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The influence of topological defects on phase synchronization and phase coherence in two-dimensional
arrays of locally coupled, nonidentical, chaotic oscillators is investigated. The motion of topological defects
leads to a breakdown of phase synchronization in the vicinities of the defects; however, the system is much
more phase coherent as long as the coupling between the oscillators is strong enough to prohibit the continuous
dynamical creation and annihilation of defects. The generic occurrence of topological defects in two and higher
dimensions implies that the concept of phase synchronization has to be modified for these systems.
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The rich collective behavior, including mutual entrain- 1
ment and self-synchronization, seen in systems of coupled > jg Va(rt)-dl==n, 1)
oscillators has been a stimulus for the long-standing interest

in these systemssee, for example, Ref$1-3], and refer-  horen s the topological charge of the defd@?]. A to-
ences therein Recently, attention has turned to the study ofy5|qgical defect corresponds to a point in the medium where

coupledchaoticoscillators and, in particular, to the phenom- {pe |ocal amplitude is zero and the phase is not defined. For
enon of phase synchronization. Provided that the phase cafriodic boundary conditions, the net topological charge of
be defined4,5], two coupled nonidentical chaotic oscillators the medium is zero. For identical chaotic oscillatprs],
are said to be phase synchronized if their frequencies argpatially coherent spiral dynamics can still exist implying a
locked[1,6]. This appears to be a general phenomenon and fshase locking of the oscillatiorf&4].
has been observed in such diverse systems as electrically To illustrate the phase synchronization properties in two-
coupled neuronf7,8], biomedical system®], chemical sys- dimensional networks of nonidentical chaotic oscillators, we
tems[10], and spatially extended ecological systdrhs], to  consider arl. X L array of locally coupled Resler oscillators
name only a few. Moreover, the potential role of phase synwith periodic boundary conditiong5],
chronization in brain functions has been recognizZE2,13.
Much of the theoretical analyses of phase synchronization ax(r,t) -
have been carried out on systems consisting of two locally ot =R[x(r,t)]+KF %r [x(r,t)=x(r,t)], (2
coupled oscillator$6] or many globally coupled oscillators =N
[14]. Large one-d|men3|or.1al chf':uns of locally coupled chayhere R,= — w(r)x,— xa, Ry=w(r)X;+0.2%,, R3=X;Xs
otic oscillators have been investigated very recefitf-17. —5.9%3+0.2. The sites of the lattice are labeled hyK is
Here, we address the question whether phase SynChronizati% Coup”ng constant, arN(r) is the set of the four next
can persist in higher spatial dimensions where topologicahearest neighbors of site The phase angles of the oscilla-
defects can play a central role. We show that the existence @brs are given byp(r,t) =arctarix,(r,t)/x,(r,t)]. To obtain
topological defects can lead to a breakdown of global phasghe results presented below, we tdke 64 and choose the
synchronization in two-dimensional arrays of nonidenticalw(r)’s randomly from a uniform distribution in the interval
chaotic oscillators. While most of the medium may remain[0.95,1.03, ensuring that the system is in the chaotic re-
phase synchronized, oscillators close to moving topologicagime.
defects have a different frequency. Despite this fact, the First, we consideK=K,=0.1. For different initial con-
phase coherence of the system is higher than in systengfitions leading to stable patterns, basically two scenarios can
without topological defects. The transition to phase synchrobe observed. For homogeneous initial conditions or initial
nization via phase clustering observed in one-dimensionatonditions with small inhomogeneities, no topological de-
systems[15,18 is not found in our simulations on two- fects are created and the system evolves to a target pattern
dimensional systems; instead, a transition involving point desimilar to the one in Fig. 1left pane). In the case of larger
fects occurs. inhomogeneities in the initial conditions, a number of topo-
Point topological defects in two-dimensionabmoge- logical defects withn,= =1 is created initially. Some pairs
neousoscillatory media are associated with the appearancef topological defects with opposite charge are quickly anni-
of spiral waveg§19-21]. The phase field)(r,t) of a medium hilated until only a small number is left generating a spiral
with a spiral wave contains a point topological phase defecpattern similar to that in Fig. {middle panel. The topologi-
in the spiral core such that cal defects are not necessarily stationary and for very long
times it is possible that all defects could disappear through
further annihilation events; however, the motion of the sur-
*Electronic address: joern.davidsen@utoronto.ca viving topological defects is very slow compared to the ini-
"Electronic address: rkapral@chem.utoronto.ca tial annihilation processes and no further annihilation events
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FIG. 1. Snapshots of the phase field, all for
the same realization ab(r). From left to right:
K=0.05 without topological defectsK=0.05
with two surviving topological defects, ank
=0.0419. In the latter case, topological defects
are generated dynamically in pairs such that the
number of topological defects fluctuates around a

’- j . i oL value of eight pairs.

were observed on our long simulation time scale*(2a.0 wo= (w1 + wy)/2. Moreover, each deviation from, is fol-
spiral revolutiong. These two scenarios persist provid€ds  lowed by a deviation fromw, of similar amplitude but with

not too small. _ _ opposite sign, and vice versa. Hence, the deviations(d
When there are no topological defects, the system is phasgom «,, should be dominated by the switching between the

synchroniged. The occurrence of phase synchronization fQ§5nds for not too large values @f Thus, the maximal de-

coupled Rasler oscillators is usually attributed to the high viation from w, is given by the term g, — w,)/(2T), repro-

degree of phase coherence of the attractorsihgle Rossler duci -
. A - i ucing the observed scaling. The two-banded structure can
oscillator[ 1] although this might not be a sufficient condition g 9

[5]. Phase coherence means thet..d=( 7(t) 7(t+ 7))]Y2 also be found in the ensemble distribution @fT). There,
<(;) whered/dt=wo+ n(t), ismthe unbounded ;t)hase two distinct peaks can be seen for certdimalues consistent
S [o}] = 0 1 L]

S . with the fluctuations around theTlkcaling in Fig. 2.
and(- - - ), signifies an average ovér If 5 is 5-correlated If topological defects are present, global phase synchroni-
Gaussian noise, this condition reducesst& w, and corre- holog P ' 9 P y

sponds to a very narrow peak of widtlf at w, in the power zatlron |snr(1jo :onger i%l:?r:atﬂteed' tSIr:Cv?/ha rtOPOI%g'Calvdﬁfe&t
spectrum of,(t). However, generally, temporal correlations corrésponds 1o a po e syste eré a phase variable

in 7 exist. These correlations determine the speed of convefannot be defined, this implies that the concept of phase

gence of the time averagg(T):Tl‘l[?jb(T)—?q‘b(O)] o- synchronization can only be applied to parts of the system

. . which excl topological defects. Fdiscrete latti f
wardswg. For the system of coupled Bsler oscillators con- ch exclude topological defects. Faiiscretelattices o

sidered here, the speed of convergence—as measured by @secnlators considered here, this does not pose any problems

standard deviation of the ensemble distribution of cCaUSe the defect is located almo_st subsgveenlattice
— A L sites. Thus, the presence of topological defects does not ex-
w(T)—scales as I/ as shown in Fig. 2. This is in contrast to

h Id it th iabl ind d clude global phase synchronizatianpriori. We indeed ob-
what one would expect if the variables were independent, qo o phase synchronization for quasistationary topological

where one obtains T scaling since w(T)—w,  defects, which explains the occurrence of phase synchroni-
=1/Tfdtn(t) and the standard deviation ofjdtn(t)  zation in the presence of topological defects described in
scales withT. The observed variation witd is much  Ref. [26]. However, the motion of topological defects de-
faster, implying an extremely high degree of phase coherstroys phase synchronization locally. As shown in Fig. 3, the
ence, even in the coupled system. The origin of this effecimotion of a topological defect leads to a distortion of nearby
resides in the shape of the local attractors. They aréocal orbits. This in turn influences their local frequencies
two banded with distinct frequencies; and w, such that such that the system is no longer phase synchronized as can
be deduced from the correspondiag distribution in Fig. 4
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FIG. 2. Log-log plot of the standard deviatiar,(T) of the FIG. 3. Trajectory ofk,(t) (blacK for a fixed oscillator and the

(T) distribution in the phase synchronized state describing thelistanceAr(t) (white) of this oscillator from the moving topologi-
speed of convergence towar@dg. The solid line with slope-1 is cal defect forK =0.06. The two temporal behaviors are correlated,
plotted to guide the eye. Note thay=2w/wy depends slightly demonstrating the influence of the topological defect's motion on
onK. the local orbit.
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) FIG. 5. Left: Sas a function oK for homogeneousstay and

inhomogeneougdiamond$ initial conditions. The results were ob-
tained from an average over five realizations of the randg(m)
field. The phase coherence is higher wherore topological de-
Rects are present in the system #rK_.~0.043. BelowK point,
defects are created and annihilated dynamically. Rigfr} for the
samew(r) realization as in Figs. 3 and 4. Dark areas correspond to
high values ofS(r). The locations of the defects are given by the
two arrows. The lower left defect is the moving defect.

FIG. 4. The wq histogram h(wo) of the oscillators forK
=0.06 with two surviving topological defects in the system. One
defect moves causing the breakup of global phase synchronizatio
The exact shape of the distribution depends ondt(i® realization.
Negative and/or positive “ouliners” can exist and correspond to
oscillators in the vicinity of the moving topological defect.

[27]. In particular, the “outliners” in this distribution are

located in the vicinity of the topological def¢st identical oscillators although the “effective” spatial period
For homogeneous oscillatory media, it is well known thatyoypling cascade found there is absent in the present case.
the time scales for the motions of topological defects depend The system maintains memory of its initial condition
on the system parameters, ranging from very slow motion tQ e k .~0.043 leading to the different values &f For
rapid dynamics [28]. Inhomogeneity provides another gingie (r) realizations, different scenarios, with either no
mechanism for defect motion and, in the present case of gafects or with defects present, can be observedfpr K
network of nonidentical Resler oscillators, this is the domi- >K_, [30]. For K below K., however, a qualitatively new
hant mechanism. For a network of identicalsBler oscilla-  penhavior occurs. Topological defects are now generated and

tors, the topological defects are quasistationary on the timgnninilated continuously by the dynamics, which is respon-
scales considered here; thus, the observed breakup of glohghe for the loss of memory of the initial condition. The

phase synchronization for this system is due to the quencheg,mper of topological defects fluctuates around a mean
disorder in the network. o _ value which increases with decreasikg This is expected
Although global phase synchronization is lost in the presyecausek should control the characteristic length scale in
ence of moving topological defects, the fluctuations of theie system. Moreover, the topological defects move on aver-
instantaneous period in the medium are greatly reducedyge mych faster than abowe., similar to defect mediated
While ;‘he phase coherence criteriof/”..d7(7(t)7(t  tyrbulence[31]. The creation and annihilation of topological
+7))1]"?<w,, is satisfied to a high degree of accuracy as ingefects as well as the fast motion lead to strong distortion of
the case without topological defects, the average amplitudghe |ocal orbits affected by the moving defects . This makes
of the fluctuations in the instantaneous perioBi§r,n)  jtimpossible to define a proper phase variable for most of the
=2mlo(r,n) as measured b$=((S(r))),, with oscillators in the network. Consequently, the concept of
phase synchronization can no longer be applied.
In Refs.[15,18, the transition to phase synchronization
S(r)= (T(r,n)n , 3) via the route of phase clustering and merging of clusters was
VT(r,n)—(T(r,n))1%n investigated for chains of oscillators. Liet al. [15] con-
cluded that phase clustering should be more prevalent than
full phase synchronization, especially in networks of coupled
are significantly different. Herel(r,n) is the time needed neurons. However, the two-dimensional system considered
for the nth rotation at siter and(- - -}, is the average over here shows a different behavior for increasikgstarting
all realizations ofw(r). Figure 5(left pane) shows that the from a value belovK.. We observe a transition from a state,
value of Sis much larger above a certain couplikg when  where topological defects are generated continuously by the
(more topological defects are present in the system, corredynamics to a partial phase synchronized state with moving
sponding to a higher degree of coherence. An analysis dbpological defects, similar to the case with surviving point
S(r) shows that high values exist, especially in the vicinity defects. This partial phase synchronized state is characterized
of quasistationary topological defedtee right panel of Fig. by a large number of phase synchronized oscillators and a
5). This is due to the influence of topological defects on thesmall number of oscillators close to the point defects with
shapes of the local orbits: they are close to periodic limitmutually different frequencies. Thus, only one cluster with
cycles. This is in accord with observations in Rgf9] for more than one oscillator exists in contrast to the chain geom-
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etry. The existence of topological defects in two dimensiongphase coherence of the system significantly. Since moving
and higher dimensions suggests that the transition describethd quasistationary topological defects are present in many
here should be prevalent for general networks of chaotic oscircumstances, the apparently contradictory scenario of in--
cillators. creased phase coherence but loss of global phase synchroni-
We have shown that the occurrence of topological defect&ation occurs.

has a twofold effect: moving topological defects lead to anatural Sciences and Engineering Research Council of
breakup of global phase synchronization, while all topologi-Canada. We thank G. Rousseau for providing the numerical
cal defects—especially quasistationary ones—increase thategrator.
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