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Nonequilibrium thermodynamics and boundary conditions for reaction
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Nonequilibrium interfacial thermodynamics is formulated in the presence of surface reactions for the
study of diffusiophoresis in isothermal systems. As a consequence of microreversibility and Onsager-
Casimir reciprocal relations, diffusiophoresis, i.e., the coupling of the tangential components of the
pressure tensor to the concentration gradients of solute species, has a reciprocal effect where the
interfacial currents of solutes are coupled to the slip velocity. The presence of surface reactions is
shown to modify the diffusiophoretic and reciprocal effects at the fluid-solid interface. The thin-layer
approximation is used to describe the solution flowing near a reactive solid interface. Analytic formulas
describing the diffusiophoretic and reciprocal effects are deduced in the thin-layer approximation and
tested numerically for the Poiseuille flow of a solution between catalytic planar surfaces. Published
by AIP Publishing. https://doi.org/10.1063/1.5031761

I. INTRODUCTION

Interfacial phenomena play a crucial role in many
nonequilibrium systems and this is especially the case for the
motion of colloidal particles through phoretic mechanisms.
In these mechanisms, a force is exerted on particles due to
gradients in fields such as concentration, temperature, or elec-
trochemical potential. This results in a flow in the surrounding
fluid which is responsible for the motion of the colloid. The
interaction of the fluid with the particle through boundary
conditions applied at the fluid-solid interface is an essential
element in these phoretic mechanisms.1–4

Interest in this area has increased recently with the
observation of the self-propulsion of micro-motors through
self-phoresis. In this case, the gradient is generated by the
particle itself as a result of asymmetric activity on the motor-
fluid interface. The situation where the activity arises from
chemical reactions on a portion of the motor surface is of
special interest. This asymmetric catalytic activity can lead
to gradients giving rise to diffusiophoresis, electrophoresis,
and thermophoresis. For instance, some of the first nanomo-
tors were bimetallic rods that catalyzed the decomposition of
hydrogen peroxide to produce gradients in electrochemical
potentials that drove the motion.5,6 Motors with other geome-
tries featuring catalytic and noncatalytic parts have been stud-
ied extensively.7–9 Self-powered micropumps based on these
mechanisms have also been built.10–12 In all of these cases, the
form that the boundary conditions take is an important ingredi-
ent in the continuum description of the mechanism underlying
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propulsion.2–4 A particularly simple geometry is a spherical
Janus motor with reactive and inactive hemispheres which may
be propelled by self-diffusiophoresis involving concentration
gradients of reactants and products.13,14 The diffusiophoretic
mechanism is the main focus of this paper. In a more general
context, these issues also concern transport in a condensed
phase close to a reactive surface and its effect on the reaction
itself.

These considerations have motivated our examination of
the boundary conditions at an interface where reactions and
transport occurs. Much effort has already been devoted to
the general problem of boundary conditions at an interface.15

The approach we take is based on nonequilibrium interfacial
thermodynamics16–20 which is developed here to treat surface
reactions of multicomponent solutions. The boundary condi-
tions we derive for the velocity and concentration fields can
be applied to a variety of different situations, ranging from
self-propulsion of active colloids to the effects of fluid flows
on catalytic reactive surfaces.

The entropy balance equation is established from the
Gibbs and Euler thermodynamic relations, and it allows us to
identify the different interfacial irreversible processes beyond
those that are known for bulk phases.21–24 Following the
principles of linear nonequilibrium thermodynamics, phe-
nomenological relations are formulated between the currents
and affinities of the different processes. As a consequence of
microreversibility, the linear response coefficients obey the
Onsager-Casimir reciprocal relations.25–27 It is shown that
the balance equations for the surface concentrations of the
different species and their coupling to the velocity field pro-
vide the route to obtain the boundary conditions. In the case
of a fluid-solid interface, the molecular species in the solu-
tion are assumed to interact with the solid surface through
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potential energy functions of finite range. When the range
is small with respect to the other characteristic lengths of
the problem, the thin-layer approximation can be used to
determine the boundary conditions. Through this procedure,
we obtain the diffusiophoretic and reaction rate constants
and show that the presence of reactions modifies previously
obtained expressions for these constants.3,4,28

The paper is organized as follows. Section II sets up inter-
face nonequilibrium thermodynamics for surface reactions
coupled to hydrodynamic flows in isothermal multicompo-
nent systems, especially at fluid-solid interfaces. In Sec. III,
the desired boundary conditions are deduced within the thin-
layer approximation and the modified diffusiophoretic and
reaction rate constants are obtained. Numerical examples are
given in Sec. IV. Section V contains the conclusions and gives
perspectives on the study.

II. INTERFACIAL NONEQUILIBRIUM
THERMODYNAMICS
A. General formulation

We first present the general formulation of nonequilib-
rium interfacial thermodynamics. With this aim in mind, we
consider an interface between two immiscible bulk phases
and include irreversible processes due to chemical reactions—
especially at the interface—within the framework of
Refs. 16–20. Since we are mainly interested in diffusiophore-
sis, we include the concentration fields of all solute species
in the description. Furthermore, we suppose that the system is
isothermal so that all terms involving thermal non-uniformities
are eliminated.

The possibly moving interface is located at f (r, t) = 0, and
it divides the system into two media, + at f (r, t) > 0 and � at
f (r, t) < 0. These media can be fluids or solids, but at least one
of them is a fluid. The vector normal to the interface is denoted
as n ≡∇f (r, t)

/
‖∇f (r, t)‖. It is convenient to introduce a Dirac

delta distribution located at the interface defined by

δs(r, t) ≡ ‖∇f (r, t)‖ δ
[
f (r, t)

]
, (1)

as well as Heaviside indicator functions for both bulk phases
θ±(r) ≡ θ

[
±f (r, t)

]
. Any density x can be decomposed as

x = x+θ+ + xsδs + x−θ−, (2)

where x± are the values of the quantity x in the two bulk phases
on both sides of the interface, while xs is the excess surface den-
sity of x. As a consequence of these definitions, Ref. 17 shows
that the bulk and surface densities obey balance equations for
mass, momentum, energy, and entropy for media composed of
a single atomic or molecular species.

Here, we consider molecular mixtures composed of sev-
eral species k = 1, 2, . . .. The balance equations for the
concentration ck of species k are given by

∂tc
±
k + ∇ ·

(
c±k v± + j±k

)
=

∑
r

νkrw
±
r , (3)

∂tΓk + ∇⊥ ·
(
Γkvs + js

k

)
=

∑
r

νkrw
s
r − n · j+

k + n · j−k , (4)

n · js
k = 0, (5)

where v± and vs are the bulk and surface fluid velocities, j±k
and js

k are the bulk and surface diffusive current densities of
species k, w±r and ws

r are the bulk and surface reaction rates r,
νkr is the stoichiometric coefficient of species k in reaction r,
Γk ≡ cs

k is the excess surface density of species k, and ∇⊥ is
the tangential gradient. Since the bulk phases are immiscible,
the conditions n · v± = n · vs are satisfied.16,17 If positive, the
variables Γk characterize the adsorption of species k at the
interface.29 However, Γk may be negative if there is a deficit
of species k at the interface. The bulk mass density is related
to the concentrations and the molecular masses mk according
to ρ =

∑
k mkck , where the sum includes the solvent.

The entropy balance equation can be established by
assuming local equilibrium, implying the validity of the Gibbs
and Euler relations in the bulk phases as well as at the interface.
In the bulk phases, we have

de± = T±ds± +
∑

k

µ±k dc±k , e± = T±s± − P± +
∑

k

µ±k c±k , (6)

where e± are the internal energy densities, T± are the tem-
peratures, s± are the entropy densities, µ±k are the chemical
potentials of species k, and P± are the hydrostatic pressures.
The analogous equations at the interface are

des = T sdss +
∑

k

µs
kdΓk , es = T sss + γ +

∑
k

µs
kΓk , (7)

where T s is the surface temperature, µs
k is the surface chemical

potential of species k, and γ =�Ps is the surface tension defined
as minus the hydrostatic surface pressure. The entropy balance
equations are thus given by

∂ts
± + ∇ ·

(
s±v± + j±s

)
= σ±s , (8)

∂ts
s + ∇⊥ ·

(
ssvs + js

s
)
= σs

s − n · j+
s + n · j−s , (9)

n · js
s = 0 , (10)

expressed in terms of the bulk entropy current density j±s and
entropy production per unit time and unit volume σ±s given
in Ref. 23, the excess surface entropy current density js

s, and
the excess surface entropy production per unit time and unit
area σs

s . If the system is isothermal with the common T ≡ T+

= T� = T s, the excess surface entropy current density is given by
js
s = −

∑
k µ

s
k js

k/T and the excess surface entropy production
can be expressed as

σs
s =

∑
α

Aα Jα, (11)

in terms of the affinities and currents given in Table I.
We suppose that the irreversible processes are driven

in the linear regime close to thermodynamic equilibrium.
We apply the Curie symmetry principle by considering an
isotropic surface. Accordingly, the currents and the affinities
of the same spatial character are linearly related to each other
by

Jα =
∑
β

LαβAβ . (12)

The response coefficients obey the Onsager-Casimir reciprocal
relations

Lαβ = εαεβLβα , (13)
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TABLE I. The irreversible processes at an isothermal interface between two immiscible bulk phases. (∇vs)sym denotes the symmetrized gradient of the surface

velocity, 1⊥ ≡ 1 � nn,
◦

Πs is the traceless part of the viscous surface pressure tensor, and Πs is half its trace.17

Irreversible processes Affinity Aα Current Jα Space Time

Dilatational interfacial viscosity Ap = −
1
T ∇ · v

s Jp = Πs Scalar Odd

Interfacial reaction r Ar = −
1
T

∑
k µ

s
k νkr Jr = w

s
r Scalar Even

Transport of species k across interface Ak⊥ = −
1
T

(
µ+

k − µ
−
k

)
Jk⊥ =

1
2 n ·

(
j+
k + j−k

)
Scalar Even

Transport of species k to the interface Ak> = −
1
T

(
µ+

k +µ−k
2 − µs

k

)
Jk> = n ·

(
j+
k − j−k

)
Scalar Even

Transport of species k inside the interface Ak‖ = −
1
T ∇⊥µ

s
k Jk‖ = js

k Vector Even

Interfacial slippage Av = −
1
T (v+ − v−) Jv =

1
2 n ·

(
P+ + P−

)
Vector Odd

Shear interfacial viscosity
◦

Ap = −
1
T 1⊥ ·

[
(∇vs)sym − 1

2∇ · v
s] · 1⊥ ◦

Jp =
◦

Πs Tensor Odd

where εα = ±1 depending on whether the affinity Aα is even
or odd under time reversal.17,23 An important result23 is that
the antisymmetric linear response coefficients, Lαβ = �Lβα
relating processes with opposite parities under time rever-
sal, do not appear in the quadratic expression of the entropy
production (11).

In specific systems, there is no need to consider all of
the linear response coefficients for every possible coupling
between the irreversible processes. In particular, the transport
to the interface could be fast enough so that there is a quasiequi-
librium between the interface and the bulk phases, in which
case the chemical potential of the interface is equal to those of
the bulk phases, µs

k = µ
+
k = µ

−
k , and there is no longer transport

across and to the interface. The conditions for this quasiequi-
librium are that the linear response coefficients relating Jk⊥

to Ak⊥ and Jk> to Ak> in Table I should be large enough to
reduce chemical potential differences to a level smaller than
the differences between the bulk chemical potentials driving
the surface chemical reactions. If this is not the case, the con-
centration profiles may manifest a jump across the interface
under nonequilibrium conditions, as in the phenomenon of the
Kapitza thermal resistance,30 moreover, with the possibility of
the interfacial accumulation of adsorbates under equilibrium
or nonequilibrium conditions.29

B. Fluid-solid interface

Diffusiophoresis is one of the key processes for a fluid-
solid interface. Here, our aim is to determine the boundary
conditions associated with this process on the basis of nonequi-
librium interfacial thermodynamics and in the presence of
interfacial reactions. While such boundary conditions have
been considered previously,3,4,28 our results provide a more
general formulation that allows one to describe the effects of
reactions on diffusiophoresis.

In fluid-solid systems, the interface can be assumed to be
rigid enough so that there is no need to consider the inter-
facial viscosities. Similarly, for a solution in contact with a
solid, there is no transport across the interface so that the trans-
port to the interface is only from the solution. We thus remain
with the relations between the scalar reaction rate Jr and the

chemical affinity Ar and those for the vectorial quantities in
Table I. According to Ref. 17, and using the further boundary
condition31 n · P+ = n · P�, the phenomenological surface
relations for the vectorial quantities that are consistent with
the second law are given by

n · P · 1⊥ = −
Lvv

T
vslip −

∑
k

Lvk

T
∇⊥µ

s
k , (14)

js
k = −

Lkv

T
vslip −

∑
l

Lkl

T
∇⊥µ

s
l , (15)

where vslip = v+
� v� is the slip velocity between the fluid

and the solid, µs
k is the surface chemical potential of species

k, 1⊥ ≡ 1 � nn, and P denotes the fluid pressure tensor at the
boundary. This latter quantity is given for an incompressible
fluid by

Pij = P δij − η(∂ivj + ∂jvi) , (16)

where P is the hydrostatic pressure and η is the shear vis-
cosity of the fluid phase. Moreover, the coefficient of sliding
friction λ enters through the relation32 Lvv = Tλ, while the
coefficients Lkl = Llk in Eq. (15) are related to the surface
diffusion coefficients of the adsorbates if they exist. For a
dilute interfacial coverage of adsorbates, the surface chemi-
cal potential of species k is given by µs

k = µ
s0
k + kBT ln(Γk/Γ

0)
if Γk > 0 so that we recover Fick’s law for surface diffusion if
Lkl/T = δklDs

kΓk/(kBT ), where Ds
k denote the surface diffusion

coefficients.
When the boundary layer and neighboring bulk phase

are in local equilibrium, the surface chemical potentials take
their bulk values: µs

k = µk = µ0
k + kBT ln(ck/c0). The hydro-

static pressure P can be eliminated from Eq. (14) because
n·1⊥ = 0. Under these conditions, and introducing the slip
length

b ≡
η

λ
(17)

and diffusiophoretic constants3,4

bk ≡ kB
Lvk

λck
, (18)

Eq. (14) takes the simpler form,



194114-4 P. Gaspard and R. Kapral J. Chem. Phys. 148, 194114 (2018)

b n ·
(
∇v + ∇vT

)
· 1⊥ = vslip +

∑
k

bk ∇⊥ck , (19)

which will play a key role in the following. Indeed, Eq. (19)
provides boundary conditions for the velocity field at the
fluid-solid interface in the presence of diffusiophoresis. As
a consequence of the Onsager-Casimir reciprocal relations
(13), the surface current density (15) should also involve the
diffusiophoretic constants because

Lkv = −Lvk = −
1
kB

λ bk ck , (20)

expressing microreversibility in the coupling of the slip
velocity to the surface current density.

An important issue to note is that the balance equations
(4) for the excess surface densities are related to the boundary
conditions for the concentration fields c+

k = ck in solution,
which are ruled by the bulk balance equations, as the following
reasoning shows. At the fluid-solid interface, we have in Eq. (4)
that j+

k is the bulk diffusive current density in the solution and
j−k = 0 in the solid. If Fick’s law holds for species k with bulk
diffusion coefficient Dk in the solution, the current density is
given by

j+
k = −Dk∇ck , (21)

and we get from Eq. (4) that, at the interface,

−Dk n · ∇ck =
∑

r

νkr w
s
r − Σ

s
k . (22)

Here, Σs
k is the sink into the boundary pool of adsorbate

species k,

Σ
s
k ≡ ∂tΓk + ∇⊥ · (Γkvs + js

k), (23)

which is expressed in terms of the surface current density

js
k =

λbk

kBT
ck vslip − Ds

k ∇⊥Γk . (24)

Therefore, we have deduced the boundary conditions Eqs. (19)
and (22) for the velocity and concentrations fields from the
phenomenological relations and the balance equations at the
interface.

In the following, we shall illustrate the formalism for
the simple reaction A 
 B with stoichiometric coefficients
νA = �1 and νB = +1. Its rate is given by

ws = κ+cA − κ−cB , (25)

with rate constants κ± that are positive on the chemically active
surface. Supposing furthermore that the adsorbates can be
neglected (Γk = 0), the total entropy production rate, includ-
ing the irreversible processes in the fluid and at the fluid-solid
interface, is given by

1
kB

diS
dt
=

∫
dV



η

2kBT

(
∇v +∇vT

)2
+

∑
k=A,B

Dk
(∇ck)2

ck



+
∫

dS

[
λ

kBT

(
vslip

)2
+ (κ+ cA − κ− cB) ln

κ+ cA

κ− cB

]
≥ 0,

where the volume integral extends over the bulk of the fluid
and the surface integral over the interface. The first term is the

contribution due to shear viscosity, the second to diffusion, the
third to interfacial friction, and the fourth to surface reaction.
We notice that the contribution of the diffusiophoretic coupling
terms is zero because of cancellation due to the antisymmetry
Lkv = �Lvk .

In Sec. III, the various coefficients will be determined
within the thin-layer approximation.

III. THIN-LAYER APPROXIMATION
AND BOUNDARY CONDITIONS
A. Setting up the thin-layer approximation

We consider a dilute solution of species A and B in a
solvent 0 near a solid wall. The solution is assumed to be
incompressible. As depicted in Fig. 1, the z-axis is perpendic-
ular to the wall, while the x-axis is parallel to the wall (as well
as the y-axis that is not shown for simplicity). Let uk(z) denote
the interaction potential of solute k = A, B with the wall. The
potentials are taken to vanish beyond their range z = δ which is
assumed to be larger than the molecular size and much smaller
than the radius of curvature of the solid interface.

The velocity v and concentration ck fields obey the
following equations:

ρ(∂t v + v · ∇v) = −∇P −
∑

k

ck∇uk + η∇2v, (26)

∇ · v = 0 , (27)

∂t ck + ∇ · jk = 0 , (28)

jk = ckv − Dk∇ck − βDkck∇uk , (29)

where ρ is the mass density, β = (kBT )−1 is the inverse
temperature, and jk denotes the total current densities. These
equations can be rewritten in the following form:

ρ(∂t v + v · ∇v) = −∇
(
P − kBT

∑
k

ck

)
−kBT

∑
k

e−βuk∇
(
eβuk ck

)
+ η∇2v, (30)

∇ · v = 0 , (31)

∂t ck + ∇ · jk = 0 , (32)

jk = ckv − Dke−βuk∇
(
eβuk ck

)
. (33)

FIG. 1. Schematic representation of the thin-layer approximation: (a) Interac-
tion potential uk(z) of a solute k with the wall at z = 0. (b) The actual ck(z) and
effective c̃k(z) concentration profiles. (c) The actual vx(z) and effective ṽx(z)
velocity profiles. The width of the boundary layer where the solute interacts
with the wall is δ and b is the slip length.
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At the wall, the fields satisfy the boundary conditions

vx(x, 0) = b ∂zvx(x, 0) , (34)

vz(x, 0) = 0 . (35)

The slip boundary condition holds for the velocity field vx(x, z).
Furthermore, the current density jk(x, z) satisfies the boundary
condition

jkz(x, 0) = νk w(x), (36)

with the surface reaction rate w(x).
The idea behind the thin-layer approximation consists of

replacing the actual fields by effective fields ṽ(x, z) and c̃k(x, z)
that obey the following equations:

ρ(∂t ṽ + ṽ · ∇ṽ) = −∇P̃ + η∇2ṽ , (37)

∇ · ṽ = 0 , (38)

∂t c̃k + ∇ · j̃k = 0 , (39)

j̃k = c̃k ṽ − Dk∇c̃k , (40)

as if there were no interaction potentials, but with effective
boundary conditions that are determined by the analysis devel-
oped below. The effective fields should coincide with the actual
fields beyond the boundary layer, i.e., beyond the interaction
range of the potentials,

ṽ(x, z) = v(x, z) and c̃k(x, z) = ck(x, z) , (41)

if z ≥ δ, but they differ within the boundary layer, as schemat-
ically depicted in Fig. 1. As in Eq. (35), we also expect that
ṽz(x, 0) is negligibly small.

Referring to Eq. (2), in the limit of an arbitrarily thin
boundary layer, the actual concentration field ck governed by
Eq. (28) should correspond to the combination c̃kθ

+ + Γkδ
s

in terms of the effective concentration field c̃k and the excess
surface density Γk . From Eqs. (22) and (23), we find that Γk

satisfies

∂tΓk + ∂x

(
Γkv

s
x + js

kx

)
= νk w(x) − j̃kz(x, 0) . (42)

Subtracting Eq. (39) from Eq. (28), integrating over the thick-
ness 0 < z < δ of the boundary layer, and using the boundary
condition (36), we get

∂t

∫ δ

0
(ck − c̃k) dz + ∂x

∫ δ

0
[ckvx − c̃k ṽx − Dk∂x(ck − c̃k)] dz

= νk w(x) − jkz(x, δ) + j̃kz(x, δ) − j̃kz(x, 0). (43)

This result may then be compared with Eq. (42) after using
the matching condition j̃kz(x, δ) = jkz(x, δ), which is a conse-
quence of Eq. (41). We thus obtain the expressions giving the
excess surface and current densities,

Γk(x) =
∫ δ

0
[ck(x, z) − c̃k(x, z)]dz, (44)

Γkv
s
x + js

kx =

∫ δ

0
(ckvx − c̃k ṽx)dz − Dk∂xΓk . (45)

In order to establish the effective boundary conditions
from the actual ones, the fields are assumed to vary much
faster in the z-direction normal to the surface than in the
x-direction parallel to the surface. Accordingly, the partial

differential equations can be solved by integrating along the
z-direction independently of the x-direction. Under these con-
ditions, the partial derivatives ∂x of the velocity and concen-
tration fields may be taken to be of order qx, the wavenumber
parallel to the surface. The condition of validity of this approx-
imation is that qxδ � 1. In addition, δ is assumed to be
much smaller than the characteristic size H of the boundaries:
δ � H.

At low Reynolds number, Eqs. (30)–(33) may be solved
for a stationary solution by neglecting the nonlinear term v·∇v
in the Navier-Stokes equation. The components of the current
densities (33) are given by

jkx = ckvx − Dk∂xck , (46)

jkz = ckvz − Dke−βuk∂z

(
eβuk ck

)
(47)

so that Eqs. (30)–(32) read

∂zjkz = −∂x(ckvx − Dk∂xck) , (48)

∂z

(
eβuk ck

)
= −

1
Dk

eβuk (jkz − ckvz) , (49)

∂z

(
P − kBT

∑
k

ck

)
= kBT

∑
k

1
Dk

(jkz − ckvz) + η (∂2
x + ∂2

z )vz ,

(50)

∂2
z vx =

1
η
∂xP − ∂2

x vx , (51)

∂zvz = −∂xvx . (52)

The first equation gives the z-component of the current den-
sity jkz, the second the concentration ck , the third the pres-
sure P, the fourth the x-component of the velocity, and the
fifth the z-component of the velocity. Equations can also be
deduced for the effective fields ruled by Eqs. (37)–(40) and
have the same form as Eqs. (48)–(52) with the potential set to
zero, uk = 0.

B. The effective boundary conditions

Equations (48)–(52) for the actual fields may be succes-
sively integrated over z and the resulting integrals can be
recursively expanded in powers of qx and δ to get expres-
sions in terms of the fields at the boundary z = 0. Next, a
similar integration is performed for the effective fields with-
out specifying their boundary values. Since the effective fields
must coincide with the actual ones if z ≥ δ, relationships are
obtained between the actual and the effective boundary val-
ues. The details of these calculations are given in Appendix A.
As a consequence of the actual boundary condition (34), the
effective velocity field is found to satisfy

ṽx(x, 0) = b ∂z ṽx(x, 0) −
∑

k

bk ∂xC̃k(x) + O(q2
xδ), (53)

expressed in terms of the slip length (17), the diffusiophoretic
constants,

bk =
kBT
η

(
K (1)

k + b K (0)
k

)
, (54)
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and the effective concentrations modified by the reaction,

C̃k(x) ≡ c̃k(x, 0) −
νk

Dk
ςk w(x) , (55)

where

ςk ≡
1

K (1)
k + b K (0)

k

[(
K (2)

k −
1
2

R(2)
k + S(1)

k − K (1)
k R(0)

k

)
+ b

(
K (1)

k − R(1)
k + S(0)

k − K (0)
k R(0)

k

)]
(56)

with the quantities

K (n)
k ≡

∫ δ

0
dz zn

[
e−βuk (z) − 1

]
, (57)

R(n)
k ≡

∫ δ

0
dz zn

[
eβuk (z) − 1

]
, (58)

S(n)
k ≡

∫ δ

0
dz zn

[
e−βuk (z) − 1

] ∫ z

0
dz′

[
eβuk (z′) − 1

]
, (59)

up to corrections O(q2
x ). The expression (54) for the diffu-

siophoretic constants includes the effect of partial slip and
has been obtained in Ref. 28. For stick boundary conditions
(b = 0), Eq. (54) reduces to the previously known
expression.3

We also obtain the boundary condition on the current
densities under stationary conditions (∂tΓk = 0),

j̃kz(x, 0) = νk w(x) − ∂x(Γkv
s
x + js

kx), (60)

where the interfacial current densities are calculated using
Eq. (45) to get

js
kx =

λ bk

kBT
C̃k(x) ṽx(x, 0)× [1 + O(δ/H)]−Dk ∂xΓk + O(qxδ

3),

(61)
in terms of the coefficient of sliding friction λ = η/b, the dif-
fusiophoretic constants (54), the effective concentrations (55),
and the diffusion coefficients Dk , up to corrections that are
negligible under the aforementioned conditions δ � H and
qxδ � 1.

In summary, substituting the definition (55) into Eq. (53)
and neglecting the corrections, we obtain the boundary condi-
tion for the effective velocity as

ṽx(x, 0) = b ∂z ṽx(x, 0)−
∑

k

bk ∂x

[
c̃k(x, 0)−

νk

Dk
ςk w(x)

]
. (62)

Next, substituting the expression (40) for the effective cur-
rent density into Eq. (60), using Eq. (61) with the defini-
tion (55), and again neglecting the corrections, we get the
boundary conditions on the effective concentration fields
as

−Dk∂zc̃k(x, 0) = νk w(x) − Σs
k , (63)

where the sink reads

Σ
s
k = ∂x

{
Γkv

s
x+
λ bk

kBT

[
c̃k(x, 0)−

νk

Dk
ςk w(x)

]
ṽx(x, 0)−Dk ∂xΓk

}
.

(64)
Equations (63) and (64) are consistent with Eqs. (22) and (23)
for stationary conditions.

Comparing Eqs. (62) and (61) with Eqs. (19) and (24),
respectively, we see that the role of the concentration fields is
played by the effective concentrations (55) due to the mod-
ification by the surface reaction. In this regard, the effective
linear response coefficients are given by

Lkv = −Lvk = −
1
kB

λ bk C̃k(x) . (65)

Furthermore, we notice that, if the reaction rate is a linear
combination of the concentrations, the first boundary condition
(62) can be written as

ṽx(x, 0) = b ∂z ṽx(x, 0) −
∑

k

b̃k ∂x c̃k(x, 0), (66)

in terms of renormalized diffusiophoretic constants b̃k . The
results for a stick boundary condition (b = 0) are summarized
in Appendix B.

These results show that the diffusiophoretic effect is
described as a coupling between two interfacial irreversible
processes, namely, the sliding friction and transport by con-
centration gradients.

C. Specialization to the A
 B reaction

For the A
 B reaction, the rate is given by

w(x) = κs
+ cA(x, 0) − κs

− cB(x, 0) , (67)

where the rate constants κs
± are defined at the catalytic surface.

Referring to Appendix A, the reaction rate (67) may
also be expressed in terms of the effective concentrations by
inverting Eq. (A12), giving

w(x) =
κs

+

∆
e−βuA(0) c̃A(x, 0) −

κs
−

∆
e−βuB(0) c̃B(x, 0) + O(qx) ,

(68)
where

∆ = 1 +
κs

+

DA
e−βuA(0)R(0)

A +
κs
−

DB
e−βuB(0)R(0)

B (69)

so that the reaction rate can be rewritten as

w(x) = κ+ c̃A(x, 0) − κ− c̃B(x, 0) (70)

with renormalized rate constants κ±. As expected, the rate con-
stants are modified by the Boltzmann factors corresponding to
the interaction energies at the surface. Moreover, the denom-
inator ∆ includes corrections depending on the quantities
(58).

For the A
B reaction (67), the slip velocity (66) becomes

ṽx(x, 0) = b ∂z ṽx(x, 0) − b̃A ∂x c̃A(x, 0) − b̃B ∂x c̃B(x, 0) (71)

with the renormalized diffusiophoretic coefficients,

b̃A = bA

(
1 +

ςA

DA
κ+

)
− bB

ςB

DB
κ+ , (72)

b̃B = bB

(
1 +

ςB

DB
κ−

)
− bA

ςA

DA
κ− , (73)

with ςA and ςB being given by Eq. (56).
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D. Estimates of the corrections

In order to estimate the relative importance of these
corrections, we may consider the simple square-well potentials

uk(z) =

{
uk(0) , if 0 < z < δ ,
0 , if δ ≤ z .

(74)

In this case, the constants take the following values:

K (n)
k = φ

−
k
δn+1

n + 1
, R(n)

k = φ
+
k
δn+1

n + 1
, and

S(n)
k = φ

+
kφ
−
k
δn+2

n + 2
, with φ±k ≡ e±βuk (0) − 1. (75)

Taking the no-slip boundary condition b = 0, we have that
the bare diffusiophoretic constant (54) is equal to

bk =
kBT
η

K (1)
k =

kBT
η

φ−k
δ2

2
, (76)

the constant (56) is equal to ςk = δ, and ∆ that enters the rate
(68) becomes

∆ = 1 −
κs

+

DA
φ−A δ −

κs
−

DB
φ−B δ . (77)

We notice that ςk = δ even if b , 0 in this model.
Denoting H as the characteristic size of the boundaries,

we introduce the Damköhler number,

Da = H
κs
±

Dk
, (78)

characterizing the diffusive control of the reaction. The reac-
tion proceeds in the reaction-limited regime if Da � 1 or in
the diffusion-limited one if Da� 1. Accordingly, the relative
modifications of the renormalized diffusiophoretic constants
(72) and (73) behave as

���
b̃k − bk

bk

��� ∼ Da
δ

H
(79)

because ςk = δ. Since the range δ of the interaction potentials
uk(z) is typically of the order of nanometers in solutions of neu-
tral species, we have that δ/H ∼ 10�3 for a micrometric size
H. Therefore, the modifications of the diffusiophoretic con-
stants remain negligible in the reaction-limited regime where
Da � 1, but can lead to significant effects in the diffusion-
limited regime for Da ∼ 103 or larger.

Concerning the rate constants, an additional effect comes
from the Boltzmann factors e−βuk (0) in ∆ in Eq. (77). If uk(0)
∼ kBT, the Boltzmann factors are of order unity. In this case,
the corrections in the denominator are also of order Da δ/H
which can become significant if Da & 103.

IV. NUMERICAL EXAMPLES

In order to test the predictions of the thin-layer approxi-
mation, we consider the Poiseuille flow of a solution between
two parallel planes with identical properties and separated by a
distance H. The Navier-Stokes and advection-diffusion equa-
tions are numerically integrated by the standard staggered-grid
method33 in a two-dimensional domain with 0 < x < L and
0 < z < H/2, using the mirror symmetry with respect to the

plane z = H/2. In the two examples below, the actual fields are
compared to the effective fields.

On one hand, the numerical integration of the Navier-
Stokes and advection-diffusion equations (26)–(29) for the
actual fields is performed with the inflow-outflow boundary
conditions

vx(0, z) =
g

2η
(z2 − Hz − Hb), ∂xvx(L, z) = 0, (80)

vz(0, z) = 0, ∂xvz(L, z) = 0, (81)

ck(0, z) = ck,in e−βuk (z), ck(L, z) = ck,out e−βuk (z), (82)

where g = ∂xP, together with the boundary conditions (34)–
(36) on the planes. The mass density takes the value ρ = 1,
the viscosity η = 0.1, the slip length b = 0.1, the pressure
gradient g = �0.1, H = 2, and L = 1. Moreover, the diffusion
coefficients are DA = DB = 1, the inverse temperature β = 2,
and the interaction potentials of the solutes with the wall are
given by

uA(z) =

{
10 × (δ − z)2 if 0 < z < δ,
0 if δ < z,

(83)

with δ = 0.25, and uB = 0, so that the diffusiophoretic effect is
only due to the species A. The unit of length is taken as H/2.
The chosen parameter values correspond to a flow of Reynolds
number Re = ρHvx(0, H/2)/η = 12. The ratio δ/H = 0.125 is
taken large enough in order to visualize the boundary layer in
the numerical integration.

On the other hand, the integration of Eqs. (37)–(40)
for the effective fields is carried out with the same inflow-
outflow boundary conditions as in Eqs. (80) and (81), but
c̃k(0, z) = ck,in and c̃k(L, z) = ck,out, together with the bound-
ary conditions (62) and (63) in the approximation Σs

k = 0 on
the planes.

A. Example without reaction

In this first example, the planes are chemically inactive and
the solution contains only the solute species A, in order to test
the diffusiophoretic boundary conditions. At the boundaries
x = 0 and x = L, the concentrations are taken as cA,in = 0,
cA,out = 5, and cB,in = cB,out = 0 so that cB(x, z) = 0. The station-
ary concentration field cA(x, z) is shown in Fig. 2, together with
the stationary profile vx(L, z) of the outflow. Since the interac-

FIG. 2. Poiseuille flow of a solution with solute A between two planes without
reaction for the boundary conditions cA,in = 0, cA,out = 5, and other parameter
values are specified in the text: The stationary concentration field cA(x, z) in
the two-dimensional domain (x, z) and the velocity profile vx(L, z) versus z
are shown. The grid size is ∆x = ∆z = 0.05.
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tion potential (83) is repulsive, there is a deficit of species A
in the boundary layer of width δ = 0.25 near the walls.

Figure 3 compares the actual and effective fields along the
z-direction in the middle of the domain at x = 0.5 [Fig. 3(a)]
and along the x-direction at the wall z = 0 [Fig. 3(b)].

On the walls, the boundary conditions of the effective
fields are given by Eqs. (62) and (63) with w(x) = 0 since
there is no reaction in this example. In Eq. (62), the diffusio-
phoretic constant for species A is calculated with Eqs. (54) and
(57), giving the value bA = �0.06313. In Eq. (63), the approx-
imation Σs

A = 0 is taken, supposing that there is no sink into
the boundary layer.

In Fig. 3(a), we see the profiles at x = 0.5 in the z-direction
for the two components of the velocity field and the concen-
tration field of species A. The agreement between the actual
and effective fields away from the wall shows that the thin-
layer approximation provides suitable boundary conditions
on the effective fields. Near the wall, we observe differences
between the actual and effective fields, as schematically rep-
resented in Fig. 1. The actual concentration is essentially
related to the effective one by cA(x, z) = e−βuA(z)c̃A(x, z), as
expected by Eqs. (A2), (A7), and (A12). The actual velocity
field vx(x, z) is lower than the effective one ṽx(x, z) near the wall,
which is the effect of diffusiophoresis. Since the slip length is
positive (b = 0.1), the actual velocity field is not vanishing

FIG. 3. Poiseuille flow of a solution with solute A between two planes without
reaction for the boundary conditions cA,in = 0, cA,out = 5, and other parameter
values are specified in the text: Panel (a) shows the two components of the
velocity field as well as the concentration field cA along the z-direction at
x = 0.5. The actual fields are depicted by solid lines and filled symbols, and
the effective fields are depicted by dashed lines and open symbols. Panel (b)
shows the velocity field vx as well as the concentration field cA along the x-
direction at the wall z = 0. The crosses depict the predictions of the thin-layer
approximation. The grid size is ∆x = ∆z = 0.05.

at the wall where vx(x, 0) = b∂zvx(x, 0). However, the effective
velocity field at the wall is larger because of the diffusio-
phoretic contribution: ṽx(x, 0) = b∂z ṽx(x, 0) − bA∂x c̃A(x, 0).
In addition, the z-component of the velocity field is very
small.

In Fig. 3(b), the boundary values of the concentration
field cA and velocity fields vx and ṽx at the wall z = 0 are
shown along the x-direction, together with the excess sur-
face density ΓA(x). The crosses depict the predictions of
the thin-layer approximation for the different quantities. For
the concentration cA(x, 0), the agreement between the filled
triangles and the crosses is the verification of the relation
cA(x, 0) = e−βuA(0)c̃A(x, 0) predicted by Eq. (A12) with w = 0.
For the velocity field vx(x, 0), the agreement between the
filled circles and the crosses is the verification of the rela-
tion vx(x, 0) = ṽx(x, 0) + (kBT/η)K (1)

A ∂x c̃A(x, 0) predicted by

Eq. (A14) with the value K (1)
A = −0.00519 given by Eq. (57).

The deviations near x = 0 and x = 1 are the perturbations
of the inflow and outflow. The excess surface density ΓA(x)
calculated by Eq. (44) is also in good agreement with the pre-
diction given by Eq. (A17) with K (0)

A = −0.07439 and w = 0.
The excess surface density ΓA(x) is negative because of the
repulsive interaction of species A with the wall.

The agreement with the approximation that neglects the
sink, Σs

A = 0, means that its contribution is much smaller than
the other effects.

B. Example with reaction

In this second example, the system is the same as above
except that the reaction A 
 B is catalyzed on the parallel
planes. Therefore, the solution contains the solute species A
and B. Our aim is to test the effects of the surface reaction
(67) with κs

+ = κ
s
− = 5. The boundary conditions on the actual

velocity field are the same as before, but we now have that
cA,in = 0, cA,out = 5, cB,in = 2, and cB,out = 0, corresponding to
a Damköhler number equal to Da = Hκs

±/Dk = 10.
The different actual and effective fields are compared

in Fig. 4 to test the validity of the thin-layer approxima-
tion. According to Eq. (68), the renormalized rate constants
appearing in Eq. (70) take the following values:

κ+ = 1.16761 , κ− = 4.07537 , (84)

for the present example where e−βuA(0) = 0.28651 and
R(0)

A = 0.15838. The diffusiophoretic constant of species A
is the same as before, bA = �0.06313, but the reaction modi-
fies the effective concentration according to Eq. (55) with the
coefficient ςA = 0.13231 given by Eq. (56). Consequently,
the renormalized diffusiophoretic constants (72) and (73) in
Eq. (71) are given by

b̃A = −0.07288 , b̃B = 0.03404 . (85)

Figure 4(a) compares the profiles of the actual and effec-
tive fields vx, vz, cA, and cB, along the z-direction at x = 0.5. As
before, there is good agreement between the actual and effec-
tive fields away from the wall at z = 0. Since there is a repulsive
interaction of species A with the wall, the actual concentration
cA is smaller near the wall than the effective concentration
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FIG. 4. Poiseuille flow of a solution with solute A between two catalytic
planes for the boundary conditions cA,in = 0, cA,out = 5, cB,in = 2, cB,out = 0,
and the other ones are specified in the text: Panel (a) shows the two components
of the velocity field as well as the concentration field cA along the z-direction
at x = 0.5. The actual fields are depicted by solid lines and filled symbols, and
the effective fields are depicted by dashed lines and open symbols. Panel (b)
shows the velocity field vx as well as the concentration field cA along the x-
direction at the wall z = 0. The crosses depict the predictions of the thin-layer
approximation.

c̃A, essentially by the Boltzmann factor e−βuA(z). We also see
the diffusiophoretic effect on the velocity field near the wall
at z = 0, where the actual field vx(0.5, z) is smaller than the
effective field ṽx(0.5, z) because of the diffusiophoretic slip
given by Eq. (66). One of the main points is that the agree-
ment between the actual and effective concentration fields is
a direct consequence of the renormalized rate constants (84).
The reduction of the forward rate constant κ+ with respect to
the unrenormalized value κs

+ = 5 implies, on the one hand, that
the concentration of species A is larger than that in the absence
of the reaction, as we see comparing Figs. 3 and 4, and, on the
other hand, that the concentration of species B is lower than it
would be if the rate constants had their unrenormalized values.
The agreement between the actual and effective concentration
fields cA and cB is thus directly determined by the renormal-
ization (68) of the rate constants. As before, the component vz

of the velocity field is very small.
Figure 4(b) shows the boundary values of the concentra-

tion and velocity fields at the wall z = 0 along the x-direction,
together with the excess surface densities ΓA and ΓB. The
actual quantities are compared with the predictions of the thin-
layer approximation (crosses). There is good agreement inside
the domain with deviations near the entrance and exit because
of perturbations due to the inflow and outflow, as before.
For the concentration fields, the predictions of Eq. (A12) are
that

cA(x, 0) = e−βuA(0)
[
c̃A(x, 0) −

R(0)
A

DA
w(x)

]
(86)

and cB(x, 0) = c̃B(x, 0) which are in good agreement with the
values of the actual fields as seen in Fig. 4(b). For the velocity
field vx(x, 0), the prediction of Eq. (A14) is that

vx(x, 0) = ṽx(x, 0) +
kBT
η

∂x

[
K (1)

A c̃A(x, 0) +
ξA

DA
w(x)

]
(87)

with the constants K (1)
A = −0.00519 and

ξA = K (2)
A −

1
2

R(2)
A + S(1)

A −K (1)
A R(0)

A = −7.7320 × 10−4 . (88)

As seen in Fig. 4(b), the actual field vx(x, 0) (filled circles) is
in agreement with this prediction (crosses). In Eq. (87), the
term due to the reaction w(x) contributes about 25% of the
diffusiophoretic slip. Also, the prediction of Eq. (A17) for the
excess surface densities is given by

ΓA(x) = K (0)
A c̃A(x, 0) +

εA

DA
w(x) (89)

with the constants K (0)
A = −0.07439 and

εA = K (1)
A − R(1)

A + S(0)
A − K (0)

A R(0)
A = −8.9718 × 10−3 , (90)

while ΓB(x) = 0. We observe in Fig. 4(b) the agreement
between these predictions (crosses) and the excess surface den-
sities ΓA(x) and ΓB(x) calculated by their definition (44) (filled
symbols).

Given that there is no fitting parameter in the comparison,
the observed agreement brings numerical support to the valid-
ity of the boundary conditions derived for the effective fields
within the thin-layer approximation and their modifications by
the surface reaction.

V. CONCLUSION AND PERSPECTIVES

Starting from nonequilibrium interfacial thermodynam-
ics, we derived the boundary conditions at a fluid-solid inter-
face for the fluid velocity and concentration fields that are
relevant for diffusiophoresis in the presence of surface reac-
tions. These conditions play a key role in the self-propulsion
of active nano- or micrometric particles made of catalytic solid
material, as well as the operation of chemically self-powered
micropumps.9 Diffusiophoresis is the coupling of solute con-
centration gradients to the tangential components of the pres-
sure tensor at the interface. In virtue of microreversibility,
nonequilibrium interfacial thermodynamics shows that diffu-
siophoresis has a reciprocal effect, which couples the interfa-
cial solute current density to the slip velocity (or its gradient in
the case of stick boundary conditions). Since diffusiophoresis
and its reciprocal effect couple quantities with opposite parity
under time reversal, the corresponding linear response coef-
ficients obey the antisymmetric Onsager-Casimir reciprocal
relations. The situation is the same as that for the coefficients
characterizing the thermal slip in thermophoresis.16,17

Solute concentrations are modified near the interface in
the presence of surface reactions. In order to investigate the
consequences of these modifications, the interaction of the
solute species with a solid surface can be described by inter-
action potentials of finite range, defining the thickness of the
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boundary layer between the fluid and the surface. The sliding
friction between the fluid and the solid surface can be taken
into account by partial slip boundary conditions and the associ-
ated slip length. Integrating the Navier-Stokes and advection-
diffusion equations in the direction normal to the surface, the
diffusiophoretic coupling constants can be obtained within the
framework of the thin-layer approximation.3,4 This method
establishes a matching between actual and effective fields in
the limit where the boundary layer is arbitrarily thin with
respect to the interfacial radius of curvature. In this framework,
we have shown that surface reactions may change the diffusio-
phoretic coupling, as well as its reciprocal effect. Accordingly,
the boundary conditions on the velocity and concentration
fields can be modified at the reactive interface. The modifi-
cations may have a significant impact if the reaction rate con-
stants and the interaction potential of reactive species with the
surface are large. Analytical formulas describing these effects
have been derived in the thin-layer approximation which con-
firms the antisymmetric Onsager-Casimir reciprocal relations.
These results are tested numerically for the Poiseuille flow of
a solution between parallel planes that are either chemically
inactive or catalytic, showing agreement with the predictions
of the thin-layer approximation.

Several issues have been left open in this study. We con-
sidered a fluid-solid interface and supposed that the boundary
layer was in quasiequilibrium with the bulk solution. More-
over, the partial slip and the reactive boundary conditions
were taken at the solid surface. Beyond such situations, there
are fluid-fluid interfaces with interfacial viscosities and the
transport processes to and from the interface may have finite
characteristic time scales so that the boundary layer could be
out of equilibrium with respect to the bulk solution. Further-
more, the interfacial sliding friction as well as the surface
reaction also involves the interaction of the solute and sol-
vent species with the interface. It should be pointed out that
the interaction potentials describing each one of these effects
have their own characteristic length scales, which may have

different relative magnitudes depending on the system of inter-
est. In this respect, we can envisage systems where sliding
friction, diffusiophoresis, and surface reaction could be cou-
pled in a way that uses assumptions that differ from those
in this paper. We notice that molecular dynamics simulations
should be used if several of the characteristic length scales
are of molecular size. Moreover, nonlinear surface reactions
with adsorbate species diffusing along the surface may also be
studied, instead of the simple reaction A 
 B. The methods
developed here can be extended to treat the electrophoretic and
thermophoretic mechanisms.
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APPENDIX A: CALCULATIONS OF THE THIN-LAYER
APPROXIMATION

In this appendix, we provide additional details concerning
the calculations leading to the effective boundary condition in
Sec. III B. The computation starts by successively integrating
Eqs. (48)–(52) for the actual fields over z. After recursive sub-
stitutions, the fields are given as expansions in powers of qx

involving the fields at the boundary z = 0 (where qx denotes
the gradients in the velocity and concentration fields).

First, we note that integrating Eq. (52) with the bound-
ary condition (35) shows that vz = O(qxz), whereupon
∂2

x vz = O(q3
xz) in Eq. (50) and ∂2

x vx = O(q2
x ) in Eq. (51).

With the boundary condition (36), the integration of
Eq. (48) over z leads to

jkz(x, z) = νk w(x) − ∂x[ck(x, 0) vx(x, 0)]eβuk (0)
∫ z

0
dz′e−βuk (z′) − ∂x

[
ck(x, 0) ∂zvx(x, 0)

]
eβuk (0)

∫ z

0
dz′ z′ e−βuk (z′)

−
1

2η
∂x[ck(x, 0) ∂xP(x, 0)]eβuk (0)

∫ z

0
dz′ z′

2
e−βuk (z′) +

νk

Dk
∂x[w(x) vx(x, 0)]

∫ z

0
dz′e−βuk (z′)

∫ z′

0
dz′′ eβuk (z′′)

+
νk

Dk
∂x

[
w(x) ∂zvx(x, 0)

] ∫ z

0
dz′ z′ e−βuk (z′)

∫ z′

0
dz′′ eβuk (z′′) +

νk

2ηDk
∂x[w(x) ∂xP(x, 0)]

×

∫ z

0
dz′ z′

2
e−βuk (z′)

∫ z′

0
dz′′ eβuk (z′′) + O(q2

x z). (A1)

Integrating Eq. (49) over z, the concentrations are given
by

ck(x, z) = e−βuk (z)eβuk (0)ck(x, 0) −
νk

Dk
w(x) e−βuk (z)

×

∫ z

0
dz′ eβuk (z′) + O(qxz2). (A2)

The integration of Eq. (50) gives the pressure

P(x, z) = P(x, 0) + kBT
∑

k

ck(x, 0)
[
e−βuk (z)eβuk (0) − 1

]

− kBT w(x)
∑

k

νk

Dk

[
e−βuk (z)

∫ z

0
dz′eβuk (z′)− z

]
+ O(qxz).

(A3)

Next, the actual velocity field is given by integrating
Eqs. (51) and (52),
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vx(x, z) = vx(x, 0) + z ∂zvx(x, 0) +
z2

2η
∂xP(x, 0) +

kBT
η

∑
k

∂xck(x, 0)
∫ z

0
dz′

∫ z′

0
dz′′

[
e−βuk (z′′)eβuk (0) − 1

]

−
kBT
η

∂xw(x)
∑

k

νk

Dk

∫ z

0
dz′

∫ z′

0
dz′′


e−βuk (z′′)

∫ z′′

0
dz′′′ eβuk (z′′′) − z′′


+ O(q2

x z2), (A4)

vz(x, z) = −z ∂xvx(x, 0) −
z2

2
∂x∂zvx(x, 0) −

z3

6η
∂2

x P(x, 0) + O(q2
x z2). (A5)

A similar integration is performed for the effective fields without specifying their boundary values to get the effective current
density of species k,

j̃kz(x, z) = j̃kz(x, 0) − z ∂x[c̃k(x, 0) ṽx(x, 0)] −
z2

2
∂x

[
c̃k(x, 0) ∂z ṽx(x, 0)

]
−

z3

6η
∂x

[
c̃k(x, 0) ∂xP̃(x, 0)

]

+
z2

2Dk
∂x

[
j̃kz(x, 0) ṽx(x, 0)

]
+

z3

3Dk
∂x

[
j̃kz(x, 0) ∂z ṽx(x, 0)

]
+

z4

8ηDk
∂x

[
j̃kz(x, 0) ∂xP̃(x, 0)

]
+ O(q2

x z), (A6)

the effective concentration field of species k,

c̃k(x, z) = c̃k(x, 0) −
z

Dk
j̃kz(x, 0) + O(qxz2), (A7)

the effective pressure,

P̃(x, z) = P̃(x, 0) + O(qxz), (A8)

and the effective velocity field,

ṽx(x, z) = ṽx(x, 0) + z ∂z ṽx(x, 0) +
z2

2η
∂xP̃(x, 0) + O(q2

x z2),

(A9)

ṽz(x, z) = ṽz(x, 0) − z ∂x ṽx(x, 0) −
z2

2
∂x∂z ṽx(x, 0)

−
z3

6η
∂2

x P̃(x, 0) + O(q2
x z2). (A10)

According to the matching conditions (41), the effective
fields must coincide with the actual ones if z ≥ δ where the
interaction potentials vanish. In particular, this is the case at
z = δwhere Eq. (A1) is equal to Eq. (A6), (A2) to (A7), (A3) to
(A8), (A4) to (A9), and (A5) to (A10). Consequently, we obtain
the following relations between the actual and the effective
boundary values:

j̃kz(x, 0) = νk w(x) − ∂x

{ [
K (0)

k eβuk (0)ck(x, 0) −
νk

Dk

(
K (1)

k − R(1)
k + S(0)

k

)
w(x)

]
vx(x, 0)

}
− ∂x

{ [
K (1)

k eβuk (0)ck(x, 0) −
νk

Dk

(
K (2)

k −
1
2

R(2)
k + S(1)

k

)
w(x)

]
∂zvx(x, 0)

}
− ∂x

{ [
K (2)

k eβuk (0)ck(x, 0) −
νk

Dk

(
K (3)

k −
1
3

R(3)
k + S(2)

k

)
w(x)

] 1
2η

∂xP(x, 0)
}

+ O(q2
xδ), (A11)

c̃k(x, 0) = eβuk (0)ck(x, 0) −
νk

Dk
R(0)

k w(x) + O(qxδ
2), (A12)

P̃(x, 0) = P(x, 0) + kBT
∑

k

ck(x, 0)
[
eβuk (0) − 1

]

− kBT w(x)
∑

k

νk

Dk
R(0)

k + O(qxδ), (A13)

ṽx(x, 0) = vx(x, 0) −
kBT
η

∑
k

∂x

[
K (1)

k eβuk (0)ck(x, 0)

−
νk

Dk

(
K (2)

k −
1
2

R(2)
k + S(1)

k

)
w(x)

]
+ O(q2

xδ
2),

(A14)

∂z ṽx(x, 0) = ∂zvx(x, 0) +
kBT
η

∑
k

∂x

[
K (0)

k eβuk (0)ck(x, 0)

−
νk

Dk

(
K (1)

k − R(1)
k + S(0)

k

)
w(x)

]
+ O(q2

xδ),

(A15)

ṽz(x, 0) = O(q2
xδ

3) , (A16)

expressed in terms of the quantities (57)–(59).
Using the actual boundary condition (34) together with

Eqs. (A14) and (A15) and expressing the actual fields in terms
of the effective ones, we get the boundary conditions for the
effective fields given by Eq. (53) with the diffusiophoretic
constants (54) and the effective concentrations (55).
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Furthermore, Eq. (44) shows that the excess surface
densities are given by

Γk(x) = K (0)
k c̃k(x, 0) −

νk

Dk

(
K (1)

k − R(1)
k + S(0)

k − K (0)
k R(0)

k

)
w(x)

+ O(qxδ
2) (A17)

which are of order δ according to Eq. (75).
In addition, carrying out the integral in Eq. (45) gives the

expression∫ δ

0
(ckvx − c̃k ṽx) dz =

λ bk

kBT
C̃k(x) ṽx(x, 0) +

1
2η

F̃k(x)

× ∂xP̃(x, 0) + O(qxδ
3), (A18)

with the effective concentrations (55) and the quantities,

F̃k(x) ≡ K (2)
k c̃k(x, 0)−

νk

Dk

(
K (3)

k −
1
3

R(3)
k + S(2)

k −K (2)
k R(0)

k

)
w(x),

(A19)
which are of order δ3.

To evaluate the relative magnitude of the second term with
respect to the first in Eq. (A18), let us consider the Poiseuille
flow of a solution with uniform concentration gradients of
solute species between two chemically inactive planes sep-
arated by a distance H. In this case, the velocity field is of the
form

ṽx(x, z) =
∂xP̃
2η

(z2 − Hz − Hb) −
∑

k

bk∂x c̃k . (A20)

If, moreover, the concentration gradients are small enough and
b = 0, the ratio of the second to the first term in Eq. (A18)
takes the value−K (2)

k /(K (1)
k H), which is of order δ/H according

to Eq. (75). In this regard, the second term can be assumed
to be negligible in front of the first. A similar assumption is
considered in Ref. 4.

Now, the surface velocity can be evaluated as

vs
x =

1
δ

∫ δ

0
(vx − ṽx) dz =

kBT
2ηδ

∑
k

∂xF̃k(x) + O(q2
xδ

2) (A21)

which is of order qxδ
2. Substituting the different quantities

into Eq. (45), Eq. (61) is found.
The results also allow us to obtain the surface pressure

due to the interaction of the solutes with the wall. Indeed, for
an arbitrarily thin boundary layer, the hydrostatic pressure P
in Eq. (26) corresponds to the combination P̃θ+ +Psδs in terms
of the effective pressure P̃ ruled by Eq. (37) and the surface
pressure Ps. Accordingly, the latter is given by

Ps(x) =
∫ δ

0

[
P(x, z) − P̃(x, z)

]
dz = kBT

∑
k

Γk(x) + O(qxδ
2) ,

(A22)
as it should.34

APPENDIX B: THE CASE OF STICK
BOUNDARY CONDITION

Here, we consider the limit of the stick boundary condi-
tion (b = 0). Within the framework of interface nonequilibrium
thermodynamics, the surface current density and the tangen-
tial components of the pressure tensor are in general related

to the velocity slip and the tangential gradients of the surface
chemical potentials according to Eqs. (15) and (14). Because
of the relation Lvv = Tλ and Eq. (20), the right-hand side of
Eq. (14) increases proportionally to the sliding friction coeffi-
cient λ = η/b in the limit b = 0 of the stick boundary condition.
In this limit, the boundary value of the pressure tensor exists
under the condition that

vslip ' −
∑

l

blcl

kBT
∇⊥µ

s
l . (B1)

For consistency between Eqs. (15) and (14), the relation
Lkl/T = δklDs

kΓk/(kBT ) − λbkckblcl/(kBT )2 should hold. In
the limit λ → ∞, there is thus a tight coupling between
the surface current density and the tangential pressure
tensor

js
k = −

bkck

kBT
n · P · 1⊥ − Ds

k∇⊥Γk . (B2)

This result is confirmed within the thin-layer approxima-
tion in the presence of surface reactions. For the stick boundary
condition b = 0, we have vx(x, 0) = 0 so that Eq. (45) here gives
the surface current density

js
kx(x) =

η bk

kBT
C̃k(x) ∂z ṽx(x, 0) × [1 + O(δ/H)]

−Dk∂xΓk + O(qxδ
3), (B3)

in terms of the effective concentrations (55) and the coeffi-
cients (56) with b = 0, up to corrections that are here also
negligible under the conditions δ � H and qxδ � 1. In addi-
tion, the velocity field satisfies the boundary condition (53)
which becomes

ṽx(x, 0) = −
∑

k

bk ∂xC̃k(x) + O(q2
xδ) (B4)

with the diffusiophoretic constants bk = kBTK (1)
k /η in the limit

b = 0. Since the tangential component of the pressure tensor is
given by

n · P · 1⊥ = −η ∂z ṽx(x, 0) , (B5)

we find after neglecting the corrections that

js
kx(x) = −

bkC̃k(x)
kBT

n · P · 1⊥ − Dk∂xΓk (B6)

which is consistent with the expectation (B2) [given the
modification (55) of the concentration by the surface
reaction].

Thus, for stick boundary conditions, the surface current
density is proportional to the tangential gradient of velocity,
instead of the tangential velocity.
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