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Non-Adiabatic Dynamics in Mixed
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Non-adiabatic dynamics in mixed quantum-classical systems is investigated. The
mixed quantum-classical system comprises a quantum system coupled to a
classical environment. The starting point for the analysis is an evolution equa-
tion for the density matrix expressed in a basis of adiabatic quantum states that
describes the full quantum dynamics of the subsystem and its coupling to the
bath. Since the quantum dynamics influences the evolution of the ``classical''
degrees of freedom, a description in terms of single Newtonian trajectories is not
possible. Through explicit calculations of a two-level quantum system coupled
to a low dimensional bath we examine the details of mixed quantum-classical
dynamics and its representation in terms of an ensemble of surface-hopping
classical trajectory segments.

KEY WORDS: Surface-hopping dynamics; non-adiabatic dynamics; mixed
quantum-classical dynamics; density matrix.

1. INTRODUCTION

The coupling between a quantum subsystem and an environment or bath
can lead to complex dynamics in both the subsystem and bath. When the
time scale on which the bath degrees of freedom change is long compared
to that of the subsystem, one may make a Born�Oppenheimer approxima-
tion and solve the Schro� dinger equation for the subsystem for fixed values
of the bath coordinates. The resulting position-dependent adiabatic
energies serve as the potential energies for the evolution of the bath. If the
bath is assumed to be classical then its positions and momenta evolve
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according to Newton's equations of motion in the Hellmann�Feynman
forces derived from the adiabatic energies. This adiabatic description of the
dynamics is applicable only if the motion of the bath is confined to a single
adiabatic potential energy surface.

Such a simple description is not always appropriate. The coupling to
a bath, either classical or quantum, may induce transitions among the
adiabatic states. As a result it is no longer possible to describe the
dynamics of the bath by a single phase space Newtonian trajectory. (1)

Starting from a Liouville equation for the density matrix of a mixed
quantum-classical system that incorporates the full quantum dynamics of
the subsystem and the ``classical'' dynamics of the bath, including their
interactions, we investigate the nature of non-adiabatic dynamics. We show
how the solution for the time evolution of the density matrix may be found
in terms of an ensemble of surface-hopping trajectories. The trajectory
description incorporates the coherent evolution of coupled quantum states
induced by quantum transitions. We show how to concatenate the classical
evolution segments to yield the time evolution and analyze the contribu-
tions to the density matrix arising from different numbers of quantum
transitions.

Section 2 describes the evolution equation used in our study and
expresses the density matrix in an adiabatic basis. The two-level model is
introduced in Section 3 and the forms of the adiabatic and diabatic poten-
tial curves are described. A description of the dynamics in terms of approxi-
mate surface-hopping trajectories is presented in Section 4. In this section
we study the phase space structure of the contributions to the density
matrix arising from different numbers of quantum transitions. Finally, Sec-
tion 5 contains the conclusions of this study.

2. EVOLUTION EQUATION

The quantum mechanical system we consider is partitioned into an
n-particle subsystem and and an N-particle bath. Its Hamiltonian is

H� =
P� 2

2M
+

p̂2

2m
+V� (q̂, Q� ) (1)

where P� and M are the momentum operators and masses of the bath
particles and p̂ and m are the corresponding quantities for the subsystem
particles. The total potential energy operator is V� (q̂, Q� ). We consider a
representation in which we retain the Hilbert space description of the
n-particle subsystem but carry out a Wigner transform(2) over the coordinates
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of the N-particle bath.(3, 4) The partial Wigner transform of any operator A�
is defined by

A� W (R, P)=| dz e iP } z�� �R&
z
2 } A� }R+

z
2� (2)

Given this definition, the partially Wigner transformed Hamiltonian may
be written as

H� W (R, P)=
P2

2M
+

p̂2

2m
+V� W (q̂, R)=

P2

2M
+h� W (R) (3)

In this representation the bath state is characterized by the phase space
coordinates (R, P) defined by the real parameters appearing in the Wigner
transform. The second line of Eq. (3) defines the Hamiltonian h� W (R) whose
eigenvalue problem is

h� W (R) |:; R) =E:(R) |:; R) (4)

Consequently, for every bath configuration R we may construct an
adiabatic eigenfunction |:; R) with corresponding eigenvalue E:(R) and at
each such configuration we have the completeness relation in the quantum
subsystem space,

1=:
:

|:; R)(:; R| (5)

In this adiabatic basis an element of the density matrix is given by
\::$

W (R, P)=(:; R| \̂W (R, P) |:$; R). If we assume that the subsystem
always remains in a single adiabatic state then the equation of motion for
a diagonal element of the density matrix is simply determined by the evolu-
tion of the bath phase space coordinates in the Hellmann�Feynman forces
for the particular quantum adiabatic state:

�\:
W (R, P, t)

�t
=&[H :

W , \:
W (R, P, t)]

=&\P
M

}
�

�R
+F :

W }
�

�P+ \:
W (R, P, t) (6)

where [ } , } ] denotes the Poisson bracket and \:
W (R, P, t)#\::

W (R, P, t).
Here F :

W=&(:; R| �V� W (q̂, R)��R |:; R)=&�E: ��R is the Hellmann�
Feynman force for state :.
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Let iL:=(P�M ) } {R+F :
W } {P be the classical Liouville operator for

evolution under the Hellmann�Feynman force F :
W . Given the phase space

point (R, P) at time t its backward evolution to time t=0 is denoted by

(R:, 0 , P:, 0)=e&iL:t(R, P) (7)

Thus the solution of Eq. (6) is

\:
W (R, P, t)=e&iL:t\:

0(R, P)=\:
0(R:, 0 , P:, 0) (8)

where \:
0(R, P) is the initial value of the density matrix. Consequently, the

solution of the adiabatic dynamics simply involves the solution of the
classical equations of motion, and the bath phase space point follows a
single Newtonian trajectory.

This is no longer the case when transitions among the quantum
adiabatic states may occur. To compute the non-adiabatic dynamics of a
quantum subsystem coupled to a classical bath we must generalize Eq. (6).
Suppose the entire system is described quantum mechanically and the
density matrix evolves according to the quantum Liouville equation,

�\̂
�t

=&
i
�

[H� , \̂] (9)

The mixed quantum-classical Liouville equation is obtained by taking the
partial Wigner transform of this equation and evaluating the Liouville
operator to lowest order in the mass ratio +=(m�M )1�2 to yield,

�\̂W (R, P, t)
�t

= &
i
�

[H� W , \̂W]+
1
2

([H� W , \̂W]&[\̂W , H� W]) (10)

Expressing this equation in the adiabatic basis we find(3)

�\si
W (R, P, t)

�t
=:

sj

&iLsisj
\sj

W (R, P, t) (11)

where

&iLsi , sj
=(&i|si

&iLsi
) $r0

ij
$r1

ij
+Jsi sj

(12)

In writing this equation we have used the notation si=:i:$i , r0
ij=:i:j and

r1
ij=:$i:$j . The subscripts i and j denote different values of : and :$ that
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occur in the course of the dynamics. The adiabatic frequency difference is
defined by |si

(R)=(E:i
(R)&E:$i

(R))��, while the Liouville operator iLsi

involves the mean of the Hellmann�Feynman forces of the two quantum
states labeling the density matrix element and is given by the expression,

iLsi
=

P
M

}
�

�R
+

1
2

(F :i
W+F :$i

W) }
�

�P
(13)

The second term in Eq. (12) is responsible for coupling the different
adiabatic states and is given by

Jsi sj
=& :

1

}=0
{P

M
} d }

ij+
1
2

2E }
ij d }

ij }
�

�P= $r ij
1&} (14)

with the non-adiabatic coupling matrix defined as d 0
ij=(:i ; R| ���R |:j ; R) ,

d 1
ij=(:$i ; R| ���R |:$j ; R)*, 2E 0

ij=E:i
&E:j

and 2E 1
ij=E:$i

&E:$j
. We see that

if the coupling term Jsi sj
is set to zero, the diagonal elements of the density

matrix evolve according to adiabatic dynamics as in Eq. (6). Due to the
presence of J a description in terms of a single Newtonian trajectory is no
longer possible. However, the solution may be represented by an ensemble
of surface-hopping trajectories where classical evolution segments are inter-
rupted by quantum transitions.

3. TWO-LEVEL SYSTEM

To illustrate some of the features of non-adiabatic mixed quantum-
classical dynamics we consider a two-level system coupled to a classical
bath(5) whose Hamiltonian matrix, expressed in the diabatic basis [ |1d) ,
|2d)]=[( |1) +|2) )�- 2, ( |1) &|2) )�- 2], where |1) and |2) are the
quantum subsystem eigenstates, may be written as(6)

hW (R)=&1
2�2_x+=(R) I+�#(R) _z (15)

Here =(R)==� +Vb(R), with =� the mean energy of the two subsystem states
and Vb(R) the bath potential energy, 2 is the energy gap in � units, #(R)
determines the coupling to the bath, I is the unit matrix and _ is the Pauli
spin matrix. The adiabatic eigenvalues and eigenfunctions of hW are

E1, 2(R)==(R)\
�

2
(22+4#(R)2)1�2 (16)
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and

|1; R) =(2(1+G2))&1�2 ((1+G) |1d)+(1&G) |2d) )
(17)

|2; R) =(2(1+G2))&1�2 ((1&G) |1d)&(1+G) |2d) )

with

G(R)=(2#(R))&1 (&2+(22+4#(R)2)1�2) (18)

As an example suppose the bath is one dimensional with a bistable
potential of the form,

Vb(R)=
a
4

R4&
b
2

R2 (19)

and the coupling to the two-level system is #(R)=#0(R+c2R2). When
presenting numerical results we use dimensionless variables obtained by
making the replacements t� =t|0 , R� =(��(M|0))&1�2 R, P� =(�M|0)&1�2 P,
where |0 is a characteristic frequency, with similar dimensionless forms for
the potential and coupling parameters that follow from these variable
changes. For what follows we drop the overbars on dimensionless variables
to simplify the notation.

The adiabatic energies as a function of R are sketched in Figs. 1 and
2 for c2=0.0 and c2=1.0 with the other parameters fixed as indicated in
the caption.

Fig. 1. Adiabatic (solid lines) and diabatic (dashed lines) energies versus R for the
parameters: a=3.0, b=1.0, 2=0.1, #0=0.5 and c2=0.0.
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Fig. 2. Adiabatic and diabatic energies versus R. Labeling and parameters same as in Fig. 1
except c2=1.0.

The diabatic energies (dashed lines in Figs. 1 and 2) are given by the
diagonal elements of hW (R), E d

1, 2(R)==(R)\�#(R). Note that there is a
single crossing of the diabatic curves when c2=0.0 (Fig. 1) and two such
crossings when c2=1.0 (Fig. 2). Thus, we may expect rather different non-
adiabatic dynamics in these two cases.

4. APPROXIMATE SURFACE HOPPING TRAJECTORIES

The mixed quantum-classical Liouville equation (11) may be
integrated and the resulting integral equation solved by iteration to yield
an expression for \s0

W (R, P, t) in terms of its initial value \si
0 (R, P):(3)

\s0
W (R, P, t)=e&(i|s0

+iLs0
) t\s0

0 (R, P)+:
s1

|
t

0
d{1

_ e&(i|s0
+iLs0

)(t&{1)Js0s1
e&(i|s1

+iLs1
) {1\s1

0 (R, P)

+:
s1

:
s2

|
t

0
d{1 |

{1

0
d{2 e&(i|s0

+iLs0
)(t&{1)

_Js0 s1
e&(i|s1

+iLs1
)({1&{2)Js1s2

e&(i|s2
+iLs2

) {2\s2
0 (R, P)+ } } } (20)

This expression for the density matrix may be evaluated exactly using
a hybrid Molecular Dynamics�Monte Carlo scheme. The exact simulation
method involves following a branching tree of trajectories since each time
a momentum derivative in J acts two new trajectories are spawned when
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the derivative is evaluated using finite differences.(7) It is possible to con-
struct a simpler trajectory picture if the J operator is evaluated in the
momentum jump approximation, (3)

Jsisj
=& :

1

}=0

P
M

} d }
ij {1+

1
2

S }
ij }

�
�P= $r ij

1&}

r& :
1

}=0

P
M

} d }
ij e1�2 S }

ij } {P $r ij
1&} (21)

where S }
ij=2E }

ij d
}
ij ((P�M) } d }

ij)
&1. The effect of the action of J on any

function of P is to increment P by S }
ij �2, P � P+S }

ij �2, since J is now a
momentum translation operator.

Using this form for J and backward-evolved trajectory segments
defined as

(Rs0 , {1
, Ps0 , {1

)=e&iLs0
(t&{1)(R, P)

(R{1 , }1
s2 , {2

, P{1 , }1
s1 , {2

)=e&iLs1
({1&{2) \Rs0 , {1

, Ps0 , {1
+

S }1
1

2 +
(22)

} } }

(R[{i , }i ]
si , {i+1

, P[{i , }i ]
si , {i+1

)=e&iLsi
({i&{i+1) \R[{i&1 , }i&1]

si&1 , {i
, P[{i&1 , }i&1]

si&1 , {i
+

S }i
i

2 +
we may write the series solution of the density matrix in a form that may
be evaluated directly using the hybrid MD�MC procedure. We have(3, 7)

\s0
W (R, P, t)

=Ws0
(t, 0) \s0

0 (Rs0 , 0 , Ps0 , 0)&:
s1

:
}1

|
t

0
d{1 Ws0

(t, {1)

_
Ps0 , {1

M
} d }1

1 (Rs0 , {1
) Ws1

({1 , 0) \s1
0 (R[{1 , }1]

s1 , 0 , P[{1 , }1]
s1 , 0 )

+ :
s1 , s2

:
}1 , }2

|
t

0
d{1 |

{1

0
d{2Ws0

(t, {1)
Ps0 , {1

M
} d }1

1 (Rs0 , {1
) Ws1

({1 , {2)

_
P[{1 , }1]

s1 , {2

M
} d }2

2 (R[{1 , }1]
s1 , {2

) Ws2
({2 , 0) \s2

0 (R[{2 , }2]
s2 , 0 , P[{2 , }2]

s2 , 0 )+ } } } (23)

232 Nielsen, Kapral, and Ciccotti



File: 822J 703109 . By:XX . Date:24:10:00 . Time:23:10 LOP8M. V8.B. Page 01:01
Codes: 1703 Signs: 671 . Length: 44 pic 2 pts, 186 mm

Here d }
i #d }

i&1, i , [{i , }i ]=(({1 , }1), ({2 , }2),..., ({i , }i )) and the W

phase factors are given by

Wsi
({i , {i+1)=ei �{i

{i+1 d{ |si
(R si , {

[{i , }i]) (24)

For the one-dimensional bath considered here, the Hellmann�Feynman
force appearing in the classical evolution operator is

F 1, 2
W =Fb(R)�2�#(R) #$(R)(22+4#(R)2)&1�2 (25)

while the quantity that determines the momentum change S 0
12=&S 0

21

appearing in J is given by

S 0
12=((22+4#(R)2)1�2 \ P

M+
&1

(26)

and is plotted in Fig. 3 for c2=0.0.
The non-adiabatic coupling matrix element is

d 0
12=&d 0

21=d 1
12=

G$
(1+G2)

(27)

and is sketched in Fig. 4.

Fig. 3. Phase space plot of S12 for the parameters in Fig. 1.
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Fig. 4. Non-adiabatic coupling matrix elements for the parameters in Figs. 1 and 2; dotted
line (c2=0.0), solid line (c2=1.0).

The non-adiabatic coupling matrix element has a single maximum in
the vicinity of the single diabatic curve crossing for c2=0.0 but has two
extrema for c2=1.0.

In order to compute the terms in the series for the time evolution of
the density matrix we use a Monte Carlo method to evaluate the integrals
and sums in conjunction with molecular dynamics. For a term with n
quantum transitions, we sample the quantum state and the time at which
the transitions occur from suitable distributions. In particular, if there are
l quantum states, for a transition :i � :i+1 or :$i � :$i+1 the final value of
: or :$ is chosen with probability p(:)=(l&1)&1. The times at which the
transitions occur are chosen from uniform distributions such that
p({i )={&1

i&1. The two terms in J are labeled by }=0 or }=1. Which term
acts is determined by a Bernoulli trial in the following way: the term with
}i=0 is chosen with probability p(}i=0)=.i while the term with }i=1 is
chosen with probability p(}i=1)=1&.i where

.i=
1

(i

Q}i
i

1+Q}i
i

(28)

with

(i=:
}i

Q}i
i

1+Q}i
i

(29)

In these equations,

Q}i
i = }

P[{i&1, }i&1]
si&1 , {i

M
} d }i

i (R[{i&1 , }i&1]
si&1 , {i

) } (30)
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For a two-level system these general results take a simple form: the
choice of quantum state not currently occupied is determined with prob-
ability one and the terms in J are chosen with probability 1�2.

4.1. Simulation Results

We begin with a discussion of the results for c2=0.0 where there is a
single crossing of the diabatic curves as shown in Fig. 1. We consider an
initial condition where only the excited adiabatic state (labeled 2) is pop-
ulated,

\22
0 (R, P)=

1
2?_R_P

exp(&R2�2_2
R) exp(&P2�2_2

P) (31)

with _R=_P=1 and focus on the phase space structure of \22
W (R, P, t). It

is clear from the form of Eq. (20) that we get a non-zero contribution to
\22

W (R, P, t) only for terms with an even number of quantum transitions
where the trajectories return to the excited state potential curve. Figure 5

Fig. 5. Zeroth (upper left), second (upper right) and fourth (lower left) order contributions
to \22

W (R, P, t=0.6) for c2=0.0. The sum of these three contributions is displayed in the lower
right panel.
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plots the zeroth (adiabatic dynamics), second and fourth order contribu-
tions along with their sum which provides an approximation to this density
matrix element.

The form of the adiabatic contribution simply reflects the nature of the
classical dynamics on the excited state adiabatic curve which has a mini-
mum at R=0. Since the potential energy is not parabolic the distribution
distorts as time evolves.

The second and fourth order terms exhibit pronounced bimodal struc-
ture. In order to analyse the form of the second order term it is useful to
examine the trajectories which enter in its computation. The second order
term is the third term on the right hand side of Eq. (23). One can see that
the phase space points required are (R22, {1

, P22, {1
), (R[{1 , }1]

12, {2
, P[{1 , }1]

12, {2
) and

(R[{2 , }2]
22, 0 , P[{2 , }2]

22, 0 ). Starting from an ensemble of phase space points (R, P)
at time t drawn from a uniform distribution over a finite domain large
enough to encompass all but the vanishingly small tails of the distributions
of interest, we examine the phase space distribution of the ensemble.

The first quantum transition occurs at times {1 # (0, t) and Fig. 6
(upper left panel) shows a contour plot of the histogram of the phase space
points (R22, {1

, P22, {1
) for all {1&= just prior to the transition while the

upper right panel shows this quantity for all {1+= just after the transition.
For each surface hopping trajectory which contributes to the histograms
shown in Fig. 6, {1 and {2 are sampled uniformly from (0, t) and (0, {1)
respectively.

One sees the depletion of trajectory phase space points which may be
ascribed solely to the momentum jump. Since the transition must take
place from the excited state to the ground state, 2 � 1, the momentum
jump factor S21=(E2&E1)�(P�M ) will always increase the magnitude of
the momentum of the classical bath since E2&E1>0 and consequently S21

has the same sign as P. Given the form of S12 (S12=&S21) in Fig. 3, this
accounts for the depletion zone that arises in the passage from the upper
left to upper right panels of the figure.

Similarly, the next transition that appears in the second order term
involves a transition from the ground state to the excited state, 1 � 2, and
S12 has a sign opposite to that of P causing trajectories to slow down or
reverse directions. The contour plots of the histograms of trajectories just
prior to, {2&=, and just after, {2+=, the second quantum transition are
shown in lower panels of Fig. 6. Note that although the d12 non-adiabatic
coupling matrix element is determined by the two adiabatic states, the
dynamics occurs on the potential curve determined by the mean of the two
adiabatic states since they are coherently coupled as a result of the first quan-
tum transition. For the two-level model this mean potential is just the bare
classical bath potential plus a constant, (E1(R)+E2(R))�2==� +Vb(R).
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Fig. 6. Contour plots of the normalized histograms of phase space points just prior to and just
after quantum transitions contributing to the second order term in the density matrix element
\22

W (R, P, t=0.6). Upper left panel: contours at 0.04 (solid line), 0.02 (dash-dot), 0.01 (dot),
0.001 (dash). Remaining three panels: contours at 0.10 (solid line), 0.075 (dash-dot), 0.04 (dot),
0.01 (dash). See text for details.

Fig. 7. The exact form of \22
W (R, P, t=0.6) obtained by solving the coupled partial differential

equations for the density matrix elements by finite differences is shown in the left hand panel. The
right hand panel shows the corresponding momentum jump approximation (also shown in the
lower right hand panel of Fig. 5).

237Non-Adiabatic Dynamics in Mixed Quantum-Classical Systems



The phase space form of the density matrix element in Fig. 5 (lower
right panel) was checked by solving the coupled partial differential equa-
tions for the density matrix elements by finite differences [see Eq. (11)].
This result is shown in Fig. 7. The two forms of \22

W are nearly identical
with the exception of a small region around the origin (R, P)=(0, 0). The
behavior at the origin bears special mention. The origin is either a stable
or an unstable fixed point under the adiabatic dynamics (upper and lower
solid curves of Fig. 1 respectively). Consequently, in the momentum jump
treatment trajectories which are propagated backwards from the origin
experience an infinitely large momentum jump. Viewed as a limiting pro-
cess, as P appoaches zero the momentum jump S12 becomes arbitrarily
large [see Eq. (26)]. This has the effect of ejecting such trajectories to the
tails of the initial distribution \22

0 , giving them a vanishing weight in all
terms of Eq. (23) which involve one or more quantum transitions. This is
manifested in the upper right and lower left panels of Fig. 5 as a complete
separation of the two lobes, and also in the right hand panel of Fig. 7 as
a unimodal profile along the curve P=0. The correct behavior around the
origin is bimodal.

For the momentum jump approximation to be plausible we require
(without any a priori knowledge of the contribution from the gradient
term) S to be small [see Eq. (21) and Eq. (26)], but S is manifestly large
for small momentum values. Thus from the nature of the approximation we
expect problems when P is small. This discrepancy is revealed in Fig. 8,
which shows the population f2 and the average values of R2 and P2,

fi =| dR dP \ ii
W (32)

(R2) i =| dR dP R2\ ii
W (33)

(P2) i =| dR dP P2\ ii
W (34)

versus time for the density matrix element \22
W in both the momentum jump

approximation (up to sixth order) and the finite difference solution. The
population (the populations in the excited and ground states are related by
f1+ f2=1) and (R2) 2 values are in excellent agreement between these two
solutions. The deviation of the (P2) 2 momentum jump curve from its
exact value reflects the approximate treatment of momentum changes in
the bath. Figure 9 decomposes the (R2) 2 curve of Fig. 8 into its con-
stituent parts in order to illustrate the convergence of the series of Eq. (23).
Two general features emerge from an examination of Fig. 9 and of the
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Fig. 8. The population f2 and the average values (R2) 2 and (P2) 2 versus time are shown
for the density matrix element \22

W in both the momentum jump approximation (up to sixth
order, shown with symbols) and the finite difference solution (shown in the solid line).

Fig. 9. The (R2) 2 curve of Fig. 8 is decomposed into its constituent parts; namely the first
term on the right hand side of Eq. (23) with s0=22 (shown with q), the third term (shown
with m), the fifth term (shown with +), and the seventh term (shown with g). The second,
fourth, sixth, etc. terms on the right hand side of Eq. (23) are identically zero for the case of
s0=22 and with the initial conditions given by Eq. (31).
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Fig. 10. Zeroth (left panel) and second (right panel) order contributions to \22
W (R, P, t=3.33)

for c2=1.0.

corresponding decompositions for the population and (P2) 2 curves (not
shown); namely that each subsequent term in the series of Eq. (23) tends
to be smaller in absolute value than its predecessor, and that more and
more terms are needed to obtain a good estimate of the full series solution
as time increases.

When c2=1.0 one has more complex non-adiabatic dynamics due to
the existence of two diabatic curve crossings and additional structure in the
adiabatic energy curves. The initial condition was again taken to be a
Gaussian on the excited adiabatic curve but its width is narrower, _R=
_P=1�2 - 5, than that for the c2=0.0 case in order to have the initial den-
sity lie largely in the vicinity of the potential minimum near R=0.
Figure 10 presents information for c2=1.0 similar to that in Fig. 5 (upper
panels) but at a longer time t=3.33.

Fig. 11. Contour plots of the normalized histograms of phase space points just after quan-
tum transitions contributing to the second order term in the density matrix element
\22

W (R, P, t=3.33). Left panel, after the first transition; contours at 0.40 (solid line), 0.25
(dash-dot), 0.05 (dot). Right panel, after the second transition; contours at 0.25 (solid line),
0.10 (dash-dot), 0.05 (dot). See text for additional details.
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If one analyses the phase space points that enter in the factors of the
second order term as a result of the momentum jumps that accompany the
quantum transitions, one see the richer structure shown in Fig. 11. This
figure presents contour plots of the histograms of the phase space points
just after the first and second quantum transitions at times {1+=, {1 # (0, t)
and {2+=, {2 # (0, {1).

As in the earlier discussion, the left panel of this figure directly reflects
the form of S12 , which is more complex because the energy difference
2E12(R) has additional features because both the excited and ground
adiabatic curves have two minima. The form of the phase space histogram
after the second transition is determined by the evolution on the bath
potential curve and the momentum jump associated with the transition
back to the excited state.

5. CONCLUSIONS

It is often a good approximation to treat a subset of the degrees of
freedom of a system classically while retaining the quantum character of
the remaining degrees of freedom.(8) This is true for spin systems, electrons
or protons embedded in a bath composed of heavy molecules, etc. There
has been considerable effort devoted to the formulation of methods for
treating mixed quantum-classical dynamics, including schemes based on
mean field approximations, (9) solutions of the density matrix equation that
treat the bath phenomenologically(10) and dynamics based on surface-hop-
ping descriptions of the dynamics.(11�13)

The mixed quantum-classical Liouville equation that forms the start-
ing point for the computations presented here reduces to the quantum
Liouville equation for the subsystem and the classical Liouville equation
for the bath when coupling between the the two systems is neglected. The
coupling term is responsible both for quantum transitions and momentum
changes in the bath that accompany these transitions. The calculations
presented in the paper demonstrate how the density matrix evolves in the
presence of coupling and how mean values of the quantum subsystem and
bath variables vary with time and are influenced by quantum transitions.
The approximate surface-hopping description in Section 4 shows how to
construct an ensemble of trajectories that yields the solution of the density
matrix. The structure of the results indicate how quantum transitions
induce coherent evolution of pairs of quantum states and what trajectories
contribute to a particular pair of quantum states at a particular classical
phase space point of the bath. Examination of the contributions to the den-
sity matrix arising from different numbers of quantum transitions show
how adiabatic dynamics is modified in the presence of quantum transitions.
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While we have not discussed the surface-hopping method in detail here,
we note that it is possible to construct hybrid MD-MC schemes that allow one
to simulate the exact solution of the mixed quantum-classical Liouville equa-
tion without recourse to the momentum-jump approximation.(7) However, in
many instances the momentum-jump approximation is appropriate and
provides a simpler picture of the evolution of the ensemble of trajectories. The
exact solution requires that one follow an ensemble of branching trajectories
in order to compute the momentum derivatives in J. Both of these schemes
allow one to treat classical baths with large numbers of degrees of freedom
with arbitrarily complex potentials. Hence, the surface-hopping method
described here can be applied to physically relevant many-body problems.
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