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Abstract. Molecular machines execute nearly regular cyclic conformational changes as a result of ligand
binding and product release. This cyclic conformational dynamics is generally non-reciprocal so that under
time reversal a different sequence of machine conformations is visited. Since such changes occur in a
solvent, coupling to solvent hydrodynamic modes will generally result in self-propulsion of the molecular
machine. These effects are investigated for a class of coarse grained models of protein machines consisting
of a set of beads interacting through pair-wise additive potentials. Hydrodynamic effects are incorporated
through a configuration-dependent mobility tensor, and expressions for the propulsion linear and angular
velocities, as well as the stall force, are obtained. In the limit where conformational changes are small so that
linear response theory is applicable, it is shown that propulsion is exponentially small; thus, propulsion is
nonlinear phenomenon. The results are illustrated by computations on a simple model molecular machine.

1 Introduction

Molecular machines, functioning as motors, ion pumps
or enzymes, play important roles in biological cells [1,2].
Similar to macroscopic machines, their operation involves
internal mechanical motions which, however, take place
within a single protein molecule. Such conformational mo-
tions are robustly repeated in each succeeding operation
cycle. In motors such as myosin or kinesin, they are used
to move the molecule with its attached cargo along a fila-
ment [3,4] (to transform cyclic shape changes of proteins
into directed translational or rotational movements, ratch-
ets or other mechanisms can be employed). In machine-like
enzymes, such as phosphoglycerate kinase or adenylate ki-
nase, functional conformational motions can facilitate cat-
alytic reaction events by bringing the substrate-enzyme
complex to an optimal configuration. Molecular machines
typically receive the energy needed for their operation in
chemical form through binding of a ligand, e.g. an ATP
molecule. Understanding the physical mechanisms of op-
eration of molecular machines and designing similar artifi-
cial nanoscale devices [5,6] are major scientific challenges.

In his well-known study [7], Purcell analyzed the hy-
drodynamical propulsion of microorganisms in the low
Reynolds number regime. He showed that an object cycli-
cally changing its shape may propel itself through the
fluid, i.e. it can swim [8]. The necessary condition for
self-propulsion is that, within a cycle, the forward and
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backward conformational motions do not coincide so that
time-reversal symmetry is broken. Propulsion phenomena
have been quantitatively analyzed for a few systems, such
as the three-rod swimmer [7,9,10], the swimmer consist-
ing of three linked beads [11–15] and the butterfly swim-
mer [16]. Recently, an extension to the N sphere model has
also been presented [17]. In these studies, motions of each
element are assumed to be known and using this informa-
tion, the propulsion velocity of a swimmer is calculated.

Molecular machines operate in a condensed phase envi-
ronment and their cyclic conformational motions are also
accompanied by hydrodynamical flows. Purcell’s analy-
sis in terms of asymmetrical cyclic shape changes holds
as well for much smaller single-molecule-machine swim-
mers. The operation cycles of such machines are usually
not symmetric under time-reversal. Therefore, molecular
machines should generally swim if they are freely im-
mersed in solution, and generate a propulsion force if they
are bound to a membrane or other support. Such swim-
ming motions and related stall forces are common prop-
erties of various molecular machines, from enzymes and
ion pumps to motor proteins. Note that, in the case of
molecular motors, hydrodynamic propulsion forces act in
addition to the stronger molecular forces responsible for
the ordered translational motion of the protein (with an
attached cargo) along a filament.

The aims of this study are to investigate the propul-
sion properties of molecular machines and provide ana-
lytical expressions for their propulsion velocities and the
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stall forces needed to immobilize them. To this end, we
notice that the internal motions of molecular machine are
not prescribed, but rather determined by the dynamics
in the associated energy landscape. Therefore, we will in-
troduce the model in which, instead of internal motions
themselves, internal forces acting between elements de-
pending on their relative positions are given. These forces
induce both the internal motions and the propulsion of
the entire body.

In the next section, a generic model of a molecular
machine is considered. A protein machine is modelled as a
set of particles (beads), representing coarse grained molec-
ular groups, with pair-wise potential energy interactions
among them. Binding of an energy-bringing ligand, such
as an ATP molecule, is described as a structural per-
turbation modifying the form of the free energy of the
biopolymer molecule. After such a structural perturba-
tion, the machine undergoes conformational relaxation to
the new conformational state. When the ligand has been
converted into the product and the product has left the
protein, the machine undergoes the reverse relaxation pro-
cess to its initial equilibrium state. The machine is im-
mersed in solution and, therefore, conformational relax-
ation processes are accompanied by hydrodynamical flows.
The effects of such flows on conformational dynamics are
taken into account by a conformation-dependent mobil-
ity tensor. In Section 2, expressions for the propulsional
translation and angular velocities are given for an arbi-
trary machine configuration. They allow one to compute
such velocities when the forward and reverse conforma-
tional motions inside a cycle are known. Expressions for
the stall force needed to prevent translational motion by
immobilizing one of the beads are also presented in this
section. Molecular machines with small deformation cycles
are considered in Section 4. In such machines, the effects
of energy-bringing ligands are weak and can be described
within the linear response approximation. We show that
propulsion vanishes within the linear approximation and,
thus, the propulsion velocity and the stall force are non-
linear effects. In Section 5, the results are illustrated by
calculations on a small molecular machine comprising four
beads. The paper ends with conclusions and a discussion
of the results.

2 Hydrodynamics of molecular machines

In this study, a molecular machine is viewed in a coarse
grained representation as consisting of a set of N spheri-
cal particles (beads) i interacting via pairwise potential
forces f ij = f(rij , s)nij that depend on the distances
rij = |rij | = |Ri − Rj | between beads i and j and on
the variable s specifying the machine state (see below).
Here, nij = rij/rij is the unit vector along the direction
connecting particles i and j. At low Reynolds numbers
characteristic of the microscopic system, inertia is absent
and the bead velocities are directly determined by the ap-
plied forces. In the simplest approximation, the velocity
vi = μF i of each bead depends only on the total force
F i =

∑
jf ij applied to this particle and on its mobility

coefficient μ.

Fig. 1. (Color online) Conformational cycle of a model molec-
ular machine consisting of a network of linked beads. Upon
ligand binding to the stable open conformation (lower left) a
series of conformational changes take place that lead to the
new stable closed conformation (top right). The variable s = 1
along this path. Release of product from the closed state (sig-
naled by the change to s = 0) leads to conformational changes
that return the system to the open state.

When the energy is supplied, a machine, otherwise
fluctuating around its equilibrium conformation (specified
by the equilibrium distance between beads {r(0)

ij (s = 0)}),
makes a conformational cycle. This cycle is described as a
sequence of two different relaxation processes, which are
specified by a binary variable s. The time evolution of the
bead positions obeys equations

dRi

dt
= −μ

∂F ({Ri} ; s)
∂Ri

= μ
∑

j

{f0 (rij) + sΔf (rij)}nij , (1)

where F is the free energy of the machine and the value of
s depends on the machine internal state, i.e., energetically
activated (s = 1) or not (s = 0). The second equality
shows the decomposition of the magnitude of the pair force
f(rij) into an equilibrium (inactive) part, f0(rij), and the
force generated due to the activation, Δf(rij).

We illustrate the machine cycle in more detail assum-
ing that chemical energy is supplied by ligand binding
(Fig. 1), although other forms of energy input, such as
illumination, are also possible. Suppose that a machine
in its equilibrium state is characterized by s = 0. The
machine cycle begins when the ligand (such as an ATP
molecule) arrives. In our model, this is described by a
change of the internal variable s from s = 0 to s = 1 upon
ligand binding. As a result of this change, the machine is
displaced from equilibrium, {r(0)

ij (s = 0)}, and begins re-

laxation to a new stable configuration, {r(0)
ij (s = 1)}, with

the ligand. This relaxation is described by equation (1)
with s = 1. After some time τ1, the perturbed system
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approaches a new equilibrium state. Then, a chemical re-
action converting the ligand into a product occurs. For
simplicity, we assume that the product is immediately re-
leased. Thus, at time t = τ1 the change of the variable
s from s = 1 back to s = 0 occurs. The conformation
in which the molecule finds itself after this transition is
however unstable, so that the system performs another
conformational relaxation motion, also described by equa-
tion (1), but with s = 0. The relaxation proceeds and at
time t = τ = τ1+τ2, when the equilibrium conformation is
approached, the machine cycle ends. Now, another ligand
can bind to the machine, initiating the next cycle. The ef-
fects of hydrodynamic interactions on the cyclic dynamics
of such machines have been studied [18].

Thus, the operation cycle essentially consists of two re-
laxational motions which occur in the intervals 0 < t < τ1

and τ1 < t < τ . The first stage of the conformational mo-
tion (with internal state s = 1) starts from the equilibrium
state of the free protein and ends near the equilibrium
state of the protein-ligand complex. The second stage of
the motion (with internal state s = 0) begins with the fi-
nal conformation reached by the molecule in the first stage
and brings the free molecule close to its equilibrium con-
formation. These two motions generally follow different
paths and proceed with different velocities.

In equation (1), interactions among the beads through
hydrodynamical flows in the solvent are neglected. In re-
ality, however, such flows induced by the motion of a bead
influence the other beads in the system. These hydrody-
namic interactions can be taken into account by introduc-
ing a conformation-dependent mobility tensor, so that the
equations of motion of our system take the form:

dRi

dt
=

N∑

j=1

Lij (rij) · F j

=
N∑

j,k=1

Lij (rij) {f0 (rjk) + sΔf (rjk)} · njk. (2)

Our analytical results, which are obtained below, are gen-
eral and do not depend on the choice of a particular ap-
proximation for the mobility tensor. For example, in the
far-field Oseen approximation [19], which is valid when
distances between the beads are much larger than their
sizes, the mobility tensor has components

Lij (r) =

{
μI (i = j)

μ 3a
4r

(I + r⊗r
r2

)
(i �= j)

, (3)

where the mobility coefficient is μ = 1/(6πηa), η and a
are the solvent viscosity and the hydrodynamic radius of
a bead, and I is the 3 × 3 unit matrix. (Approximations
which are more accurate at short distances, such as the
Rotne-Prager tensor used in Sect. 5, are available). Since
the beads are assumed to be structureless and spherical,
the rotation of each bead is irrelevant and rotational de-
grees of freedom need not be considered.

3 Propulsion velocities and stall forces

Since the forward and backward motions of the cycle of
a molecular machine are generally not reciprocal, a freely
suspended machine will propel itself through the fluid and
also rotate by some angle after each of its cycles. If a
machine is bound to some support such as a membrane,
it will exert a propulsion force on the support and a stall
force is needed to prevent its motion.

3.1 Propulsion velocity and angular velocity

The net propulsion velocity V p can be defined as the ve-
locity of the center of mass of the machine, averaged over
a single cycle,

V p =
1
τ

∫ τ

0

V (t)dt, (4)

where the instantaneous velocity V (t) = dR(t)/dt of the
center of mass is

V (t) =
1
N

∑

i

dRi

dt
=

1
N

N∑

i,j,k=1

Lij (rij) f (rjk; s(t)) · njk.

(5)
We assume for simplicity that all beads have the same
mass.

Similarly, the net angular velocity Ωp can be defined as

Ωp =
1
τ

∫ τ

0

Ω(t)dt, (6)

where the instantaneous angular velocity is

Ω(t) =
∑

i ΔRi × dRi/dt
∑

i ΔR2
i

, (7)

with ΔRi(t) = Ri(t)− R(t), the relative position of each
bead with respect to the center of mass.

3.2 Stall force

Suppose that one of the beads (with i = 1) is immobilized
by applying the stall force F (1)(t). Then, the equations of
motion of the beads are

dRi

dt
=

∑

j,k

Lijf (rjk; s) · njk + Li1 · F (1). (8)

From the immobilization condition dR1(t)/dt = 0, we get
an expression for the instantaneous, time-dependent stall
force

F (1)(t) = −
∑

j,k

L−1
11 L1jf (rjk; s) · njk

= −
∑

k

f (r1k; s)n1k

−
∑

j( �=1),k

L−1
11 L1jf (rjk; s) · njk. (9)
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The net stall force F s is defined as the instantaneous stall
force F (1)(t) averaged over a single cycle,

F s =
1
τ

∫ τ

0

F (1)(t)dt. (10)

By substituting equation (9) into equation (8), we obtain
equations of motion for the rest of the system when bead
i = 1 is immobilized,

dRi

dt
=

∑

j,k

L̃ijf (rjk, s) · njk, (i �= 1). (11)

Here the effect of the immobilization appears as a change
in the hydrodynamic interactions,

L̃ij = Lij − μ−1Li1L1j . (12)

Immobilization not only prevents translational motion of
the machine but also influences hydrodynamic interactions
among its parts.

When hydrodynamic interactions among the machine
beads are absent (i.e., the mobility tensor is diagonal),
propulsion does not take place. In the absence of hydro-
dynamic interactions each bead acts independently and
the solvent does not detect the presence of a structured
asymmetrical object. More specifically, when the mobility
tensor is diagonal, equation (5) yields

V (t) =
1
N

μ
∑

i,j

f (rij ; s)nij = 0, (13)

as a consequence of momentum conservation. Similarly, it
can be easily shown that

Ω(t) ∼ μ

2

∑

ik

((ΔRi × f (rik; s)nik)

− (ΔRk × f (rik; s)nik) = 0, (14)

so that the instantaneous angular velocity is also zero due
to the conservation of angular momentum.

In the absence of collective hydrodynamic effects, the
stall force is equal to the sum of the elastic forces acting
on bead i = 1 from its neighbors,

F (1)(t) = −
∑

k

f (r1k; s)n1k. (15)

Unlike the propulsion velocity V (t), this instantaneous
stall force does not vanish. By substituting equation (8)
into equation (5), we obtain the relation between the in-
stantaneous velocity of the center of mass and the stall
force:

V (t) =
1
N

μ

⎡

⎣
∑

i,j

f (rij ; s)nij + F (1)(t)

⎤

⎦

=
1
N

μF (1)(t). (16)

In this case, the instantaneous velocity is not zero because
of the presence of the external force, and is proportional to
the instantaneous stall force. After the time averaging over
a cycle, however, the net propulsion vanishes due to the
immobilization, i.e., V p = (1/τ)

∫ τ

0
V (t)dt = 0; therefore,

the above equation becomes

F s =
N

μ
V p = 0, (17)

and the net stall force also vanishes. This is a coarse
grained force balance equation which is valid on time
scales longer than the cycle time τ . Thus, both the propul-
sion velocity and the net stall force vanish when hydrody-
namic interactions are neglected.

4 Weak perturbation cycles

We next discuss the propulsion properties of a machine
which performs a small amplitude conformational cycle.
Let us write the positions of the particles as

Ri(t) = R
(0)
i (s = 0) + δRi(t), (18)

where δRi(t) represents small deviations from equilibrium
positions. We also denote the vector connecting the equi-
librium positions with and without the ligand as

ξi = R
(0)
i (s = 1) − R

(0)
i (s = 0). (19)

In this section, we suppose that the perturbation corre-
sponding to ligand binding is weak, so that all |ξi| are
of order ε where ε � 1 is a small parameter. Then, the
small deformation responsible for the restoring force in the
forward cycle (s = 1) is written as

Ri(t) − R
(0)
i (s = 1) = δRi(t) − ξi. (20)

We assume that that, within each cycle, the forward mo-
tion (with s = 1) has duration τ1 and the reverse motion
(with s = 0) has duration τ2, so that the total cycle time
is τ = τ1 + τ2.

In a small deformation cycle, we can expand the equa-
tions for the net propulsion velocity (Eqs. (4) and (5))
and retain only terms which are of linear order in the de-
formation. Noting that in this linear regime the mobility
tensor L and the unit vector nij can be approximated by
those in the equilibrium state, the linearized equations of
motion become

dδRi

dt
=

∑

l

M∗
il (δRl − s(t)ξl) (21)

where M∗ is the super matrix (with components of 3× 3
matrix) with the following form

M∗
il =

∑

j,k

L
(
r
(0)
ij

)
n

(0)
jk (∂f0/∂r)

∣
∣
∣r(0)

jk

n
(0)
jk (δlj − δlk) .

(22)
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By introducing 3N components vectors ρ ≡ (δR1,x,
δR2,y, · · · , δRN,z) and χ ≡ (ξ1,x, ξ2,y, · · · , ξN,z) equa-
tion (21), thus, can be rewritten as

dρ

dt
= M [ρ − s(t)χ] (23)

where 3N × 3N matrix M is constructed from the super
matrix M∗ as M3(i−1)+α 3(j−1)+β = (M∗

ij)αβ . We then
diagonalize M with the matrix V as

MV = −VΓ (24)

where Γnn′ = γnδnn′ is a diagonal matrix. The small de-
formation can be represented by the sum of individual
modes

ρn(t) =
∑

n′
Vnn′ qn′(t) (25)

where it is noted that the modes corresponding to the
translation and rotation are not relevant here. Putting
equations (23)−(25) together, we arrive at the following
normal mode equation

dqn(t; s)
dt

= −γn

[
qn(t; s) − s(t)q(0)

n

]
(26)

where q(0) is defined by

χn =
∑

n′
Vnn′q

(0)
n′ . (27)

The solution is

qn(t; s) =
{

q
(0)
n (1 − e−γnt) (s = 1 ⇔ 0 ≤ t ≤ τ1)

qn (τ1; s = 1) e−γn(t−τ1) (s = 0 ⇔ τ1 ≤ t ≤ τ) .
(28)

Here, we have assumed that the duration τ2 = τ − τ1 of
the reverse motion is long enough for the full relaxation to
the initial state to take place. This condition is satisfied if
γminτ2 � 1, where γmin is the relaxation rate constant of
the slowest normal mode. Each mode independently con-
tributes to the propulsion, so we get for the α component
of the propulsion velocity

(Vp)α =
1

τN

N∑

i=1

3N−6∑

n,n′=1

M3(i−1)+α nVnn′

×
∫ τ

0

dt
[
qn′(t) − s(t)q(0)

n′

]
. (29)

By denoting the n′-dependent coefficient in the first line
(divided by N) as C

(α)
n′ , we finally obtain

(Vp)α =
∑

n′
C

(α)
n′

1
τ

∫ τ

0

dt
[
qn′(t; s) − s(t)q(0)

n′

]

= −
∑

n′
C

(α)
n′ q

(0)
n′

(
1 − e−γn′τ1

)
γ−1

n′ e−γn′τ2 . (30)

1

2 3

4
s=1 s=0

Fig. 2. (Color online) Cycle of the simple model machine.
The energetic activation leads to the change of the interaction
parameters (natural link lengths) for the lower three beads (2,
3 and 4). This gives rise to a change in the shape of the object.
When this change has taken place, the structural perturbation
is removed and the object relaxes back to its equilibrium shape.
Note that the forward and backward motions are not the same
because the respective interaction parameters are different.

Because γminτ2 � 1, the net propulsion velocity is vanish-
ingly small. Since the stall force is related to the propulsion
velocity with the proportional (friction) constant which is
independent of ε in the weak perturbation cycle, the net
stall force is also exponentially weak in this limit.

Thus, these calculations show that the propulsion ef-
fects are exponentially small in the linear response approx-
imation. For small cycles with ε � 1, the expansions of
the propulsion velocity and the net stall force must begin
with quadratic terms of order ε2.

5 Application to a simple molecular machine

To demonstrate how our general results can be applied
to the analysis of propulsion properties of a particular
machine, we consider in this section a simple example of
a machine with only four particles. The machine consists
of four beads with diameter d = 2a, which are connected
through elastic links to form the object shown in Figure 2.
The elastic energy of the machine is

F =
1
2

∑

i�=j

kij

(
rij − r

(0)
ij (s)

)2

. (31)

There is no link between particles 2 and 3 (k23 = 0) and all
other elastic constants are assumed to be equal (kij = k).
At equilibrium (s = 0), all links have the same length
r
(0)
ij (s = 0) = 2d. The ligand binding is implicitly modeled

as an energetic activation, which modifies the interactions
between bead 4 and other three beads. In the energet-
ically activated state (s = 1), interactions between the
beads are changed, so that r

(0)
14 (s = 1) = (2 − ε)d and

r
(0)
24 (s = 1) = r

(0)
34 (s = 1) =

√
(ε2 − 2ε + 4)d, where ε

gauges the magnitude of the structural perturbation. The
machine cycle consists of a sequence of two relaxation mo-
tions (see Fig. 2). The cycle begins with the energetic ac-
tivation, i.e. a transition from s = 0 to s = 1. This is
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F(1)(t)/kd

t/τ0t/τ0

ΔR(t)/d

 Fs

Fig. 3. (Color online) (left) Displacement of the center of mass
and (right) the instantaneous stall force F (1) as functions of
time with ε = d. Dotted lines indicate mean values.

followed by relaxation of the activated object towards its
new equilibrium shape. The elastic energy decreases and,
at some time τ1, it becomes smaller than Fmin. At this
moment, the reverse transition from s = 1 to s = 0 occurs
and the energy of the object is increased. Therefore, relax-
ation to the equilibrium state of the non-activated object
begins now. The cycle ends when the elastic energy be-
comes again smaller than Fmin. The condition F = Fmin

determines durations τ1 and τ2 of the activated and non-
activated parts of cycle. The total cycle time is τ = τ1+τ2.
In our simulations, Fmin = 10−4kd.

To determine internal motions of the model machine
in the presence of hydrodynamic interactions, we have nu-
merically integrated equation (2) with the Rotne-Prager
mobility tensor,

Lij(r) =

{
μI (i = j)

μ 3a
4r

[(
1 + 2a2

3r2

)
I +

(
1 − 2a2

r2

)
r⊗r

r2

]
(i �= j)

,

(32)
which differs from the Oseen mobility tensor (3) in that
the next-higher order term is taken into account in the far-
field approximation. In numerical simulations, distances
are scaled by a and time by τ0 = (μk)−1.

Figure 3 (left) shows the propulsion of this model
machine. Its center of motion moves along the symme-
try direction. The machine is first propelled upward by
ΔR/d 	 0.06d after the transition from s = 0 to s = 1,
i.e., after the energetic activation. In the subsequent back-
ward motion after the transition from s = 1 to s = 0, the
original shape of the machine is recovered. However, the
center of mass of the machine does not return to its initial
position after the completion of the cycle. The net propul-
sion velocity can be calculated from the slope in Figure 3
(left) or from the analytical expressions given by equa-
tions (4) and (5). The result is Vp = 7.88×10−4 d/τ0 with
the magnitude of the structural perturbation ε = d.

Numerical simulations of the immobilized model ma-
chine have also been performed. To prevent translational
motion, bead 1 was fixed. The stall force, which must be
applied at this bead to stop the motion, was monitored.
Figure 3 (right) shows the time dependence of the stall
force and its time average. The results of such direct eval-
uation yield a net stall force of Fs = 1.89 × 10−3kd with
ε = d. This result has also been obtained directly using
the analytical expressions in equations (9) and (10).

r12 

r14

s=1

s=0

Fig. 4. (Color online) Projections of the cyclic trajectory on
the plane of distances between particles 1 and 4 and between
1 and 2. Two cycles, corresponding to weak (ε = 0.2d) and
strong (ε = d) structural perturbations, are shown. The for-
ward motions are shown by solid lines, whereas the backward
motions are displayed by dashed lines.

Fs/kd

ε

Vpτ0/d

ε

Fig. 5. Net propulsion velocity (left) and net stall force (right)
as functions of the degree of the strength ε. Dashed lines show
the quadratic fits.

Depending on the magnitude ε of the structural per-
turbation, the cycles of the model machine can be large
or small. Figure 4 shows examples of the trajectories cor-
responding to such cycles. Solid lines in this figure cor-
respond to forward motion with s = 1 and the dashed
lines to the backward motion with s = 0. The forward
and backward trajectories are always different, but they
approach each other for the small cycle.

In Figure 5, the computed values of the net propulsion
velocity (left) and the net stall force (right) for different
magnitudes ε of structural perturbations are given. For
comparison, we also show here the quadratic fit (dashed
curves). For weak perturbations, these properties are in-
deed proportional to ε2, in agreement with our analysis in
Section 4.

6 Conclusions

Molecular machines perform conformational cyclic mo-
tions when chemical energy is supplied. Because cyclic
trajectories are generally non-reciprocal, these machines
can propel themselves through the fluid in which they are
immersed. We have modeled the conformational cycles of
machines by introducing ligand binding as a structural
perturbation and obtained analytical estimates for the
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propulsion velocity and the stall force needed to immo-
bilize a machine. We have further generally demonstrated
that the propulsion effects vanish in the kinetic linear re-
sponse regime and, therefore, the nonlinearity of relax-
ation processes is important for hydrodynamic propul-
sion. Simulations of the cyclic dynamics of a simple model
molecular machine were used to illustrate the results.

While the analysis presented in this paper focused on
general aspects of the phenomena and the construction
of a framework in which to describe molecular machine
propulsion, applications to actual protein machines can be
carried out using the results of this paper. As noted ear-
lier, almost all protein machines execute conformational
cycles that are generally non-reciprocal. In our analy-
sis, conformational dynamics within the cycle was taken
as known. The progress in dynamical modeling of active
biopolymers already allows one to determine conforma-
tional motions within the entire cycle for relatively small
model machines [18,20]. If the conformational dynamics
in the entire cycles of real molecular machines is known,
the results of our study can be used to investigate their
propulsion effects.
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