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Topological constraints on spiral wave dynamics in spherical geometries
with inhomogeneous excitability
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We analyze the way topological constraints and inhomogeneity in the excitability influence the dynamics of
spiral waves on spheres and punctured spheres of excitable media. We generalize the definition of an index
such that it characterizes not only each spiral but also each hole in punctured, oriented, compact, two-
dimensional differentiable manifolds and show that the sum of the indices is conserved and zero. We also show
that heterogeneity and geometry are responsible for the formation of various spiral-wave attractors, in particu-
lar pairs of spirals in which one spiral acts as a source and a second as a sink—the latter similar to an antispiral.
The results provide a basis for the analysis of the propagation of waves in heterogeneous excitable media in
physical and biological systems.
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I. INTRODUCTION of atrial arrhythmias because the thin walls of the atria can

Geometry and inhomogeneity influence pattern formationbe described as two-dimensionab) inhomogeneous excit-

in chemical and biological systemgl,2]. One example able media with specific geometrical featuf@s

where these two factors play a crucial role is in the experi-

mental observations of distinctive spiral-wave dynamics on ||, INDEX THEOREM FOR PHASE SINGULARITIES

the surfaces of spherical beads, which are excitable inhomo-

geneous chemical med[8,4]. A biological example is the The mathematical description of spiral waves is based on

origin of abnormal cardiac rhythms in the human heart whichthe notion of phase which in turn allows one to characterize

depend on the anatomical substrate. The heart possessespiral waves by an index. From this description, a number of

complex nonplanar geometry with multiple chambers, withtopological results placing restrictions on spiral-wave dy-

holes corresponding to valves and blood vessels. Some seflamics can be derivejb,10-13.

ous arrhythmias are associated with circulating spiral waves With the exception of a finite number of singular points,

similar to those observed in chemical med. Since an Wwith each point in an orientable and compact two-

abnormal anatomical substrate is a common finding in padimensional differentiable manifoltl we identify a unique

tients with some types of cardiac arrhythmias and intervenphase lying on the unit circlep e 5. The resulting phase

tions that modify the anatomy are an accepted form ofmap or phase field is assumed to be continuously differen-

therapy[6], theoretical analyses of the interplay between getiable, except at the singular points. The manifold can be

ometry of the substrate and dynamics may help in thdriangulated[14] (subdividing it into a set of polygons

therapy of cardiac arrhythmias. where none of the edges or vertices of the polygons pass
In this paper we study spiral-wave dynamics @unc- through a singularity. The indelx(sometimes also called the

tured spheres with spatially inhomogeneous excitability. Wetopological charge or winding numbeof a curveC bound-

show for punctured spheres that the sum of indices whicfing a polygon is found by computing the line integral

characterize each spiral has to be zero. Moreover, we dem-

onstrate that topological constraints imposed by the spherical _

geometry and inhomogeneity in excitability lead to the for- 2ml = 3gc Va-d, 1)

mation of pairs of spirals, with distinctive transient dynamics

or as stable attractors, in which one spiral acts as a SOUrGghere the polygon is always traversed in a clockwise orien-
and a second as a sink leading to a source-sink pair undergsqn By continuity ofV®, | must be an integer. The index

broad range of conditions. Our results explain the experiy o singular point is uniquely defined as the index of any

mental observations of spirals on spherical be@8igll. e ¢ provided thatC encircles the point but no other

While we do not consider detailed models of cardiac-wavesinqjar points. The index of a curve that does not enclose
propagation, our results may apply to some generic aspeclg, singular points is obviously zero,

If the manifold M has no boundaries, each edge of the
triangulation is an edge of two polygons. Since the line in-

*Electronic address: davidsen@mpipks-dresden.mpg.de tegral adds up the change in phase along the various edges of
"Electronic address: glass@cnd.mcgill.ca the polygon, the sum of the indices of the singular points for
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Sul =0, (2) . FITZHUGH-NAGUMO EQUATION

The FitzHugh-Nagum@FHN) equation[17]
where the sum is over all singular points. This follows since

the contribution of the change in phase of each edge to the U &R
total integral is counted twice, but since the edge is traversed —= g‘1<— —+u- U) +D V2,
in opposite directions each time, the net contribution of each s 3

edge is zero. This index theorem is applicable to tori and

other surfaces of genus different from 0. However, unlike the

more familiar Poincaré index theorefsee Ref[15], p. 74, P =s(U-av + B) + D,V (4)
for vector field$ the sum of the indices of the singular points dat o

does not depend on the genus of the surface.

This index theorem for manifolds without boundaries canwhereu(r ,t) andu(r,t) are two scalar fieldse? is the ratio
we will consider the case of structures that arise from puncp are the constant diffusion coefficients, is a prototypical
turing orientable and compact two-dimensional differentiablemodel for excitable media. We chooBg=2 andD,=0. The
manifolds. The index of a hole can be uniquely defined as theea| parameters and 8 characterize the local dynamics and,
index of a curveC provided thatC encircles the hole but no  hence, the local excitability. Wheneverv<1, ae?<1,
other holes or singular points ar@ is positively oriented and|,8|>BHE(1—a62)1’2[§(2a+a262)—1] the FHN system
with respect to the domain which contains the hole and i§5 excitanle. Atg, a Hopf bifurcation occurs such that for

boundeq byC. Applying this_definitjqn and taking the sum- |8] < By the system exhibits oscillations. In the following we
mation in Eq.(2) over the singularities and the hole, or the ;10 ,=0 2 ¢=0.2 andB> 8,=0.863....

holes if there is more than one hole, the index theorem can \yg consider a spherical shell whose outer and inner radii

be proved by the same line of arguments as for the case Qfer_andR, respectively, and focus on thin spherical shells

mamf_olds W|thc_)ut pou_ndanes. . whereR;=40, R,=42. The radii are large enough to avoid a
This extension is important in the heart, for example’curvature-dependent loss of excitability8], and the shell is

where the atrium is punctured by valves and veins. In sucly iciently thin that the dynamics is effectively 2D corre-

cases one is led to consider manifolds with holes—for &X5ponding to the dynamics on a sphéte]. The initial con-

ample, a sphere with a hole. A sphere with a hole is ©0POgjtion is a domain of an “excited” state, adjacent to a domain
logically equivalent to a disk, and, indeed, the results for,¢ 1he “refractory” state. Both domains have the forms of
d'ZSkS and for spheres with holes are consistent: For the d'sgiices of the same size oriented from the north to the south
D7 bounded by a curve, pole [20] and yield a pair of counterrotating spirals.
In order to apply the topological results to the FHN equa-
tion, it is necessary to first define the phase. We define a
32l :jg Vo .dl, 3) phase, ®(r,t) based on the equation tdnfr,t)
c =v(r,t)/u(r,t) if v(r,t)#0 andu(r,t)#*0. Thus, singular
points at givent are pointsr in the medium for which
so that the sum of the indices of the singular points in the’(r ,t)=0 andu(r,t)=0. For each, we obtain a continuously
disk is equal to the index of the cur@bounding the disk. If ~ differentiable phase map'= ®(:,t)| that associates to
there is a single singular point on the disk, with an index ofeach point in a well-defined domaid' a phase lying on the
+1, the index of the curve bounding the disk will also be +1.unit circle, ® € S*. For our FHN medium, the domain is the
Imagine now the boundary of the disk to be brought togethesurface of gpunctured sphere reduced by a finite number of
(like a drawstring bagso that the boundary of the disk now points where the phase is singular at fixed
defines a hole in the sphere. In this geometry the cQrwell Rotating spiral waves in the FHN equations are obviously
be traversed in an opposite orientati@he hole is now in- associated with a singular point which is called the spiral
side C) from the direction it was traversed when it was the core. In what follows, we assume that there are only single-
boundary of the disk. Now if there is a singular point with anarmed spirals so that a clockwise rotating source has an in-
index of +1 on the sphere, the index of the hole is -1, so thatlex of +1 and a counterclockwise rotating source has index
the sum of the indices is again zero. —-1. A clockwise rotating sink has an index of -1, and a
Since it is necessary to conserve the sum of the indicegounterclockwise rotating sink has index +1. From &), it
singularities of index +1 usually arise and are destroyed iris impossible to have a single rotating spiral wave on a
pairs of opposite sigfi9]. An exception occurs when singu- sphere; in addition, there must be at least another singular
larities are destroyed by collision into a boundary, so that thgoint or a hole with nonzero index.
index of the singular point and the index of the boundary For excitable media, a nonzero index of a hole implies
both change simultaneously. Another exception occurs ithat wave fronts travel permanently around the hole such that
there are singularities with index different from 1. In suchthe numbers of fronts traveling clockwise and counterclock-
cases interactions between different singularities can lead twise are different. This includes the particularly simple case
the destruction or creation of odd numbers of singularitief a single wave front traveling around the hole which can be
[16]. considered as a spiral wave associated with the hole.
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FIG. 1. (Color onling Left: spiral waves of excitatiorglight 0.92
fronts) on the sphere for constam=pB., emanating from spiral
cores close to the poles on an equator projection. The white arrow:

show the direction of propagation. One annihilation front along the t
equator can be identified. Right: sketch of the constant gradient in
the inhomogeneous case. The dashed lines are theBdmes and FIG. 2. (Color online The local excitabilityB(r (t)) at the spiral

we cho0s€B .= 1.0 andBmin=Bex The angleg describes the ori- cores versus time. Gradient-induced motion of the two spiral cores
entation with respect to the axis from pole to pole. The resultdeads to a change in the local excitability at the cores with time. The
described in the text do not depend qualitatively on the choiag of spiral period in the final state i§,=13.2+0.1. Four different re-

or Bmin and Bnax @s long as they yield stable spirals. gimes can be identifiedsee text Inset: the final bound pair of
counterrotating spirals in regime Ill fop=51.0° is shown on an
IV. SPIRAL-WAVE DYNAMICS IN SPHERICAL equator projection such that the point of lowest excitability lies on
GEOMETRIES the central longitude. The spiral closer to the equator has index —1

while the other one has index +1.
A. Dynamics in excitability gradients
) , . cent of the structure of antispirals—i.e., inward moving spi-

First consider homogeneous FHN media with a constanfy|s seen in oscillatory medig26]. However, the origin of
B=PBex=0.9. The wave fronts emanating from the spiral s inward spiral motion in oscillatory media differs and is
cores with opposite index “annihilate” along the equatorgisiinct from that observed here. In oscillatory media, either
such that each spiral determines the dynamics on half of thgyira|s or antispirals are stable depending on system param-
sphere(see Fig. 1, left pangt-similar to what has been ob-  gters and the wavelength diverges on the border in the pa-
served in Ref[21] for a different excitable system. We have \,meter space between these two regimes. Thus, antispirals
shown that this behavior is robust with respect to disorder in,st independently of spirals. This is not the case here be-
excitability with small amplitude and correlation length. If .o ,c6 the generation of an inward-moving spiral relies on the
random, uncorrelated spatial variationsgrexist on length resence of a spiral source and spherical geometry. For ex-
scales much smaller than the diameter of the spiral core m imple, consider the FHN system with a disk geometry and a
ander[22], the dynamics is able to average over such small-
scale inhomogeneities. The robustness explains why sucl F g T " T ’ T " T
states have been experimentally observed in some chemici 155} | :
reactions on spherical beads which are intrinsically inhomo-
geneoud4].

Applying a constant gradient i@ as sketched in the right
panel of Fig. 1 leads to a different scenario. The time evolu-
tion of the spiral pair may be partitioned into four distinct g
regimes as shown in Figs. 2 and 3. Because of the gradien™
the frequencies of the two spirals differ since a higher value |
of B corresponds to lower excitability, which generally im-
plies a lower spiral frequencj23]. During a short transient
T, the spiral with the higher frequency assumes control of the 2
dynamics[24] on the sphere. The location on the sphere,
where wave fronts emanating from the two spiral cores an- o
nihilate, moves toward the core of the low-frequency spiral.
Finally, the low-frequency spiral core is pushed farther from

the high-frequency spiral cof@4,25 (see Fig. 3. After this FIG. 3. (Color onling The distance between the two spiral cores
short transient, the wave fronts travel from pole to pole, leady(t) versust. Gradient-induced motion of the two spiral cores leads
ing to the creation of a source-sink pair. Thiistermediat¢  to a change in the distanak between the cores with time. The
state is shown in Fig. 4 and corresponds to regime | in FigSiower and upper curves correspond to the distanc&3rand $2,

2 and 3. Viewed from the low-excitability end of the sphere,respectively. The dashed lines are the respective upper bounds
the waves wind into a small region about the core, reminisgiven by the size of the sphere.
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Not only does the gradient in the FHN medium change
the local excitability but it also induces a drift of the spiral
cores[29]. For our model, the drift is rather slow compared
to the transition to the source-sink pair which takes place
during the transient regim&. This can be seen in Fig. 2.
[The fluctuations in3(r (t)) are due to spiral meanderifdn
regime |, the dominating spiral drifts toward lower excitabil-
ity and its wave fronts continuously push the other core in
the opposite direction, thus keeping the distaddeetween
the cores approximately constaisee Fig. 3. The fluctua-
tions ind(t) are again due to meandering of the spiral cores.
Because of this drift, the local excitabilities at the two spiral
cores approach each other until they become equal.

At this point, regime Il in Figs. 2 and 3 is entered. The
dynamics change drastically: the enslaved spiral reverses its

FIG. 4. (Color onling Waves of excitation on the sphere in drift di . d . | - .
regime | of the gradient-induced dynamics shown in Figs. 2 and 3; rift direction and regains control over its own dynamics.

A source-sink pair has formed. For random spatial variations of50th spirals drift toward lower excitability. Due to the geo-
excitability with a correlation length comparable to the diameter of M€tric constraints imposed by the spherical geometry, the
the spiral core meander, the final state is very similar to the onéPirals approach each other until they form a bound (eir
shown herg22]. Upper panel from left to right: view centered at t=7500.
the north pole, south pole, and the equator. The source at the south They finally reach a stable statat t~ 9500 correspond-
pole has index —1 and the sink at the north pole index +1. The blackng to regime Il in Figs. 2 and 3. Neither treveragedis-
circles show possible choices @. The white arrow shows the tance between the spirals nor theeragelocal excitability
direction of wave propagation. Lower panel: dynamics at the nortrchanges further. Yet on top of the persisting unsynchronized
pole. Time increases from left to right witht=2.5 between meandering of the two spiral cores, the bound pair slowly
snapshots. moves along dclosed equi-8 curve on the surface of the
sphere. The direction of the motion depends on the initial

radial gradient in excitability such that the maximum valuecondition—i.e., whether the spiral with positive index was
of B is located in the center of the disk. In this case, alnltla”y closer to the point of lowest excitability or to the
source-sink pair cannot occur because the high-frequendyoint of highest excitability than the spiral with negative
spiral, acting as a source, would push the otliem- index. The wave dynamics generated by this bound pair is
frequency spiral out of the system, excluding the presenceshown in the inset of Fig. 2.

of any strong random inhomogeneities in excitability which ~ While kinematic theory applies only to spirals with large
may pin the low-frequency spiral and prevent its motionCOres, it is instructive to note that this theory predicts that the
(see, e.g.[27]). The lower panel of Fig. 4 shows that rem- direction of the drift due to gradients depends on the model
nants of the low-frequency spiral persist in a small aressystem and its parametef80]. Although our simulations
around the core. It has been speculated that antispiral wav&&ave shown the same direction of drift for a range of param-
might occur in cardiac tissuf28]. While excitable media €ters in the meander region of the FHN phase diagram, it is
cannot support a regime of exclusive antispirals due to thei¢onceivable that, under different circumstances favoring a
excitable character, our results show that source-sink pair@ift toward higher excitability, one spiral could act as a per-
with similar characteristics could form in the heart where themanent source and a source-sink pair could be the final at-
underlying dynamics is excitable, the medium is inhomogediractor. Such a scenario would also be consistent with the
neous, and the topology is similar to(uncturegl sphere. ~ experimental findings in Ref3].

Spiral dynamics of the type described above has been
observed by Maselko and Showal{@] in experiments on
the excitable Belouzov-Zhabotinsky reaction on spherical
beads. They attributed the generation of spiral source-sink Next, we consider a homogeneously excitable sphere with
pairs to inhomogeneities in the medium related to differinga single hole. Two scenarios can be observed depending on
chemical environments. This is consistent with our findingsthe location of the hole with respect to the spiral pair. If a
for systems with gradients and is further confirmed by thespiral wave is not permanently attached to the hole, the dy-
work reported in Ref[21]. While the generation of source- namics is very similar to the case without any hole. If one of
sink pairs due to a gradient in the FHN medium investigatedhe spirals is permanently attached to the hole, the frequency
here is only an intermediate stafieut one that persists for of this spiral is lowered. The size of the hole determines the
approximately 240 spiral periods in our simulatipnandom  frequency of the spiral because the wave front has to travel
spatial variations of the excitability with a correlation length around the hole. The transient dynamics is similar to that in
comparable to the diameter of the spiral core meander alegimeT for the case with a gradient; however, no drift of
larger can lead to a final state consisting of such a sourcdhe spiral cores is induced and the final state is a spiral
sink pair[22]. This is due to the fact that the source can besource-sink pair as shown in Fig. 5. Not only is the net index
trapped in a region of depressed local excitability. conserved during the transition to a spiral source-sink pair

B. Punctured spheres
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hole, again conserving the topological charge of the hole.

V. CONCLUDING REMARKS

Inhomogeneities due to spatially varying excitability on
(punctured spherical shells lead to complex spiral-wave dy-
namics and the formation of source-sink spiral pairs in ex-
citable media. The results presented here are immediately
applicable to excitable media in more complicated geom-
etries such as tori or multiholed tori and to situations in
which multiarmed spirals are found. This includes math-
ematical modeling of cardiac tissue. The approach taken in
this paper stresses constraints and aspects that apply to, and

i A
\ J
must be observed in, all realistic models of the heart satisfy-
ing certain criteria of continuity. There are also implications

FIG. 5. (Color onlineg Waves of excitation on the punctured . . . -
) ) . for the treatment of cardiac arrhythmias. In cardiology it is
sphere propagating towards the hole. A source-sink spiral wave pair

has formed in the final state. Upper panel from left to right: view Sometimes possible to develop maps showing the timing of

centered at the north pole, south pole, and the equator. Lower panéne exc_:|tat|on over limited regions of he4]. In this pase, a
dynamics at the south pole. Time increases from left to right withs",]k mlght be Co,nfus_ed ]‘or a souref ',[he arrhythm'a” and
At=2.5 between snapshots. this might have implications for the diagnosis of the mecha-

nism and the choice of therapy. The current work shows how
but so is the index of the individual spirals: during the tran-partial knowledge about what is happening in some regions
sition an outgoing-counterclockwiséelockwise) oriented that could be observed might be helpful in establishing prop-
spiral is converted into an ingoing-clockwise- erties of dynamics that could not be observed. While the
(counterclockwise- oriented spiral. Thus, the formation of types of sinks we have described here have only been ob-
spiral source-sink pairs conforms with the topological con-served in chemical medig8,4] so far, we certainly expect
straints. their existence in the cardiological domain.

If a gradient as well as a hole is present, the spiral drift
discussed earlier also detgrmi.nes the fingl state, which.de- ACKNOWLEDGMENTS
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