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From Ballistic to Brownian Vortex Motion in Complex Oscillatory Media
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We show that the breaking of the rotation symmetry of spiral waves in two-dimensional complex
(period-doubled or chaotic) oscillatory media by synchronization defect lines (SDLs) is accompanied
by an intrinsic drift of the pattern. Single vortex motion changes from ballistic flights at a well-defined
angle from the SDLs to Brownian-like diffusion when the turbulent character of the medium increases.
It gives rise, in nonturbulent multispiral regimes, to a novel ‘‘vortex liquid.’’
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Chemical waves in reaction-diffusion systems with
local excitable or simple oscillatory dynamics have been
investigated extensively both theoretically and experi-
mentally because of their relevance for a variety of
physical, chemical, and biological processes [1,2]. In
(quasi-)two-dimensional situations, spiral wave patterns
are especially prevalent and important. They determine
the characteristics of processes such as surface catalytic
oxidation reactions [3], contraction of the heart muscle
[4], and various signalling mechanisms in biological
systems [5], to name only a few examples. The dynamics
of the core or ‘‘vortex’’ of spiral waves plays an important
role in many of these phenomena: some mechanisms for
spiral breakup arise from core motion (see, for example,
Ref. [6]) and moving spirals have been suggested to be
responsible for some cardiac arrhythmias [7]. However,
whereas the meandering instability of spiral cores in
excitable media is well known [8], studies of vortex
motion are still few in the oscillatory case, being limited
to the unbounded acceleration characteristic of the core
instability [9] or to erratic motion induced by spatio-
temporal chaos or external noise [10,11].

When the local oscillations are not simple but possess a
complex-periodic or chaotic character as observed, for
example, in chemically reacting systems [12], spiral
waves contain synchronization defect lines (SDLs) [13]
separating domains of different oscillation phases and
across which the phase changes by multiples of 2�.
SDLs have been observed in experiments on Belousov-
Zhabotinsky reaction [14,15]. While their origin and
classification have been investigated, little is known about
how they influence the spiral core to which they are
connected.

In this Letter, we show that in complex oscillatory
media the emergence of SDLs is accompanied by spiral
core motion. The SDL breaks the rotational symmetry of
the spiral wave, giving rise to a generic mechanism for
core motion that differs from the instabilities that cause
the nonsaturating core instability in simple oscillatory
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media. We show that spirals in complex oscillatory me-
dia move ballistically in directions that are determined
by the SDLs attached to the cores. In the regime of
SDL-mediated turbulence where SDLs are spontane-
ously generated, the core motion is more complicated,
leading to randomly oriented flights of random duration.
With stronger turbulence this dynamics leads to vortex
Brownian motion characterized by a well-defined diffu-
sion constant. We finally show that multispiral configura-
tions in the locally nonturbulent regime lead to a
spatiotemporally chaotic ‘‘vortex liquid.’’

Consider the reaction-diffusion system

@tc�r; t� � R�c�r; t�� �Dr2c�r; t�;

where c�r; t� is a vector of time-dependent concentrations
at point r in a two-dimensional domain of length/diame-
ter L [16], D is the diffusion coefficient (taken to be the
same for all species), and the local kinetics is specified by
the vector-valued function R�c�r; t��. As a paradigmatic
example of a system with complex local dynamics, we
take R�c� to be given by the Rössler model [17] with Rx �
�cy � cz, Ry � cx � 0:2cy, and Rz � cxcz � Ccz � 0:2.
For C 2 �2:0; 6:0�, the medium undergoes period-
doubling bifurcations transforming the local dynamics
from simple oscillatory to period-doubled orbits to cha-
otic dynamics. The rotational symmetry of spiral wave
patterns is then broken by the ineluctable appearance of
SDLs [13]: In a simple oscillatory medium, one turn of
the spiral wave corresponds to one period of the local
oscillation in phase space (change of 2� in the phase).
When this spiral wave pattern undergoes a period-
doubling bifurcation, the period of the local orbits
doubles (change of 4� in the phase). Continuity in the
medium then forces the emergence of a narrow strip
connected to the core, the SDL, across which the phase
jumps by 2�. Two oscillations are needed to return the
medium to its original state. Along the SDLs, the local
dynamics is period 1 (P1), while in the remainder of the
2004 The American Physical Society 018305-1
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P2 medium is shown in the left panel of Fig. 1. In the
period 4 (P4) regime, two types of SDLs are possible:
lines where the phase jumps by 2� (local P1 dynamics)
and lines where the phase jumps by 4� (local P2 dynam-
ics). More generally, in a medium with period 2n dynam-
ics, 2n�1 SDLs with periodicities 2k, �k < n�, may exist,
although for the Rössler medium only the P4 regime is
observed before the local dynamics becomes chaotic. In
these chaotic regimes the P1 and P2 SDLs persist. Deeper
in the chaotic regime, turbulent states are found where
SDLs are spontaneously created and annihilated [13].

First, we consider a single spiral in a disc-shaped
domain with no-flux boundary conditions and focus on
the complex oscillatory regime where no P1 SDLs are
spontaneously generated (3:03<C< 4:557). Our exten-
sive simulations revealed that the simplest possible of the
allowed configurations, where a single P1 SDL is attached
to the core, is the unique asymptotic solution, even in the
P4 and chaotic regimes where P2 SDLs exist. The pres-
ence of the SDL breaks the rotational symmetry and thus,
on general grounds, one expects the spiral core to move
[18]. This is indeed what is observed, albeit this motion is
very slow, taking typically several thousand oscillations
to move by one wavelength. After transients, the core
moves ballistically at constant speed. In a finite system, it
eventually encounters a boundary which influences its
motion. Figure 2 shows that the speed v increases con-
tinuously and monotonically from the onset of P2 bulk
oscillations, and analysis of the data indicates a power
law behavior v
 �C� C2�

�, where C2 � 3:03 is the first
period-doubling bifurcation and � � 1:5� 0:02. The
angle � between the direction of motion and the attached
SDL is constant (Fig. 1) and gradually decreases from
180
 to 90
 with increasing C, as shown in Fig. 2.

In the P4 and higher regimes both P2 and P1 SDLs may
exist. We observed that both � and v are determined
solely by the attached P1 SDL and are unaffected by
FIG. 1 (color online). Left: Snapshot of the scalar field
	cz�r; t� � 1=�

R
�
0 jcz�r; t� t0� � cz�r; t� t0 � ��jdt0 in the P2

regime for C � 3:5, L � 256, and D � 0:4 (kept fixed through-
out). The period of the P1 oscillation is � � 5:95. Black corre-
sponds to 	cz � 0 and indicates a SDL originating from the
spiral core. Right: Magnification of the rectangular region in
the left panel showing the SDL (dark grey or red lines) at two
times. � is defined as the angle between the spiral core’s
trajectory (thick black line) and the attached SDL.
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any P2 SDL that may be attached to the core, be it during
a transient or in the regime where P2 SDLs are sponta-
neously and continuously generated (4:306 � C< 4:557).
We conclude that, if it exists at all, the effect of an
attached P2 SDL is much weaker than that of the domi-
nant P1 line and essentially undetectable.

Next, we consider the turbulent regimes where P1
SDLs are spontaneously created (4:557<C � 6:0). The
continuous creation and annihilation of P1 SDLs and their
dynamics strongly influences the motion of the core. More
complicated configurations arise, which involve more
than one P1 SDL attached to the core, and the motion is
no longer characterized by a simple angle �. Complex
connection and reconnection events between P1 SDLs, as
well as between SDLs and the core, continuously occur.
Close to the onset of this regime, the trajectory often
changes its direction abruptly, even though long periods
of (apparent) ballistic motion still persist. When a single
P1 SDL is attached to the core, the motion is ballistic with
v � 0:0017 and � close to 90
. Yet, most of the time, the
spiral core has three P1 SDLs attached to it [Fig. 3(c)] and
short-lived configurations with a higher odd number of
SDLs exist as well. Even though a configuration with
three SDLs is unstable for C< 4:557, it has a long life-
time and the combination of this persistence, the continu-
ous creation of P1 SDLs and the interaction with other
nearby SDLs [Fig. 3(c)], explains why this configuration
dominates for 4:557<C � 6:0. Interestingly, the direc-
tion of motion can change without any apparent variation
in the configuration of the three attached P1 SDLs. For
instance, during the change of direction highlighted by
the arrow in Fig. 3(b), the core configuration shown in
Fig. 3(c) does not change significantly, and the three
SDLs remain attached to the core. This indicates that
part of the core motion is influenced by the dynamics
FIG. 2 (color online). Dependence of the angle � (solid
diamonds) and the core velocity, v (circles) on the Rössler
parameter C. The solid lines are guides to the eye. From left to
right, the vertical lines mark the first period-doubling transi-
tion to the complex oscillatory regime and the transitions to the
turbulent regimes (see text for details).
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FIG. 4 (color online). (a) Mean squared displacement
hj	r�t�j2i for different values of C in the turbulent regime.
(b) The core diffusion coefficient Dv as a function of C.

FIG. 3. Dynamics in the turbulent regime close to onset (C �
4:6, left) and far from onset (C � 5:8, right) for L � 512.
(a) Snapshots of the cx field. (b) Trajectories of the spiral
core. The black arrow points to the position of the spiral core
at the time when the snapshot of 	cz was taken for C � 4:6
[shown in (c)]. (c) Snapshot of 	cz visualizing the line defects.
Note that in the configurations shown three P1 SDLs are
attached to the core. The white arrow points to the position
of the spiral core.
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of the background field in the turbulent regime and/or
that subtle rearrangements occur deep inside the core.

Deeper in the turbulent regime, the (apparent) ballistic
flights become shorter and shorter and the core trajectory
resembles Brownian motion [see Fig. 3(b)]. In this re-
gime, SDLs are generated rapidly and homogeneously in
the medium. This makes it possible to characterize the
core motion by a well-defined diffusion constant Dv.
Figure 4(a) shows the mean-squared displacement
hj	rv�t�j2i � hjrv�t� � rv�0�j2i for different values of C.
Here, h� � �i denotes a time average over a long trajectory
[19] and rv�t� is the position of the core at time t. The
dependence of hj	rv�t�j2i on t is clearly linear, as ex-
pected for Brownian motion. The diffusion constant of
the core motion determined from hj	rv�t�j2i � 4Dvt de-
creases with increasing C [see Fig. 4(b)], reflecting the
fact that changes of direction become more frequent
while the mean velocity remains roughly constant.
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We now turn to multispiral, spatially-disordered con-
figurations which occur spontaneously in any large-
enough domain. For oscillatory media described by the
complex Ginzburg-Landau equation, it was shown re-
cently that spatially-disordered frozen solutions do not
exist [20]. Even when the single-spiral solution is stable,
the weak but nontrivial effective interaction between
spirals gives rise to ultraslow core motion. These results
should apply to the Rössler medium in the simple oscil-
latory P1 regime (C 2 �2:0; 3:03�). A long run performed
at C � 2:5 [19] showed that after a transient period a
residual and barely detectable core motion subsists, with
typical velocities decreasing sharply with increasing spi-
ral domain size indicating a rapidly decaying interaction.
This observation, together with the wide variation of
spiral domain sizes [Fig. 5(a)], suggests that the P1
Rössler medium is in the so-called ‘‘vortex glass’’ phase
and not the ‘‘liquid’’ phase where all spiral domains have
roughly the same size. Thus, core motion exists also in
this regime without SDLs, albeit with velocities orders of
magnitude smaller than those characteristic of core mo-
tion due to complex oscillations and can thus be neglected
in the analysis of this latter case.

In a spatial domain with periodic boundary conditions,
there must be an equal number of ‘‘positive’’ (clockwise)
and ‘‘negative’’(counterclockwise) spirals. Under P2 local
dynamics, spirals have a tendency to be grouped in pairs
(mostly of opposite sign) connected by a P1 SDL
[Fig. 5(b)]. Inevitably, the pattern rearranges since a con-
nected pair drifts apart, as shown in Fig. 5(c): a single-
spiral pair in a square domain is connected by a straight
P1 SDL. The two cores move with speed v at angles ��
relative to the SDL and drift away from each other with
speed 2v cos��� ��, which is positive as long as j�j >
90
. The sign of � is determined by the sign of the spiral.
The dependence of v and � on C is indistinguishable from
the single-spiral case (Fig. 2).

In multispiral disordered P2 regimes, our results show
that spiral cores move nearly independently, stretching
the P1 SDL to which they are attached, until they meet
another core leading to reconnections and creation/
annihilation of SDLs. Some ‘‘frustration’’ arises during
this process, producing spiral cores connected by more
018305-3



FIG. 5 (color online). (a) Snapshot of 	cz showing a typical
multispiral configuration in the P1 regime (C � 2:5, L �
1024). (b) Same as (a) but in the P2 regime, where P1 SDLs
connect spiral cores (C � 3:5, L � 512) (c) Same as (b) but for
a single pair of spirals connected by a P1 SDL (L � 256). The
direction of the cores’ motion is highlighted by the white
arrows. (d) Trajectories of spiral cores leading to the configu-
ration shown in (b). Every 3000 time units the color changes,
starting with dark grey/red or black depending on the orienta-
tion of the spiral.
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than one SDL. The rearrangements occur mainly when
two cores are close and the cascade of reconnection
events can span a distance of several wavelengths. In a
P1 medium these cores would annihilate. On the contrary,
here, because � > 90
, they repel each other after a new
SDL connects them and the annihilation of spiral pairs is
prevented [see Fig. 5(d)]. Thus, multispiral configurations
in P2 media are characterized by a novel type of spatio-
temporal chaos, which preserves the number of spiral
cores through the complex dynamics of the P1 SDL
connecting them.

Simulations show that this new vortex liquid state
exists beyond the P2 regime, as long as � is significantly
larger than 90
. For � close to 90
, annihilation of spiral
pairs can occur, presumably due to the weaker repulsion
effect induced by the P1 SDL. Crossing the transition
point to the turbulent regime at C � 4:557, the annihila-
tion rate of spiral pairs drastically increases. This is
caused by the continuous generation of new P1 SDLs,
which leads to permanent reconnections and effectively
turns off the repulsion mechanism due to P1 SDLs.

The new types of spiral core motion and turbulence
described here should be observable in distributed media
with underlying complex dynamics. Studies of the more
018305-4
realistic Willamowski-Rössler reaction scheme [21] sup-
port this statement. We also expect core motion to arise
in excitable media supporting complex return to the
rest state [22]. Experimentally, Belousov-Zhabotinsky
reaction-diffusion systems are especially good candi-
dates for studies of these phenomena since complex-
periodic and chaotic regimes with SDLs have already
been observed in the laboratory [15].
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Chaos Appl. Sci. Eng. 10, 1537 (2000).

[14] M. Yoneyama, A. Fujii, and S. Maeda, J. Am. Chem. Soc.
117, 8188 (1995).

[15] J.-S. Park and K. J. Lee, Phys. Rev. Lett. 83, 5393 (1999);
88, 224501 (2002).

[16] Our results are independent of L for 256 � L � 1024
and of the discretization 	x for 0:5 � 	x � 1:0.
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