are one of the generic types of structures observed
in oscillatory and excitable media. They are known to
play important roles in the mechanisms that underlie car-
diac fibrillation and have been observed and studied in
experiments on chemical reacting systems. Just as spiral
waves are organized around a core, scroll waves are or-
ganized around linelike filaments. Much of the scroll
wave dynamics of a system can then be understood in
terms the motions and bifurcations of these filaments.
Due to the existence of inhomogeneities or boundary and
initial conditions, these filaments may be twisted and the
degree of twist can influence their structure, similar to
the shapes a beam or telephone cord adopts when
twisted. A detailed investigation of scroll wave filaments
in oscillatory media is carried out to determine how their
structure and dynamics changes as a function of the de-
gree of twist they experience in various regions of param-
eter space. Filament structures, including straight, heli-
cal, zigzag, and complex disordered states, are found and
characterized.

I. INTRODUCTION

Autonomous oscillations often occur in nonlinear
chemical,1 hydrodynamic,2 and biological3 extended sys-
tems. The complex Ginzburg–Landau equation �CGLE�,

�tA = A + �1 + i���2A − �1 + i���A�2A , �1�

describes the slow modulations of the oscillations near a su-
percritical Hopf bifurcation in such media in terms of a com-
plex amplitude A and two real parameters, � and �.2,4–6 This
universal amplitude equation also qualitatively describes
phenomena beyond the small-amplitude regime in the vicin-
ity of the Hopf point.7,8 In particular, some of the dynamical
features of more complex oscillatory or excitable media are
similar to those exhibited by the CGLE.9,10

In two space dimensions the zeros of A are topological
defects. Often they are sources of spiral waves and constitute
organizing centers for the dynamics. In three space dimen-
sions the points where A vanishes generically form lines, or
vortex filaments, which can be the centers of spiral scroll
waves. The structure of the vortex filaments is determined by
the topology of the phase field arg A and their dynamics
follows from that of the full complex field A.

Results on the CGLE indicate that vortex filaments may
have complicated structures or exhibit complex dynamics.
For instance, untwisted vortex rings shrink and disappear in
a large region of the �� ,�� parameter space11 and complex
disordered states which arise from spontaneous stretching
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and bending of vortex filaments have been observed.13,14 The
linear stability of straight twisted and untwisted filaments has
been determined.15,16 Stable helical vortex filaments have
been shown to arise from straight filaments by a Hopf bifur-
cation as the initial twist on the filament varies; further in-
crease of the twist leads to a secondary Hopf bifurcation

producing supercoiled vortex filaments.16

While the literature on the three-dimensional �3D� dy-
namics of vortex filaments in oscillatory media described by
the CGLE is still relatively scarce, there are comparatively
many corresponding studies in 3D excitable media.17–21 Part
of this interest stems from the role that the dynamics of vor-
tex filaments may play in cardiac fibrillation.22–25 Both
simulations26 and experiments27 have shown that untwisted
vortex rings slowly drift and shrink in some parameter do-
mains. For other parameter values, such untwisted filaments
and rings may expand.26–40 Twisted vortex rings threaded by
vortex filaments have also been studied numerically and ex-
hibit similar complex behavior.41,42 Twisted vortex filaments
have been observed in experiments on the BZ reaction.43

Stable helical vortex filaments have been found in studies of
various reaction-diffusion models of excitable media.17,18,44

Simulations have shown that if an initially straight vortex
filament is given a certain amount of twist that exceeds a
critical value, the filament will adopt a helical form with
fixed radius.45

In this paper we investigate the structure of the vortex
filament solutions of the CGLE. In particular, we show that
one may observe a variety of filament types including helical
and superhelical structures as well as more complex solu-
tions comprising localized superhelical or zigzag pieces
separated by helical segments. We discuss the bifurcations
leading to these structures, varying the CGLE parameters
and imposed twist.

The outline of the paper is as follows: After a discussion
in Sec. II of some features of the CGLE and the topological
properties of closed ribbon curves, Sec. III considers the sta-
bility of straight untwisted and twisted filaments to bifurca-
tion to zigzag or helical structures. Full 3D simulations and a
2D projection of the 3D dynamics are used to investigate the
bifurcation structure. Section IV describes more complex
disordered regimes that are observed for large system sizes.
The secondary bifurcation of the helical solution to super-
coiled helical filaments is the topic of Sec. V, together with
the emergence of localized superhelical structures. Section
VI contains the concluding remarks. The appendices give the
details of the numerical methods used in our simulations.

II. PRELIMINARY CONSIDERATIONS

A. Parameter space of the CGLE

The “phase diagram” of the CGLE in one and two space
dimensions is rather well-known �Fig. 1�.46 Regions where
spatiotemporal chaos occurs have been delimited and similar
chaotic regimes are also observed in three dimensions. The
family of plane-wave solutions of wave vector k,

Ak = �1 − k2 exp�i��kt − k · x�� , �2�

with �k=−�+ ��−��k2, exists in any space dimension and
plays an important role in determining the structure of the
�� ,�� parameter space. These solutions are linearly unstable
for 1+���0 �Benjamin–Feir limit�.

In two space dimensions, the spiral solution with topo-
logical charge �= �1 plays a dominant role since solutions
with higher topological charge are unstable.47 Its general ex-
plicit form is not known but it can be written in polar coor-
dinates �r ,�� as

As�r,�,t� = F�r�exp i��st − �� + ��r�� , �3�

with �s=−�+ ��−��ks
2, where F�r� and ��r� are two real

functions whose asymptotic behavior for r→0 and r→	 is
limr→	 F�r�=�1−ks

2, F�r�
r when r→0, and ��r��ksr
when r→	, ks is the asymptotic wave number of the spiral
waves emitted by the core.47 Many properties of this solution
are known; for example, the limit of stability of the discrete
core modes �“core instability line”� has been determined.12–14

In the following study of the 3D case we restrict our-
selves to the region of parameter space where the spiral so-
lution is linearly stable, which implies stability of the core
and at least absolute stability of the plane-wave of wave
number ks�� ,��.6

B. Vortex filaments as closed ribbon curves

In two space dimensions, pairs of opposite-charge vorti-
ces are involved in the creation and annihilation of topologi-
cal defects, and the total topological charge must be zero in a
finite system with periodic boundary conditions. The 3D case
is more complicated. Assuming the topological charge of the
spirals in planes transverse to any vortex filament is �1,
only closed vortex rings, including straight filaments, can be
observed in a periodic box. The geometry of a vortex ring,
like that of any closed curve, can be described by the rota-
tions of the Frenet frame �t ,n ,b� along the filament curve

FIG. 1. �Color online� Parameter space of the 2D CGLE: the �=� line is the
mirror symmetry line. Below the Benjamin–Feir line 1+��=0 all plane
wave solutions of the CGLE are linearly unstable. Below the Eckhaus line,
the plane waves with the wavenumber of the spiral solution are absolutely
unstable. The core instability line, denoting where the discrete modes of the
spiral solution become linearly unstable, is at larger � values out of the
range covered in this figure.
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X�s� parametrized by the arc length s. Here t, n, and b are,
respectively, the tangent, normal, and binormal unit vectors.
The structure of the filament may be characterized by the
curvature ��s�= �dt /ds� and the torsion ��s�= �db /ds�.

For the vortex filaments of the CGLE, one must also
describe how the phase field is oriented with respect to the
Frenet frame. Thus, the vortex filaments of oscillatory media
are ribbons constructed from the filament curve X�s� and unit
vectors V�s� giving the direction to specific but arbitrarily
chosen values of the phase field at points normal to t�s�
making an angle  with, say, the binormal b.48 White’s
theorem,49

Lk = Tw + Wr = Twf + Twr + Wr, �4�

expresses the conservation law relating the �integer� link
number Lk, which represents half of the sum of signed cross-
ings of the two ribbon boundaries, to the sum of the twist Tw
and writhe Wr of the ribbon. Here the twist Tw= ���s�ds
+ ��d /ds�ds	Twf +Twr, may be decomposed into the
twist of the filament Twf and the ribbon twist Twr which is
the number of times the phase field is wrapped around the
binormal along the curve. The writhe,

Wr =
1

4�

 
 �t�t� � t�s�� · �X�t� − X�s��

��X�t� − X�s���3
dtds , �5�

quantifies the nonplanarity of the filament curve.
In the following, we will often consider infinite filaments

with special symmetries such that the torsion and curvature
are constant with s. This allows us to define densities of the
topological quantities and to write a local version of White’s
theorem. In simulations, the 2D stable spiral solution is used
to generate initial conditions with twist by shifting the phase
of the spiral along the z direction. The link density is a con-
served quantity as long as no filament reconnection events
occur.

C. Single straight twisted filament

Consider a straight, infinite filament oriented along the
z-axis, with a constant link per unit length �. The solution of
the three-dimensional CGLE for this case may be expressed
in cylindrical coordinates �r ,� ,z� as16

Af = �1 − �2F�r��exp i�� ft � �� + �z� + ��r��� , �6�

where r�=r�1−�2 and � f =�s�1−�2�−�2�, with �s, F, and
� given by the 2D spiral solution �3�. Below we shall study
the stability of this solution.

In a finite box of height Lz along z which is periodic in z,
as long as the filament is unbroken, the link number is con-
served and � is quantized by the box size,

Lk = 2�nt = �Lz �nt � Z� . �7�

If the filament is straight, the Frenet frame is degenerate. The
writhe is zero and one can choose to have Twf =0 and Lk
=Twr, so that � can also be seen as the �initial� phase twist
density. The conservation of the total link requires one to
consider � as an extra parameter of the problem in addition
to �� ,��, the usual parameters of the CGLE.

III. FIRST INSTABILITY: HELICAL AND ZIGZAG
SOLUTIONS

A. 3D simulations and characterization of solutions

We first present the results of 3D simulations of the
CGLE in a cylindrical box of height Lz, diameter Lx=Ly,
periodic in z with radial “outflow” boundary conditions in
the horizontal plane. Radial outflow boundary conditions are
discussed in Appendix A. We use a cubic lattice grid on
which the Laplacian operator is expressed by second order
finite differences. The time evolution is carried out using a
simple, explicit, first-order Euler scheme. This simple
scheme is most convenient given the large memory require-
ments of the 3D simulations. The position of the filament
was determined by interpolation in all �x ,y� planes of the
box, as discussed in Appendix B, since there is one defect
per slice. Initial conditions were constructed by phase-
twisting the 2D spiral solution for the same �� ,�� values nt

times along the z axis.
Consider first the zero-link, nt=0, case. For a large re-

gion of the �� ,�� plane, the initial state quickly relaxes to
solution �6�, i.e., the system merely takes into account the
amplitude, wavenumber, and frequency corrections with re-
spect to the 2D spiral solution. However in other parameter
regions the untwisted filament bifurcates to a zigzag
filament16 or to a disordered solution for large system sizes.
This latter bifurcation will be discussed separately and in
detail in Sec. IV.

Repeating this procedure for, say, �=1.7 and �=0, and
increasing the link per unit length �, the straight filament
remains stable up to some critical value �c. For larger �
values, �=4� /128 for instance, a helical vortex of pitch �h

�30 is formed �Fig. 2�, whose radius R grows and saturates
at a finite value R�2.62 �Fig. 3�. Note that �h	2� /�h��.
The radius of the helix is well defined since there is only one
defect for a fixed z. Knowing the position �xf�z , t� ,yf�z , t�� of
the defect for each position z, the radius as a function of z,
and t is defined by

R�z,t� = ��xf − �xf�z�2 + �yf − �yf�z�2. �8�

z

−→

FIG. 2. �Color online� Stable helical vortex for �=1.7, �=0, �=4� /128,
Lz=640 �the helical segment shown has length 200�, Lx=Ly =128 and dx
=1. A perspective view of the 3D isosurface �A�=0.6 colored by the phase
field �2�-periodic gray scale� is displayed. Note that �h�� ��h

=42� /640�.
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The frequency of the asymptotic �far field� waves also
changes from � f to �h. The helix itself rotates with constant
angular velocity � and any point on it moves along the z-axis
at a constant velocity v=� /�h. This velocity is just a phase
velocity: a localized perturbation merely diffuses, i.e., the
group velocity is zero. These results indicate that the straight
filament has undergone a �supercritical� Hopf bifurcation to
traveling waves. The direction of propagation and rotation is
determined by the sign of �, which breaks the z→−z parity
symmetry.

The curvature and torsion of the helical solution are con-
stant along the z-axis, � / �R�h�=�=�h / �1+R2�h

2�. We then
have44

Twf

Lk
=

�h

�
−

Wr

Lk
=

�h

��1 + R2�h
2

, �9�

and the ribbon twist is expressed as

Twr

Lk
= 1 −

�h

�
. �10�

For the case �=1.7, �=0, and �=4� /128 reported above,
this yields a negative ribbon twist which thus appears to
“compensate” for the torsion arising from the instability.

The 3D calculations present a number of difficulties that
hinder a detailed investigation of this bifurcation. As the bi-
furcation point is approached, the transient time diverges so
that large-scale 3D simulations are especially lengthy. The
finite system size and periodic boundary conditions along z
imply that only quantized values of the twist density can be
investigated. In addition, again due to the finite system size,
the system modes have a discrete set of wave vectors. The
system geometry can influence the selected unstable
wavevector and nonlinear coupling can lead to chaotic be-
havior which masks the true dynamics. For these reasons we
have constructed a 2D projection of the 3D dynamics that
allows us to explore the helix transition in detail.

B. Equivalent 2D equation

In all the 3D simulations reported above, we observed
that the helical symmetry,

A�r,�,z,t� = B�r,� = � − �hz,t�ei��−��h�z, �11�

was roughly preserved at all times, and certainly in the
asymptotic state. �Note that time does not appear in the ex-
pression for the angular variable � in agreement with the fact
that the group velocity of the helix is zero.� Substitution into
the CGLE yields50

�B

�t
= �1 − �p

2 − i��p
2�B − �1 + i���B�2B

+ �1 + i���2B + �h
2 �2B

��2 + 2i�h�p
�B

��
� , �12�

where �p=�−��h can be interpreted as the phase twist den-
sity remaining after the helix has grown. In this 2D equiva-
lent equation the pitch of the helix appears as an additional
parameter, not determined by the instability mechanism.

Several observations can be made concerning the prop-
erties of the solutions of this equation in limiting cases.
When �h=0, one has a twisted straight filament and Eq. �12�
takes the form

�B

�t
= �1 − �p

2 − i��p
2�B − �1 + i���B�2B + �1 + i���2B . �13�

Under appropriate rescaling of space and time this equation
reduces to the 2D CGLE with the same coefficients � and �.
Consequently, for values of � and � outside the core insta-
bility region, straight twisted solutions must have neutral sta-
bility and are delocalized since they correspond to a finite
change of the solution at any space point. In the �=0 case,
the 2D equation is invariant under the change �h→−�h and
the eigenvalue spectrum must be symmetric.

1. Numerical implementation
of the 2D equivalent equation

Equations like Eq. �12� are difficult to simulate; in par-
ticular, strong numerical instabilities arise from the term
�h

2��2B /��2�. We have developed an integration method, de-
tailed in Appendix C, that permits efficient simulation of Eq.
�12� using a variable time step and a special spatial grid for
circular domains.

The time evolution of the radius of the helix is shown in
Fig. 4 for �=1.7, �=0, �=4� /128, �h=8� /128 using the
2D code with radial outflow boundary conditions. In this
simulation, the initial condition was the �stable� spiral solu-
tion of the 2D CGLE at the same values of � and �. One first
observes a short transient during which the instantaneous
growth rate ��t� oscillates, reflecting the adjustment of the
spiral wavelength, frequency, and amplitude to the 3D val-
ues. To remove this transient behavior, if necessary, it is
possible to derive a 1D equivalent equation from Eq. �12�
imposing the condition that the defect position is at r=0.
This transient is followed by the rapid convergence of ��t� to
its asymptotic constant value, permitting a very accurate
measure of its magnitude and, thus, of the real part of the

FIG. 3. �Color online� Simulation of the 3D CGLE for the same parameters
as in Fig. 2. Growth of �R�z the average radius along z �upper curve� and its
rms �R �lower curve�. Note that �R tends to 0, signaling convergence to the
same radius for all z at late times.
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eigenvalue of the most unstable mode characterizing the lin-
ear instability. �Appendix C gives a more detailed compari-
son with 3D results.�

If initial conditions with spiral defect not located at �0,0�
are used, an accurate estimate of negative eigenvalue of the
less stable mode can be obtained.

2. Results for fixed �, �, and �
We now use the equivalent 2D equation to investigate

some detailed features of the helix bifurcations of the vortex
filaments that are difficult to determine from full 3D simula-
tions. In particular, we make use of the fact that � and �h are
now parameters and vary them continuously. This enables us
to measure the most unstable �or least stable� eigenmode as a
function of �h at fixed �.

For this purpose, we write the series expansion,

B�r,�,t� = �
n=−	

+	

Zn�r,t�ein�. �14�

In the linear regime, the Zn reduce to �An�r�+ iBn�r��e�nt,
where �n=�n+ i�n are the eigenvalues, the solutions of the
linear problem. The An and Bn are easily obtained using Fou-
rier decomposition,

Zn�r,t� =
1

2�
�

0

2�

B�r,�,t�e−in�d� . �15�

The mode n=� is the reference solution �corresponding
to the 3D solution �6��. Our results show �Fig. 5�b�� that the
most “dangerous” mode is always the n=0 mode, confirming
the assumption made by Nam et al.15 A posteriori, this is not
surprising in the parameter region where the straight filament
is unstable, since this mode is the only one leading to a
displacement of the central filament.

We first focus on the parameter values �=1.7 and �=0,
and fix the link per unit length at �=4� /128. Varying �h, we
computed � as well as the corresponding 2D eigenmode. The
���h� data suggest the existence of two branches in the spec-
trum �Fig. 5�a��, a fact confirmed by the change in the struc-
ture of the eigenmode �Fig. 5�b��. The central branch con-
tains the neutral mode at �h=0 mentioned above. All modes
in the central branch are not localized. The outer branch
contains exponentially localized modes responsible for the
instability of the solution. As �→0, the spectrum becomes
symmetric with respect to �h=0. �Further discussion of zig-
zag solutions and disordered states are given in Sec. IV.�

In the nonlinear stage, saturation occurs, as shown pre-
viously in Fig. 4. Varying �h, the maximum saturated radius
does not appear at the value corresponding to the most un-
stable mode �compare Figs. 5�a� and 5�c��. Nevertheless,
both our 2D and 3D results indicate that the stable helix has
a pitch corresponding to the most unstable linear mode. As

FIG. 4. �Color online� Simulation of the 2D equivalent equation �12�. Ra-
dius R�t� vs time for �=1.7, �=0, Lk=4� /128, �h=8� /128 in a circular
domain of radius Nr=45, radial step dr=1, with radial outflow boundary
conditions. �Left inset� Oscillatory relaxation of the instantaneous growth
rate ��t� during the early linear regime. �Right inset� Same as main graph in
lin-log scales showing the exponential growth in the linear stage.

FIG. 5. �Color online� Stability analysis of the straight filament via the equivalent 2D equation ��=1.7, �=0, �=4� /128�. �a� � vs �h �in units of 2� /128�.
The lines are polynomial interpolations and should be regarded simply as guides to the eye. A detailed study of the associated modes �panel �b�� shows the
existence of two separate branches. �b� Structure of the least stable or most unstable eigenmode for �h=0.75 �top� and �h=1.4 �bottom� �black solid lines: A0;
red dashed line: B0; blue dotted lines: ��Z0��. �c� Radius of the saturated helix vs �h �in units of 2� /128�; the solid line is an eighth-order polynomial
interpolation only intended as a guide to the eye.
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the threshold is approached, one observes that the difference
between the two radius values decreases.

We now study in detail the instability of the straight
filament as the link per unit length � increases. Keeping �
=1.7 and �=0 fixed, we observe that the filament becomes
unstable at �c�1.12� /128. The maximum growth rate �max

varies smoothly with � across the threshold and in the entire
range of � values we have investigated �Fig. 6�a��. This al-
lows a precise estimation of the position of the threshold and
is less sensitive to numerical problems close to the threshold.
The saturated radius shows the expected behavior near a su-
percritical Hopf bifurcation, R2���−�c� �Fig. 6�b��.

We observe that the pitch �h decreases with increasing
���c �Fig. 6�c��, and thus the magnitude of Twr increases.
Finally, the writhe of the helix �Fig. 6�d�� is observed to vary
linearly with � in the vicinity of �c. Using Eq. �9�, this prop-
erty is expected as long as R2
 ��−�c� and lim�→�c

�h=�h
c

�0. As already mentioned in Ref. 16, the conversion of a
constant proportion of the excess twist into writhe is akin to
the behavior of elastic rods �see Refs. 48 and 51, and refer-
ences therein�.

C. Linear stability region in parameter space

We now discuss the extent to which the results presented
above for �=1.7 and �=0 are representative of other param-
eter values.

The untwisted ��=0� filament solution has a special sta-
tus: it does not break the z→−z parity symmetry. Accord-
ingly, the spectrum is then symmetric �Fig. 7�. As shown
below, this has consequences in the nonlinear stage of its
instability. The �c�� ,��=0 curve was first determined by
Aranson et al.12 using a reduced linear stability analysis
similar to that employed by Nam et al.15 These two studies
and our partial results presented in Ref. 16 are in accord. The
�c=0 line lies well within the 2D spiral core stability region
�Fig. 9 in Ref. 14 and Fig. 2 in Ref. 15�: the 3D untwisted
filament solution is less stable than the 2D spiral solution.

For fixed values of �, Nam et al.15 determined the loca-
tions of the curves �c�� ,��=Cst marking the stability limits
of solution �6�. As discussed in Refs. 15 and 16, this limit
defines a large area, removed from the core instability region
and the absolute instability limit of the plane waves emitted
by the 2D spiral solution, in which straight filaments are
unstable.

For nonzero values of the link density, the symmetry of
the eigenspectrum is broken. A new situation may occur
when only a single branch of the spectrum is unstable. Only
one unstable mode is enough to produce an instability of a
straight filament, but the existence of two families of un-
stable modes will influence the nature of the dynamical re-
gimes observed �this is discussed in Sec. IV�. Figure 8 shows
symmetry breaking and the existence of two different insta-
bility regions, depending of the number of unstable branches.
When the link density increases, the size of the intermediate
region also increases.

An instability region lying close to the �=� line was
reported in Ref. 15. This region does not exist for �=0. For
values of the link density considered by Nam et al.,15 this
region reconnects with the instability region described previ-
ously for larger values of �. Using the 2D equivalent equa-

FIG. 6. �Color online� Linear stability and nonlinear fate of the straight
filament as a function of � �in units of 2� /128� for �=1.7, �=0, using the
2D equivalent equation. �a� Real part of the eigenvalue. The threshold is
approximately the same as that obtained using the radius �panel �b��. �b�
Radius and square radius �inset� of the saturated helix. �c� Pitch of the helix.
�d� Writhe of the helix.

FIG. 7. �Color online� Same as Fig. 5�a� but for �=2.25, �=0, �=0. The
lines are polynomial interpolations and should be regarded simply as guides
to the eye. A detailed study of the corresponding modes shows the existence
of two separate branches. Notice the symmetry of the eigenspectrum with
respect to �h=0.
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tion, we carried out a study in the linear stage of the evolu-
tion �Fig. 9�. This new region is of particular interest,
because the asymptotic wave number of the spiral vanishes
along the �=� symmetry line and interactions become long
range.6 Also, the nature of the instability in the nonlinear
stage of the evolution is different and does not lead to a
stable helical filament �see next section�.

The instability region was studied carefully using large
simulation domains and long integration times. In addition,
we attempted to determine whether the region always exists
for nonzero values of the link density, and if the reconnection
between the two �sub-�regions of instability always exists. In
carrying out this study, a new numerical difficulty was en-
countered, since we observed that �h

c →0 when ��−��→0.
Because of the finite size of the spiral core and of the in-
creasing wavelength of the emitted waves, it was very diffi-
cult to obtain an accurate numerical estimate of �h

c. We were

not able to obtain definitive answers to the above questions
and they remain as open problems for further study. The use
of a modified version of our 2D program using a variable
grid size in the radial direction could prove useful in this
connection.

D. Nonlinear stage

1. Bounded versus unbounded growth for �Å0
Nam et al.15 did not draw any conclusions about the

saturation of the helical solution in the instability region for
low values of �. They observed saturation but suspected that
boundary effects associated with the small size of their simu-
lation box could play a role. We investigated this point in
both the linear and nonlinear stages of the evolution.

In the nonlinear stage, our simulation of the 2D equation
�12� did not show saturation of the instability in the region
around the �=� line, in contradiction with the 3D simula-
tions they report. Our simulation of the 3D CGLE in a peri-
odic box of size comparable to that used in Ref. 15 did yield
a saturated solution, but using larger simulation boxes and/or
outflow boundary conditions we found that saturation does
not occur, or is due to interactions with mirror filaments in
the case of periodic boundary conditions.

The simulation of the 2D equivalent equation allows one
to study the linear and nonlinear stages of the evolution of
the helical solution growing in very large domains. We have
determined the most unstable mode for the case shown in
Ref. 15 �Fig. 4�b��, namely, �=0.3, �=−0.2, �=4
�2� /128��0.196 in our notation. We find that the pitch of
the most unstable helix is about 2.41 �2� /128�. Figure 10�a�
shows the radius versus time starting from a straight fila-
ment. One can see that there is no sign of saturation until the
defect is close to the boundary, where growth is arrested and
the defect rotates along the disk perimeter. Figure 11 shows
the corresponding phase and amplitude fields at different
times. One can remark that in the third and fourth panels the
wavelength becomes very large. This corresponds to the time
where the rotation of the defect changes sign. We have
checked that the point where this occurs is not dependent of
the system size. Note that �h�� in this region, which im-
plies that Twr�0. However there are other cases where
Twr�0 and a saturated helix is observed �Fig. 10�b��. These
results confirm the existence of a significant change in the
nonlinear regime of this instability for small values of �,
even if its origin is still unresolved.

We performed a systematic study of the problem using
the 2D equivalent equation, scanning the �� ,�� parameter
space, keeping � constant and varying �h. “Unbounded
growth” was concluded when at least one value of �h led to
a radius of more than half the simulation domain radius. This
criterion could be improved, by first localizing the most un-
stable mode, and then checking if it leads to saturation or
not. In addition, full 3D simulations must be performed to
extend 2D simulation results to the 3D equation.

Figure 12 summarizes the results of our 2D study. It
shows the existence of a very large domain of unbounded
growth. Since this unsaturated region corresponds to the left
part of the unstable region, it confirms that the instability
region previously described is probably the result of the re-

FIG. 8. �Color online� Systematic study, via the 2D equivalent equation, of
the linear stability of the filament solution for �=1 �2� /128�. The straight
filament is stable to the left of the thick cyan line �triangles�. Between this
line and the thick magenta line �diamonds�, there is one unstable branch in
the spectrum �with pitch of the same sign as the link density�. To the right of
the magenta line, there are two unstable branches in the spectrum. The red
solid line �circles� in the middle is the instability limit for �=0 from Ref. 15,
which is in agreement with our results.

FIG. 9. �Color online� Same as Fig. 8, but for �=4 �2� /128�. The stability
is reduced to the left region between the two thick cyan lines and the abso-
lute instability limit of the emitted waves �Eckhaus 3D�, which is shifted
relative to its location for �=0, in agreement with Ref. 15.
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connection of two different regions of instability. Further
studies will have to be carried out to improve our under-
standing of the nature of these instabilities in both the linear
and the nonlinear stages of the evolution. In particular, the
reconnection of the regions should be investigated for small
values of the link density. These issues are difficult to resolve
using numerical simulations and will require variable radial
grid size algorithms and long simulation times.

2. Zigzag solutions for �=0 in small systems
When �=0, symmetry arguments �z→−z parity� de-

mand that +z- and −z-going traveling waves arise from the
instability �symmetry of the eigenspectrum with respect to
�h=0 in Fig. 7�. Generically, in the nonlinear stage, one ex-
pects either one set of traveling waves to eventually domi-
nate, or a standing wave pattern to form in which the two
corresponding amplitudes are equal. This usually depends on
the effective nonlinear coupling coefficient between the two
coupled 1D CGLE acting as amplitude equations in the vi-
cinity of threshold.52,53

In Ref. 16, using 3D simulations with system sizes in the
z direction of about 10–20 �h of the most unstable helix in
the linear stage of the evolution, we showed, for �=0, that
the instability saturates and leads to “zigzag” patterns
�Fig. 13 in Ref. 16�. These z-periodic structures with wave-
length �zz are flat, and rotate uniformly about the z-axis with
a frequency �zz. Although we have not explored the vicinity
of the �c=0 line completely, all of our results with similar
domain sizes show zigzag filaments and not helices. This is
in contradiction with the results of 3D simulations presented
by Aranson et al.,14 who show a regular helical filament aris-
ing from the instability. This may be due to their use of
special perturbations of the solution �3� which break the z

→−z symmetry. The Hopf bifurcation with �=0 is an O�2�
Hopf bifurcation and standing wave solutions must respect
this spatial reflection symmetry.54

It is easy to show that the zigzag filaments are the ana-
logs of standing waves, i.e., they correspond to the superpo-
sition of two helices. Consider the superposition of two he-
lices of opposite pitch ��h, same radius Rh, and same
angular velocity �, parametrized by �x� ,y� ,z� according to

FIG. 10. �Color online� Unbounded and bounded growth in simulations of
the 2D equivalent equation. �a� Radius R and log R �inset� vs time t for �
=0.3, �=−0.2, �=4 �2� /128�, �h=2.4 �2� /128�. This pitch is close to the
most unstable mode. The horizontal dashed line corresponds to the boundary
limit �circular domain of radius 128�. �b� Same as �a� but for �=0.5,
�=−0.1, �=4 �2� /128�, �h=3 �2� /128�. This pitch is also close to the
most unstable mode. One observes the saturation of the instability although
Twr�0.

FIG. 11. Amplitude field �right� and phase field �left� at times t
=17 000,18 000,19 000,20 000,21 000,22 000 �from top to bottom� dur-
ing the same run as in Fig. 10�a� ��=0.3, �=−0.2, �=42� /128, �h

=2.42� /128�. The rotation of the core changes sign around t=20 000.
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�x�,y�� = Rhei���z,t� = Rhei��t��hz+�0
��. �16�

In the linear stage of the instability �near threshold�, one
expects to observe the superposition of these two helical
modes:

�xzz,yzz� = 2Rh cos�hz +
�0

+ − �0
−

2
�

� expi�t + i
�0

+ + �0
−

2
� , �17�

which describes a flat zigzag filament of wavelength �zz

=�h, maximum radius Rmax=2Rh, rotating about the z-axis
with frequency �zz=�. One can further calculate that, near
threshold, the z-averaged radius of a zigzag filament should
be 2Rmax /�.

Moving away from the threshold, one observes the ex-
pected behavior for the amplitude near a Hopf bifurcation,
i.e., �R2����−�c�. Figure 14 shows the average radius
along z, �R�z, versus �, along with the expected value assum-
ing superposition of the saturated helical modes, 4Rh /�. As
expected, far from the threshold this hypothesis is no longer
true, indicating that nonlinear effects come into play and the

solution is no longer a superposition of two independent
helical modes.

IV. DISORDERED STATES IN LARGE SYSTEMS

The previous results show that when only one branch is
unstable in the spectrum, one observes either stable finite-
radius “helices” or unbounded growth of some helical mode
�using the 2D equivalent equation�. In 3D, the stable helices
can be observed in arbitrarily long domains. When two
branches are unstable the 2D equation shows finite-radius
“helices.” In this section we show that, however, 3D simula-
tions in long domains lead to spatiotemporally disordered
states at the nonlinear level. This is true even for �=0 when
the two branches become unstable simultaneously: the zig-
zag solutions described above in small systems are actually
unstable in larger domains �see below�.

We now describe these disordered states by reporting in
detail our observations on two long simulation runs per-
formed on very large domains, one for �=0 and another at a
nonzero value of �.

A. �=0

When �=0 the two branches of the spectrum become
unstable simultaneously. For small systems, as reported
above, stable zigzag solutions are observed in small systems.
But significantly increasing the system size up to more than
100 wavelengths of the most unstable helix, one observes
disordered states.

Figure 15 shows the final filament after an integration
time �t=30 000 for �=2.25, �=0, and a system size 4096
�120�h in the z-direction. One can distinguish at least 4 or 5
regions inside which simple helical or zigzag solutions are
observed �Fig. 16�. The helical solutions can be further dis-
tinguished by the sign of their local twist density and of their
local pitch. Thus, the region from z�3400 to z�800
�boundary conditions are periodic in z�, is labeled “helix++”
in Fig. 16 because both its twist density and its pitch are

FIG. 12. �Color online� Same as Fig. 9, but at the nonlinear stage. The thick
dashed cyan line which closes the stability region now extends to larger �
and � values. It separates unbounded growth �as in Figs. 10�a� and 11� from
finite asymptotic radius helices.

FIG. 14. �Color online� �R�z vs � for �=0, �=0. The square symbols cor-
respond to 3D simulation results for Lx=128, Ly =128, Lz between 256 and
512, and dx=1. The circles correspond to the linear superposition of the 2D
solutions �valid close to the threshold, �c�2.05�.

FIG. 13. �Color online� 3D isosurface colored by the phase field showing a
flat zigzag asymptotic solution for �=2.5 and �=0.
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positive. Similarly, the second helical region �from z�1050
to z�2000, is labeled “helix−−” because both quantities are
negative.

Such �local� topological quantities are useful to describe
the various local states, since they are related to the globally
conserved quantities that enter as new parameters of the sys-
tem imposed by the initial conditions. Figure 16�c� shows the
local link density along the filament of Fig. 15. There are
large fluctuations in the zigzag regions associated with the
discontinuity of quantities like the filament phase. Even if
the integral over z is equal to 0, the local link density is
nonzero almost everywhere; in this regime, the global sym-

metry is broken locally. Figure 16 also shows that the pitch
of the helix does not always have the same sign as the local
link density. The selection mechanism for the value of the
local link density, ��0.25 �2� /128�, is unresolved and may
be influenced by finite size effects. We expect that increasing
the system size further will allow stronger symmetry break-
ing and larger values of the local link density.

Next, we study this regime from the spatiotemporal
point of view. In Fig. 17, which shows spatiotemporal plots
of �d� /dz�z , t���z and ��z

�d� /dz�, symmetry breaking is ob-
vious. The pattern obtained by inverting “black” and “white”

FIG. 15. Simple perspective plot of the 3D filament curve obtained for �=2.25, �=0, �=0, Lx�Ly �Lz=128�128�4096, t=30 000. In this disordered state,
different regions can be distinguished �see text�.

FIG. 16. �Color online� Detailed analysis of the filament curve shown in Fig. 15. From top to bottom: �a� radius R�z� �black dots� and locally averaged radius
�R�z���z �red solid line, �z=100�. �b� Same as �a� but for phase gradient d� /dz. The filament is roughly composed of two different regions where the filament
rotates in opposite directions. Regions of large fluctuations are associated with flat helices or twisted zigzag solutions. �c� Same as �a� and �b� but for the local
link density along the filament. Note the large fluctuation in the zigzag region associated with the discontinuity in quantities like the filament phase. The local
link density is almost nonzero everywhere even if the total link is zero. �d� Local average of the local pitch ��h=d� /dz��z. Note that the observed pitch �4
�2� /128� corresponds to the most unstable mode in Fig. 7.
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regions is not the same. Moreover, the temporal evolution of
the average value of d� /dz oscillates between 0 and 0.2,
which is the pitch of the most unstable mode. This leads us
to predict that two disordered states may exist after symme-
try breaking in the nonlinear stage of the evolution. How-
ever, the system is clearly too small, since we observe only
two regions coexisting in z. Simulations should be performed
with larger system sizes and longer integration times to draw
firm conclusions about these system states.

Figure 18 shows the spatiotemporal evolution for the
locally averaged radius, its rms and the temporal evolution of
the average values of these quantities over the system size.
The zeros of the radius are indeed splitting points for left and
right propagating waves. This pattern resembles some 1D
spatiotemporal intermittency regimes with coexisting plane
waves and holes viewed as local structures.8,46 In our case,
“plane waves” correspond to families of helical solutions,
and a hole corresponds to a localized depression of the radius
�as, for instance, at t=30000 around z�2250 in Fig. 16�.
This picture of the dynamics is also suggested by the tempo-
ral evolution of the radius at a given position in z=z0 �bottom
panel�, where the average value is defined, but large varia-
tions are observed locally. Again the system is too small to
draw definitive conclusions about the existence of a spa-
tiotemporal intermittency regime.

B. �Å0

For �=2.25, �=0, and �=−1 /8 �2� /128� both branches
of the spectrum are unstable but the growth rates are not
symmetric. Starting from a straight filament, one already ob-
serves symmetry breaking during the linear stage of the evo-
lution as can be seen in Fig. 19. Figure 20 plots the filament
curve after a run similar to that in Fig. 15, and Fig. 21 plots
local quantities like those in Fig. 16. We can see, as observed
for the �=0 case, the coexistence of different local solutions.

FIG. 17. �Color online� Time-evolution of various quantities during the run
leading to the solution shown in Fig. 15. �Top two panels� Spatiotemporal
diagrams �time is running from left to right� showing �d� /dz�z , t���z and
��z

�d� /dz�. �Bottom two time-series� Average and rms of these quantities
as a function of time. Parameters: �=2.25, �=0, �=0, �z=100, t� �1
−30000�, z� �1:4096�. A linear gray scale is used between instantaneous
min �black� and max �white� values.

FIG. 18. �Color online� Same as Fig. 17, but for quantities related to the
radius of the filament. From top to bottom: �R�z , t���z, ��z�R�, �R�z , t��z,
�z�R�, and R�z0 , t�.

FIG. 19. �Color online� Time series of �d� /dz�z �top� and �z�d� /dz� �bot-
tom� for �=2.25, �=0, and �=−1 /8 �2� /128�. 3D simulation in a domain
of size Lx�Ly �Lz=128�128�4096 �see following figures�. Symmetry-
breaking occurs during the linear stage.
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Moreover, the spatiotemporal diagrams in Fig. 22 clearly
show the symmetry breaking between the different solutions.

From an examination of the radius in Fig. 22 we see that
localized holes with zero radius are no longer observed; in-
stead there are many regions with large rms, characteristic of
flat helices and zigzag solutions. It is again useful to focus on
local link density as a relevant variable in order to identify
which “local state” appears as a function of this quantity.
Figure 21 shows the local average of the local link density
and the pitch. As in the �=0 case, we observe regions where
the local link density is no longer equal to the total link
density. From a careful examination, one can even notice that
regions with opposite link density are shifted to the right

relative to regions where the pitch changes sign �i.e., ahead
of the wave propagating to the right on spatiotemporal dia-
gram in Fig. 22�.

For �=2.05, �=0, and �=1 /8 �2� /128�, which is close
to the parameters used above, only one branch is unstable
and the instability of the straight filament saturates, leading
to regular helices. We carried out a 3D simulation in this
regime, allowing the system to reach a stable, regular helix.
Then, switching � back to 2.25, we observed that the regular
helix solution is indeed unstable and subsequent evolution
lead to a disordered state very similar that obtained starting
from a straight filament �not shown�. In addition, we have
been able to generate an helix with the opposite twist and the

FIG. 20. Simple perspective plot of the 3D filament curve obtained for �=2.25, �=0, �−1 /8 �2� /128�=, Lx�Ly �Lz=128�128�4096, t=30 000. In this
disordered state, different regions can be distinguished �see text and following figure�.

FIG. 21. �Color online� Analysis of the filament presented in Fig. 20. From top to bottom: �a� radius R�z� �black dots� and locally averaged radius �R�z���z

�red solid line, �z=100�. �b� Normalized rms radius ��z�R� / �R�z , t���z calculated over �z. The dashed line is at � / �2�2��0.48, the value for a flat zigzag.
�c� Locally averaged link density �dotted line at the mean level�. �d� Locally averaged pitch.
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same link density by inverting the previously obtained solu-
tion under the transformation z→−z and adding twice the
link density as the phase twist. Again, we observed the in-
stability of this initial condition, but the long time evolution
did not clearly show that the final state is exactly the same.
Large fluctuations observed in the average values suggest
that the difference may be due to finite size effects. To sum
up, we observed the instability of all initial conditions com-
posed of “pure” local states with constant link density, and
they all lead to the appearance of at least one, and perhaps
two disordered states.

V. FURTHER INSTABILITIES: SUPERHELICAL MODES

In this section, we investigate the instabilities of the
stable helix solutions found when the spectrum of the
straight filament solution possesses one unstable branch. The
following structures can thus be seen as emerging from the
secondary instability of the straight filament.

A. Regular superhelices

As the twist density increases, �stable� helical filaments
undergo further bifurcations to more complex coiled forms.
A secondary supercritical Hopf bifurcation leads to a super-
coiled structure described earlier.16 The complete character-
ization of this supercoiling transition requires large simula-
tion domains and careful treatment of the boundary
conditions. We have performed extensive simulations of this
bifurcation on large 3D cylindrical domains ��=64, Lz

=1024–2048� using radial outflow boundary conditions and
periodic boundary conditions along z.

1. Linear regime
The appearance of this new attractor is associated with

the instability of the helix solution. There is no simple sym-
metry which can be used to derive a 2D equivalent equation
but one can use the 2D equations to create an initial state for
the 3D simulation which is as close as possible to the helix
solution. One can see in Fig. 23 �middle and bottom� the
destabilization of the 3D helix with �=88 �2� /2048�, and
�h=105 �2� /2048�. This figure also shows a spatiotemporal
representation of the function ��z , t� defined as follows:

��z,t� = 0 if ��/�z � 0,

�18�
��z,t� = ��z,t� otherwise,

where ��z , t� can be determined from the equations,

xf�z,t� − �xf�z�t� = R�z,t�cos���z,t�� ,

yf�z,t� − �yf�z�t� = R�z,t�sin���z,t�� .

This function allows one to see wavelengths associated with
the helix �small loops� and the superhelix mode �large loops�
at the same time.

Returning to the linear regime, one can extract the real
part of the eigenvalue of the most unstable mode. This was
done by fitting the function �R�z�t� to the form Rh+Cst 10�t

for t� �t1 , t2�. We used t1=200 as a lower bound for the
interpolation value assuring that the initial condition gener-
ated from the 2D solution has relaxed to a realistic 3D solu-
tion. Then the upper bound was fixed such that

�R�z�t2� − �R�z�t1�
�R�z�t1�

� 0.1 � 1. �19�

This ensures that the system is still in the linear regime,
independent of the value of �R�z�t1�. The inset of Fig. 23
shows the results of this procedure applied to �R�z�t�. The
final result is presented in Fig. 24, where � versus �, keeping
the other parameters constant, is shown. It leads to the esti-
mate ��5�0.3 �2� /128� for the position of the threshold.

2. Nonlinear regime
The wavelength of the superhelical mode appearing in

the early stages of the evolution is smaller than that observed
in the asymptotic state �Fig. 23�. To investigate the nonlinear
selection of wavelengths, we performed a simulation with
the same parameter values but starting from a straight fila-
ment �Fig. 25�. One can observe in this case that the wave-

FIG. 22. �Color online� Time-evolution of various quantities during the run
leading to the solution shown in Fig. 20. �Top four panels� Spatiotemporal
diagrams �time is running from left to right� showing �d� /dz�z , t���z,
��z

�d� /dz�, �R�z , t���z, and ��z�R� ��z=100�. A linear gray scale is used
between instantaneous min �black� and max �white� values. �Bottom time
series� �d� /dz�z and �z�d� /dz�. Parameters: �=2.25, �=0, �=−1 /8
�2� /128�, Lx�Ly �Lz=128�128�4096, t=1−30 000.
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length which emerges is the same throughout the saturation
regime. The behavior seen starting from a helix can be
viewed as an intermediate step needed to transform a helix
into a superhelix. We also noticed that moving closer to the
threshold the destabilization of the helical solution always
leads to a transient state with a smaller wavelength.

The time needed to reach the asymptotic state �for in-
stance, characterized by the average radius and its rms� is
very long compared to the time that the system spends in the
linear regime �Fig. 26�. Consequently, one can study only a
few cases to characterize the second instability �Fig. 27�. As

discussed in Ref. 16, we are faced with a secondary Hopf
bifurcation even if the nonlinear stage appears to be more
complicated.

B. Localized superhelical loops

Increasing even further the link per unit length, one may
observe more complex solutions comprising localized super-
helical regions and long helical segments. These complex
structures can emerge spontaneously starting from a straight
filament �Fig. 28�, and coexist with the stable superhelical
solution: decreasing the link per unit length, one observes
their persistence �Figs. 29 and 30�.

The identification of localized helical and superhelical
segments suggests that we can characterize the different
pieces of the filament in terms of a link density. Although the
writhe is a global quantity, we can split the double integral in
Eq. �5�, leading to the following definition of a link
“density:”

d��s� = ��s� +
d�

ds
+

1

4�

 �t�t� � t�s�� · �X�t� − X�s��

�X��t� − X�s���3
dt .

�20�

The link density computed in this way for the complex fila-
ment displayed in Fig. 29 is shown in Fig. 31, along with the
helix to superhelix bifurcation threshold value. One can see
that the localized region where the link density exceeds the
threshold value corresponds to the superhelical segment of
the filament curve.

Crudely, the local link value within a superhelical seg-
ment is approximately constant. This leads one to speculate
that the number of such objects per unit length must vary like
1 / ��−�c��, where �c� is the secondary bifurcation threshold. It
then follows that the average lengths of the helical segments
diverge as � approaches �c�. This is confirmed by the data in
Table I which shows the number of localized structures as a
function of �.

FIG. 23. �Color online� Spatiotemporal representation of ��z , t� �top�, mean
radius �R�z �middle�, and its rms �R �bottom� showing the destabilization of
the helix solution ��h=1052� /2048 and �R�z=Rh�2.65� for �=1,
�=−0.5, �=882� /2048. Time is running from left to right. The cylindrical
lattice size is �=64 �half of the diameter� and Lz=2048. The asymptotic
wavelength is about twice that of the superhelical mode appearing in the
saturation �or nonlinear� regime �T�8000�. �Inset� Linear stage associated
with the exponential growth of �R and �R�z−Rh. The dashed line delimits the
domain corresponding to the linear regime following the criteria defined in
Eq. �18�, t2�950. The thin line is the result of the interpolation described in
the text.

FIG. 24. �Color online� Real part of the eigenvalue of the most unstable
mode of the helix solution vs � �in 2� /128 units�. Parameter values: �=1,
�=−0.5, 3D simulation with �=64, Lz=2048, and dx=1. The pitch of the
helix used for the initial condition corresponds to the most unstable mode of
a straight filament. Extrapolating these values gives an estimate of the
threshold of the second instability around ��5�0.3 �2� /128�.
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Figure 31 shows that the link density of localized super
helices is about 8�2� /128� and 10�2� /128�. It would be
interesting to increase the link density up to and above this
value, but in this region of the parameter space, simulations
are more difficult to carry out.

VI. CONCLUSION AND DISCUSSION

To summarize, we have studied the structure and dynam-
ics of the vortex filaments that form the cores of scroll waves
in the three-dimensional complex Ginzburg–Landau equa-
tion, focusing on the role that twist plays in determining the
bifurcation structure in various regions of the �� ,�� param-
eter space.

As the twist or link density � increases �for � and �
values at which the two-dimensional spiral solution in
stable�, initially straight filaments first undergo a Hopf bifur-
cation to helices. Using an equivalent 2D equation assuming
helical symmetry, we have been able to carefully study this
bifurcation, revealing the existence, near the �=� line for
large-enough � values, of a region where this instability is
unbounded. Furthermore, our detailed analysis has shown
that saturation, when it occurs, leads to regular helices when
the linear spectrum of the instability possesses only one un-
stable branch. When two unstable branches are present �ei-
ther by symmetry when �=0 or far enough from the stability

FIG. 25. Spatiotemporal representation of ��z , t� for the same parameter
values as Fig. 23 but starting for a straight filament. Time runs downward
from 0 to 28 800 �notice that this simulation is 3.6 times longer than that in
Fig. 23�. The wavelength of the superhelical mode is the same at short and
long times. The small modulation propagating through the system is char-
acteristic of a weak finite size effect.

FIG. 26. �Color online� �R�z and �R vs time for the same simulation as in
Fig. 25. One can see that the saturation regime is long compared to the
linear regime and requires very long simulation times for its
characterization.

FIG. 27. �Color online� Average radius vs � for �=1, �=−0.5. The lower
curve �plain circles� corresponds to the helical solution, and the upper curve
�plain diamonds� to the superhelical solution.
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boundary when ��0�, no regular structures are observed in
large systems. On the other hand, we showed the existence of
spatiotemporally disordered regimes where rather regular he-
lical and zigzag regions compete in a way reminiscent of
spatiotemporal intermittency.

We have also shown that the regular helix solution un-
dergoes a secondary Hopf bifurcation when � increases fur-
ther, leading supercritically to regular supercoiled filaments.
We also found indications that these superhelices are them-
selves subcritically unstable to—and thus may coexist
with—configurations where a few localized superloops sepa-
rate otherwise regular helical regions.

Throughout the paper, we have characterized the struc-
tures observed via topological quantities suitable for twisted
ribbons. We have in particular noticed that the pitch of the
simple helices, �h, is usually close to ks the wavenumber of
the transverse spiral waves. Ribbon twist may thus be con-
sidered “passive,” although the role of the length scale intro-
duced by the core size needs to be studied in more detail,
especially near the �=� line where this scale diverges. In-
terestingly, the primary Hopf bifurcation leading to helices is
accompanied by a linear variation of topological quantities
�such as writhe� with the imposed twist. This is reminiscent
of the behavior of elastica, although here some elastic “en-
ergy” cannot be readily defined. At any rate, the limits of
such an analogy are clearly manifested by the analysis of the
large-scale spatiotemporally intermittent regimes observed;
there, the different regular regions each seem to take their
“preferred” local link density, in apparent disregard of the
fixed, imposed, global link.

Many of the above statements and results require further
work. It is clear, though, that further progress will require
important computing power and thus will only be achievable
in the future. Beyond the needed clarifications for simple
oscillatory media described by the CGLE, our results need to
be confronted to similar studies performed in the cases where
the gauge invariance is lost either because of some external
forcing �often used to control spatiotemporal dynamics� or
some intrinsic local chaos �such as in Rössler oscillators�, or
even because the system is in fact excitable.

FIG. 28. �Color online� Spatiotemporal representation of ��z , t� for �=1,
�=−0.5, and �=6 �2� /128� starting from a straight filament. Time runs
downward from 0 to 20 000. The lattice size is 128�128�2048. After a
short transient, where the super helical mode appears, one observes the
nucleation of five localized structures separated by large uniform segments.

FIG. 29. �Color online� Spatiotemporal representation of ��z , t� and fila-
ment curve in the final state for �=1, �=−0.5 and �=5.75 �2� /128� start-
ing from the final state shown in Fig. 28. �The link number has been
changed by varying the grid size.� Time runs downward from 0 to 7600.
After a short transient, two of the localized objects disappear leading to
larger helical segments.
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A noted earlier, experimental techniques are becoming
available to visualize scroll wave filaments in chemical sys-
tems, such as, the Belousov–Zhabotinsky reaction, and in
biological systems, such as the heart. The investigations of

the varied and sometimes complex filament structures pre-
sented in this paper will hopefully stimulate further experi-
mental studies in this area.

ACKNOWLEDGMENTS

The research of R.K. was supported in part by a grant
from the Natural Sciences and Engineering Research Council
of Canada.

APPENDIX A: RADIAL OUTFLOW
BOUNDARY CONDITIONS

The choice of the least-interfering boundary conditions
is crucial when reliable simulations free from finite-size ef-
fects are desired. Most of the configurations studied in this
work are such that, far from the localized object of interest,
almost-cylindrical waves are emitted.

The use of no-flux �Neumann� boundary conditions in-
troduces fictitious mirror objects and thus the boundary may
play an active role in determining the dynamics.1 Periodic
boundary conditions have similar consequences since the
system must then be viewed as an array of interacting ob-
jects. Moreover, in this case, usually undesired constraints
are present, e.g., the total link number must be zero. In both
cases we have observed that the boundaries have a rather
long-range influence on the dynamics, for instance, in select-
ing a significantly different pitch �h for the helical filaments.
As a consequence, 3D simulations free from finite-size ef-
fects are very costly if one uses no-flux or periodic boundary
conditions.

This difficulty already arises in the one-dimensional
case, e.g., when studying the Nozaki–Bekki holes which, as-
ymptotically �x→ �	�, emit plane waves. In Ref. 55, true
“outflow” boundary conditions were implemented by assum-
ing that propagating waves exit the system, which is the case
if the boundaries are sufficiently far from the core of the
amplitude hole. Letting xb be the position of the boundary, a
second-order discretization scheme,

A�xb,t� = A�rb − dx,t�2/A�xb − 2dx,t� ,

was used, which gave excellent results, in particular when
studying the sensitive issue of the linear stability of the hole
solutions.

Most configurations studied here are axisymmetric with
respect to the z axis, as are the domains of integration. Both
for the 3D and 2D equivalent cases, we assumed further that
the local wavevector �or phase gradient� of the outgoing
waves is oriented along a radial direction with respect to the

FIG. 30. �Color online� Same figure as Fig. 29 but for �=5.5�2� /128�.
Time runs downward from 0 to 12 000. In the final state only one localized
structure remains.

FIG. 31. �Color online� Local link density ��z� vs z for the final state shown
in Fig. 29. The upper and lower dashed lines bound the secondary instability
threshold �=5�0.3 �2� /128�. This shows that localized structures “con-
centrate” the twist in a small region of the filament such that the link density
is below the secondary bifurcation threshold.

TABLE I. Summary of the different runs leading to superhelical loops for
�=1, �=−0.5 in a domain of size 128�128�2048. Runs #2 and #3 used
the final state of run #1 as an initial condition. Finally, # objects is the
number of localized superhelical loops still observed after a long time.

# � �2� /128� �t �R�z �R Rmax # objects

1 6 20 000 9 5 25 5
2 5.75 7600 7.4 4.5 20 3
3 5.5 12 000 4.2 2.5 17 1
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symmetry axis. This is again a good approximation if the
walls of the box are far enough from the central vortex fila-
ment. With r the radial coordinate, we have

A�rb,�,t� = A�rb − dr,�,t�2/A�rb − 2dr,�,t� ,

for all � and t.
For the special axisymmetric grid used to simulate the

2D equivalent equation �12�, this is readily implemented.
However, when a regular square lattice is used as a grid
together with a circular or cylindrical domain of integration,
the use of Cartesian coordinates complicates the computa-
tion. Knowing a point on the boundary, one has to interpolate
the value of the complex field to points shifted in the radial
direction. This interpolation can be done with varying
amounts of precision and numerical tests showed that a
second-order approximation is needed to obtain good results.

On each �x ,y� plane of a 3D cylinder, or in the plane of
a 2D disk, one seeks the value B�x0 ,y0� knowing the values
of B on the six closest lattice points. The Taylor expansion of
B in the neighborhood of �x0 ,y0� is simply written as

VN = MV0, �A1�

where

VN = �B�x1,y1�
]

B�x6,y6�
� ,

M = �1 dx1 dy1 dx1
2/2 dy1

2/2 dx1dy1

] ] ] ] ] ]

1 dx6 dy6 dx6
2/2 dy6

2/2 dx6dy6
� ,

and

V0 = �
B�x0,y0�
Bx�x0,y0�
By�x0,y0�
Bx2�x0,y0�

By2�x0,y0�

Bxy�x0,y0�
� .

The corrections are O�dx3�. One then has to solve a set of six
linear equations. This was done using the LU decomposition
method. The most important part of the calculation is done in
the initialization part of the code, where the coefficients of
the decomposition are saved, and these are used throughout
the simulation.

APPENDIX B: DEFECT POSITION INTERPOLATION

The position of the defect can be defined by the crossing
point �in 2D, or in a plane transverse to the filament in 3D�
of a R�A�=0 and a I�A�=0 curve. We have developed a fast
algorithm for this purpose which locates the precise position
of the defect using interpolation. We have used two different
estimates for the position of the defect:

• The first estimate is based on the Taylor expansion of the
complex field close to coordinate singularity. We seek the
point ��x ,�y� where the complex field is zero,

A��x,�y� = 0 + i0 = A�0,0� + �x�xA�0,0� + �y�yA�0,0�

+ O��2� .

Knowing the partial derivatives at �0,0� and neglecting sec-
ond order terms, one must solve a set of two linear equa-
tions.

• The second estimate was used in the case of the polar grid
on which the equivalent 2D equation �12� was simulated,
when the defect is still very close to the center of the grid.
It uses the symmetry of the modulus of the complex field
close the defect position. Since the modulus grows linearly
as a function of the distance to the defect, the value of the
complex field close to the defect will be minimum along
the x or y directions at the corresponding x or y component
of the defect position. Using polynomial approximations to
the dependence of the modulus one may estimate the de-
fect location.

Linear dependence of the modulus implies that the
square of the modulus should be well approximated by a
second-order polynomial. Then the coordinate �x is given by

�x =
− Bx

2Cx
,

where

�x1,y1� = − ��r,0� ,

�x2,y2� = �0,0� ,

�x3,y3� = ��r,0� ,

Bx = − A�x1,y1�
x2 + x3

�x1 − x2��x1 − x3�

− A�x2,y2�
x1 + x3

�x2 − x1��x2 − x3�

− A�x3,y3�
x1 + x2

�x3 − x1��x3 − x2�
,

Cx =
A�x1,y1�

�x1 − x2��x1 − x3�
+

A�x2,y2�
�x2 − x1��x2 − x3�

+
A�x3,y3�

�x3 − x1��x3 − x2�
.

These two methods have been used for each determination of
the defect position and we have verified that the relative
difference between the two estimates is less than 10%.

APPENDIX C: SIMULATION OF THE 2D EQUATION

Here, we present an outline of some features of the code
written to simulate Eq. �12�.
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1. Temporal integration

A variable time step Euler scheme was used for the tem-
poral integration. Comparisons with other schemes such as
second and fourth order Runge–Kutta schemes were made
and no significant improvement of stability properties was
noted. To increase the order of the temporal scheme and
obtain consistent results with variations of the grid size or
parameters, the following variable time step algorithm was
implemented.

Suppose A�t� is known and an estimate of A�t+dt� with
a relative error smaller than � is desired. The error is simply
given by the distance d between the exact A and the approxi-
mate solution B,

d�A,B� =
1

Np
�
k=1

Np

�Ak − Bk� ,

where the sum over k is over the points of the lattice. In
practice, because of the inhomogeneities in the point distri-
bution of the polar grid �see below�, the maximum distance
over all circular “layers” was used.

Two estimates of A are obtained using the Euler scheme
and two different time steps:

B�t + dt� = A�t� + dt�tA�t� ,

C�t + dt� = A�t� +
dt

2
�t�A�t� +

dt

2
�tA�t�� ,

A�t + dt� = B�t + dt� −
dt2

2
�t2A�t� + O�dt3� ,

A�t + dt� = C�t + dt� −
dt2

4
�t2A�t� + O�dt3� .

The distance between B and C is about the same as
between A and B or A and C. One can impose the condition
that the distance between B and C must never be larger than
a predetermined amount �. If the distance between B and C
is too large, then this solution is not accepted and the time
step is decreased. Taking into account first order nature of the
scheme the new time step dt is given by

dtnew = 0.9dtold� �

d�C,B�
.

The 0.9 factor suppresses the contributions of higher order
terms. If the distance is less than �, the solution is accepted
but the time step is changed using the same formula under
the assumption that it could be too small �d�B ,C����. Fi-
nally, these solutions can be used to obtain more accurate
estimates of A�t+dt�=2C�t+dt�−B�t+dt�+O�dt3�.

2. Spatial derivatives

The main difficulties stem from the treatment of the spa-
tial derivatives. We have used a polar coordinate representa-
tion of Eq. �12�. The partial derivatives with respect to �
were carried out using a Fourier decomposition. Because of
the nontrivial form of boundary condition �see Appendix A�,

a high-order finite-difference scheme was adopted for the
derivatives with respect to r �in contrast to a spectral decom-
position�,

�A

�r
�r,�� = �8�A�r + dr,�� − A�r − dr,���

− �A�r + 2dr,�� − A�r − 2dr,����/�12dr� + O�dr4� ,

�2A

�r2 �r,�� = �16�A�r + dr,�� + A�r − dr,���

− �A�r + 2dr,�� + A�r − 2dr,���

− 30A�r,���/�12dr2� + O�dr4� .

Consequently the spatial derivatives are approximated by a
third-order scheme except close to the coordinate singularity
where the term 1 /r�rA is of second order.

We have used Fourier decomposition to extrapolate the
values of the terms A�r�dr ,�� when they are not defined on
the lattice �cf. next subsection�.

3. Point distribution and numerical stability analysis

The polar coordinate grid uses a variable lattice step in
the angular direction. Below we describe how we determined
the optimal number of points on each layer of a given radius.

As previously observed by Winfree,17 the main difficul-
ties with integration of a 2D reduction of the 3D problem
stem from numerical instabilities which are induced by the
second order derivative with respect to �. Here we present a
scheme for overcoming these difficulties. For simplicity one
can reduce the stability analysis to that for the equation,

�B

�t
=  1

r2 + �h
2� �2B

��2 .

For r constant, this equation reduces to the one-dimensional
diffusion equation. Using an explicit Euler scheme for the
temporal integration and lowest order finite difference the
following solution is obtained:

B�r,� j,tn+1� = B�r,� j,tn� +
�t

��2 1

r2 + �h
2� ,

�B�r,� j+1,tn� + B�r,� j−1,tn� − 2B�r,� j,tn�� .

One may then study the evolution of a small perturbation

in discrete Fourier space �Bn,j =�B̃n,k exp�ikj� with k
� �0,2� /Np , . . . ,2��Np−1� /Np�. One finds

�B̃n+1,k = ��k,�t,����B̃n,k,

with

��k,�t,�x� = 1 − 2
�t

��2 1

r2 + �h
2��1 − cos�k�� .

The numerical scheme is stable if for given �t and ��, ���
�1, ∀k. This is true if
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�t �
�r���2

2�1 + r2�h
2�

,

which implies that the stability condition is imposed by the
maximum value of r if r���Cst. Note that for �h=0, this
condition reduces to the standard result, �t��x2 /2.

To resolve this problem we have introduced a radially
dependent ��, such that ���r ,�h�
�1 /r2+�h

2. In addition,
we have imposed the condition that the number of points in
each layer is a power of 2 to obtain an efficient estimate of
Fourier coefficients using fast Fourier transform methods.

4. Comparison of 2D and 3D simulations

We now present a comparison of the 2D and 3D simu-
lations to show that they are in accord. The values �
=4� /128, �h=8� /128, were chosen since they correspond
to 3D simulations for boxes of height Lz=64. In such boxes,
an initial twist density �=4� /128 gives rise to a helix with
�h=8� /128. The saturated radii are comparable, and the 2D
results are less sensitive to the variation of the grid size �see
summary in Table II�. It is interesting to consider the depen-
dence of � on dr, the spacing used in the radial dimension,
for the 2D simulations. The numerical scheme which is used
is mainly of third order �see Appendix C�. The correction
arising from the finite grid size does indeed vary as dr4 and
one can easily extrapolate the results to the limit dr→0 �see
Fig. 32�. The result for dr=0.5 is already very close to the

asymptotic value �0.012 00 instead of 0.011 95�. In the fol-
lowing, we use dr=0.5 for all the 2D simulations, except
close to the thresholds where simulations with dr=0.25 were
performed.
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