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A reactive flux correlation function formalism for the calculation of rate constants for mixed
quantum-classical systems undergoing nonadiabatic dynamics is presented. The linear response
formalism accounts for the stationarity of the equilibrium density under quantum-classical dynamics
and expresses the rate constant in terms of an ensemble of surface-hopping trajectories. Calculations
are carried out on a model two-level system coupled to a nonlinear oscillator which is in turn
coupled to a harmonic heat bath. Relevant microscopic species variables for this system include two
stable states, corresponding to the ground state adiabatic surface, as well as another species
corresponding to the excited state surface. The time-dependent rate constants for the model are
evaluated in the adiabatic limit, where the dynamics is confined to the ground Born—Oppenheimer
surface, and these results are compared with calculations that account for nonadiabatic transitions
among the system states. )03 American Institute of Physic§DOI: 10.1063/1.1566731

I. INTRODUCTION varying, almost-static field for the quantum dynamics, a

A knowledge of the mechanisms and rates of Condenseﬁorn—Oppenheimer approximation can be made and adia-

phase reactive processes is a necessary prerequisite for Bﬂt'c dynamics can be used to compute the rate. Such calcu-

understanding of many problems in chemical and biochemi'—a_tions are straightforward since the dynamics is purely clas-

cal systems. If a condensed phase chemical rate process #i¢@! and takes place on a single Born—Oppenheimer surface.
volves quantum degrees of freedom the calculation of thé" this paper we focus on th.e callculatlon'of' rate constants for
reaction rate is an especially challenging task. While the eaSystems where such an adiabatic description breaks down.
liest derivation of a reactive flux correlation function expres- ~ Our calculations and analysis utilize a formalism that is
sion for a rate constant was carried out for a reacting quarPased on a quantum-classical evolution equation of motion
tum systent, the evaluation of such quantum correlation for either the density matrix or dynamical variabtés??
functions remains a difficult task. Quantum-classical evolution may be expressed in terms of
The calculation of quantum mechanical rates in many-an ensemble of surface-hopping trajectofi&By accounting
body environments has been performed using a variety dor the distinctive features of quantum-classical dynamics, a
computational techniques. These include, among othergprmulation of the statistical mechanics of mixed quantum-
semiclassical methods,influence-functional techniqués, classical systems and a framework for linear response theory
and real-time path integral methoisentroid dynamics,ex- and the calculation of correlation functions has been
tensions of transition state thedf¥ golden rule and given?*? These results provide a method for the formula-
Fokker—Planck formulationsand schemes based on mixed tion of correlation function expressions for rate constants in

quantum-classical surface hopping dynantftd* quantum-classical systems and a means to compute them us-
We consider systems where a description in terms ofng surface-hopping schemes.
quantum-classical dynamics is appropritte Situations The rate constant formulation we present is general but

where the dynamics of the reaction coordinate must be cono illustrate the theory we consider a two-level system
sidered to be quantum in nature while all the other degrees @oupled to a classical nonlinear oscillator which is in turn
freedom can be described by classical dynamics are not ditoupled to classical harmonic bath. This mimics a physical
ficult to find. Charge transfer processes involving electronigystem where the quantum reactive degree of freedom is di-
or protonic degrees of freedom in an environment of heavyectly coupled to a subsystem of the environment and this
atoms are typical examples of systems where quantunsypsystem is, in turn, coupled to the remaining large number
classical dynamics may apply. Since complex and realistigf classical degrees of freedom comprising the rest of the
models of the classical environment can be treated by methsnyironment. For this model, the identification of the rel-
ods based on quantum-classical dynamics, it provides gyant species variables involves both reactant and product
promising route for the simulation of condensed mattersiates on the ground adiabatic surface as well as the excited
quantum rate processes. _ . adiabatic state. The quantum-classical dynamics accounts for

If the classical environment simply provides a slowly yansitions among all of these states. The explicit calculations
for this model show how various nonadiabatic transitions
dElectronic mail: rkapral@gatto.chem.utoronto.ca contribute to the reaction rate.
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The paper is organized as follows. In Sec. Il we derivethe small parameter.=(m/M)¥2.2? |n these scaled vari-
expressions for the rate constants of a set of coupled reaebles the quantum-classical bracket and the Liouville opera-
tions using linear response theory. Section Il introduces théor can be written as

two-level model we use to illustrate the numerical calcula- R R uA'\

tion of nonadiabatic rate constants for quantum-classical sysHy, ,Ay) =i L' Ay=i| Hy| 1+ T) Al

tems. In Sec. IV we give a discussion of the phenomenologi-

cal rate law for the model system that takes into account the -, MAT

existence of an excited state as a third species in the chemi- —Aw| 1+ T) Hw/: 4

cal reaction. The linear response results of Sec. Il are spe- . . .
cialized in Sec. V to derive the explicit form of the time- where theO() dependence is manifest. The operairis

dependent rate constant for the model. The results of thEahe negative of the Poisson bracket operator in scaled units,

calculations are presented in Sec. VI along with a discussion A’ :§P,.€R,_€R,.€P, , (5)

of the various contributing terms involving nonadiabatic o o . .
transitions. Section VIl contains the conclusions of this@nd the direction of an arrow indicates the direction in which

study. the operator acts.

Suppose we have a multicomponent system where
IIl. RATE CONSTANTS FOR QUANTUM-CLASSICAL dependent chemicil reactions take place. We may associate
SYSTEMS progress variablesy; and affinitiesA; (i=1,...r), with

_ _ _ _each independent reaction step. From linear irreversible ther-
Consider a quantum system in a classical bath describegiodynamics the chemical rate law describing the time evo-

by the time-independent Hamiltonian operator, lution of the reaction rateg; takes the following fornt®

N p2 f)z .~ dx; r

HW(Rap):m_Fﬁ_FVW(q!R)v (1) ‘ZEE:_EJ_ L”BA], (6)
which is the sum of the classical kinetic enerBy/2M, a  Here Lj; is an Onsager coefficient.
quantum kinetic energy operatpf/2m, and a potential en- This rate law can be derived from the microscopic

ergy operatoly,(8,R). The subscriptV is used to indicate quantum-classical dynamics using linear response theory. In
that the quantum-classical description can be derived from &is approach one considers a system subject to external
fully quantum one by means of a partial Wigner transféfm. time-dependent force@ffinities) that couple to microscopic

An intuitive picture of a quantum-classical system is ob-progress variableg; so that the hamiltonian is given by
tained by imagining that for every set of classical phase r

space coordiAnateRA(P) one has a Hilbert_spacg upon_which ﬂw(t)= QW_E 5(\J5vw4i(t), 7)

the operator§] andp act. Taking thisEulerian point of view =1

the dynamics of the classical and quantum degrees of fregyhere the dagger stands for the adjoint. The dynamical vari-

dom can be consistently formulated and one can derive thgyes are, in general, operators in Hilbert space and functions
quantum-classical Liouville equation for the density matrix ot the classical phase space variablgg;(R, P)
1 1 "

~ . 22
pw in the form; The chemical rate law can be derived by calculating the

pw(R,P,t) o . nonequilibrium average ofy; ,
o~ Lwhw(D) =~ (Hw.pw(D). 2 o
XWi
- (= =Tr’de dPxwipw(R,P,1), 8
The guantum-classical Liouville operatof is defined in i dt Xwibul ) ®

terms of the algebraic quantum-classical bracket to linear order in the affinities. Assuming the time depen-

N N i~ - 1 . . dence of the affinities can be represented by a single Fourier
(Hw(D),Aw) = > [Hw(t), Aw] = 5 ({HW(1), A} component A;(t) =exp(wt).A4;(w), linear response theory
gives
U G =2 D) A, ©
where, for any operatord,, andByy, [Aw,Bw] is the com- i=1

mutator anc{AW,BW} is the Poisson bracket. The quantum- where the one-sided Fourier transform of the matrix response
classical equilibrium density matrix of the system is station-function is given by
ary under the dynamics and satisfié$,(, pye = 0. o ‘

The quantum-classical Liouville equati¢®) can be de- q)ij(w):f dt((Rwi(t), kwp)ye " (10
rived from the quantum Liouville equation by performing a 0
partial Wigner transform on the bath degrees of freedom, While the zero frequency limit of Eq9) has the same
introducing scaled variable€y'=§/\,,, R'=R/\,, P’ form as the phenomenological rate la@), the zero fre-
=plpn, P'=PIPy, where \,=(h%mey)Y? p,  quency limit of Eq(10) may be shown to be identically zero.
=(meg) 2, Py=(Mey) Y2 with €, andty=%/€, energy and  This is the well-known plateau value problem, which is
time units, respectively, and finally taking the quantum-solved by using a projection operator formalism to project
classical limit by expanding the propagator to linear order inout the time variations that occur on the time scale of the
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chemical relaxation processes. Provided the time scales of This result has its origin in the action of the quantum-
the chemical relaxation processes, are much slower than classical propagator on the bracket in Ef4) and it is a
those for other microscopic relaxation processes in the syssonsequence of the fact that, given three arbitrary operators,
tem, 7,, the phenomenological coefficients may be obtainedvithin quantum-classical algebra the Jacobi relation holds

through the correlation function expression, only to linear order in the small parameter
pLy=— | "ot 1o [ aR aPsu(t) Ry e, a1 Al (Blun G+ (Clun (Rl Bl + (Bl (Cln M)
=0(p?). (16)

where 7,,<t*<7.. In writing this expression we have
moved the quantum-classical bracket to act on the equilib-

of the rate law for a reacting quantum-classical system by
rium density and the initial value of the species operator. It is”

also convenient to define the time-dependent Onsager Coe?xpressmg the Onsager coefficients in terms of equilibrium
time correlation functions of the reaction fluxes. In the re-

This discussion establishes the microscopic foundation

ficients by maining sections we illustrate the use of this formalism by
t . computing the rate constant for a model system evolving
— ! ! 2 . ! T . — ) . . 3
BLij()= fodt Tr f dR dPjwi(t") (Xwj.Pwe) according to nonadiabatic dynamics.

—Tr’J dR dPfwi(t) (Xiy; . Pwe). (12 Ill. TWO-LEVEL SYSTEM COUPLED
TO A CLASSICAL BATH
where the time integral has been performed to obtain the

second line of Eq(12). The true phenomenological coeffi- b d to determine th ¢ tant ”
cients, appearing in Eq6), may be determined from the may be used 1o determin€ he rate constant, we consider a

plateau value of this expression, should such a plateau exiéﬁ/o'level system coupled to a classical bath. In accord with
To investigate the validity of the Onsager reciprocal re-1ne s_tandard picture of reaction rates for such systems, t_he
lations among the phenomenological coefficiebfg(t) in Hazlltorlan_ (:pErat(:r, hexprtissgzd i~ a diabatic basis
guantum-classical dynamics, it is convenient to return to{H 11>}, is taken to have the form
scaled variables in order to explicitly see the dependence on V,(Ro) +7 yoRo —-hQ
the small parametet. Introducing the scaled Onsager coef- H= —10 V. (Ro)— i yoR +
ficient L/, (t") = (7/€o)L;;(t) and the scaled inverse tempera- nt o) Yoro
ture B’ = ¢y 8 we can write

In order to show how the formalism outlined in Sec. Il

P5
2M,

N P2 N N
EWJ 2 MwR R0, c,-Rj)l.
= =1

(17)

This Hamiltonian describes a two-level system directly
coupled to a classical nonlinear oscillator with métg and
e L (50T B Y= (3T (—t7).hl )+ O(u?), 14 phase space coordinateRy(Py). The nonlinear oscillator
(ewjPwe) =(X A 9_ ('u_) (14 has a quartic potential energy functiol,,(R,)=aRj/4
where we have used the fact thaj,, is stationary under —pRZ/2. The linear coupling to the two-level system is
q_uantum—classmal dynamics. Using this result in @3 we  given by 7 y,Ro=% y(Ry). From the structure of the first
find 2X 2 matrix in Eq.(17) the diabatic energies are given by
1 E‘f’Z(RO)zvn(RO) + % y9Rg and the coupling between the di-
Lij(h=— FTr’J dR dP’ }Qj(—t’)()‘({,\,i,ﬁ{,vgﬂt(?(ﬂz) abatic states is-7(). The classical nonlinear oscillator is
bilinearly coupled, in turn, to a bath & independent har-
1 R / monic oscillators labeleg=1,... N with massesM; and
T f dR"dP’ xw;(—t") frequenciesw; . This contribution to the Hamiltonian is de-
scribed by the second term in E4.7), which is proportional
ST ¥ +O(u2 to the unit matrixl. The coupling strength between the non-
(Xwi»Pw (9 linear oscillator and the harmonic bath is gaugedygyand
1 N the bilinear coupling is characterized by a spectral density,
N 2 H
_ 2 _T,rJ AR AP 30 () (it Bl | +0(u?) @)= 772 L (2M o] )5(w ), of Ohmic type
B { W) WiEw wheré” 28 (ghwom )20, , 0j= — weIn(1—jwylw) and
O max! o
:L!<t*+0 2. 15 wo= ((l) /N)(l e “max C) - - -
“( ) (’“ ) ( : Henceforth we use a convenlent set of dlmen5|onless
o Perulimate ine I s squaton olows o e e cornatediy—(Maocl1) o, Pa=(hMawd o
y Y- =4 9 = (Mo /)R, and Bi=(hiM0)) ¥%P;, so that H

ciprocal relations are valid only to linear order in the small
parameteru in quantum-classical dynamics. In Sec. VI we = H/(@c) and the dlmenS|onIess parameters of the model
show that the deviations are negligibly small for our two-are 0=Q/w;, @j=ojlo., T=(éwolw) 0], @

level model. =(hl(M203))a, B=b/(Mywd), yo—(h/Mow 3)12y  and

rsr __i ’ ' rar —|£’t’ AR
LI](t )_ IB/Tr de dpP XWI (XW]lpW
(13

Applying the propagator to the bracket yiefds,
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Y= (/M ow.) Y%y, . The dimensionless reciprocal tempera-
ture and time ar@=%w 8= o./ksT andt=tw,, respec-
tively. In the following the tilde will be omitted to avoid
cluttering the notation but the use of dimensionless units
should be understood. Our calculations were carried out for a =
bath ofN=50 harmonic oscillators with the following values
for the parametersw,,=3, £&=1, 1=0.025, yo=1, vy,
=2,a=3,b=-2, andp=6.

The adiabatic states are obtained by diagonalization of : ) : )
the two-level system Hamiltoniafi7) and are given by -1.25-0.75-0.25 0.25 0.75 1.25

I:‘0
|1;R0>: /T/’[(:H_ G)|T>+(l_G)| l>]’ (18) FIG. 1. Free energy surfaces of the model. The bold lines are the ground

state and excited state surfaces while the dashed line is the coupled surface.

1 The two vertical dashed lines By= +0.25 are the selected window for the
|2;Ry)=—[—(1-G)|1)+(1+G)|])], (19)  calculation(details in the text The free energy curves defines the three
N chemical specied, B, andC. A andB, reactant and product, are defined
_ \/—2— . on the ground state surface and they are separated by a vertical e at
WhereN( RO) 2(1+G (RO)) with =0 (not drawn in the pictune The specie€ is defined on the excited state.
2 2
G(Ro)= (R)[ QO+ VO ¥(Ro)]. (20)

our model system is provided by the structure of the free
In the following we use the notation R(P) energy profiles in Fig. 1. The ground state free energy profile

=(Rg,R¢, ... Ry,Po,P1,...,Py) for the point in the has two minima corresponding to two stable states separated
2(N+1) dlmensmnal phase space of the model. The correby a high barrier aRy=0. Since transitions between these
sponding adiabatic energies are states will occur on a long time scale we are led to identify
N TN the positive and negative valuesi§ with speciesA andB
—_— 2 1
E1AR)=Vu(R)+ VO ™+ ¥*(Ro), @D respectively, when the system is in the ground adiabatic
where state. Because the system is not restricted to the adiabatic

N ground state, transitions to the excited single-well adiabatic
jszz_R0< > c; Rj)- (22) state_ may occur and we associa_te a speﬁie_with_such
configurations. The chemical species defined in this way are
é'ndicated schematically in Fig. 1.

We are then led to consider the following chemical re-
actions among the three species:

Vp(R)=V,(Ro) + 2,

M;
=12

In order to plot the adiabatic energies as a function of th
coordinateR, we define an adiabatic free energy; A Ro)

by
N kig 5
= I<J=A,B
e BW1ARg) — H dR; Zizle_ﬁEl,z(R), (23 kJ,J, J=AB.C, (26
= ,

whereku, | #J=A,B,C are the transition probabilities for
—J. The transition probabilities are normalized so that
EJ:Ak,Jz 1. In such an unimolecular scheme where all pos-
m sible reactions take place among the components, only two
Yoo of the three reactions are independent. Following de Groot
(24)  and Mazuf® we may formulate the irreversible thermody-
wherebg=b+ YbE 1C2/w and namics for this case in. tgrms_of two independent species and
the corresponding affinities in place of tmeindependent
br reactions considered in the general formulation in Sec. Il. In

_ Cp4 R A2 252
lez_f dRy 4RO 2 Ro+ VO+ %Rg|. (25 this circumstance we may write the entropy production in the
form

These adiabatic free energy curves are shown in Fig. 1.
The ground state free energy profidg, and the mean profile n,
W, , have double-well forms while the excited stiftg has a o= ZA gt BAic(V), (27)
single minimum with an avoided crossinglR¢=_0. The two .
ground state minima are locatedRg = +0.99 and the bar- Wheredn, /dtis a reactive flux andl,c(t) = uc(t) —u((t) is
rier separating these minima has height 1.2. the corresponding affinity] € A,B). The linear phenomeno-

logical laws now take the form

whereZ, ,= [dRexp(—BE; AR)). The harmonic degrees of
freedom can be easily integrated out to obtain

a b
Wy ARy =B Q) o+ ZRE- = REF

B

IV. PHENOMENOLOGICAL RATE LAWS dnI
at 2 LiaBA (1), (29)

The form of a phenomenological rate law depends on the
identification of chemical species in the reacting mixture. Afor | =A,B. We may compare this phenomenological rate
guide to the specification of the relevant chemical species folaw with that assuming mass action kinetics,
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dn, < ns’ ity ¥e()(Xa.f
d—t'=2 (k3= 831) Wa—%ﬁc), (29 Kag(t)=—(BMa) ~*Tr dedPXB(t)(XAaPWe)'
J=A Nc
for I.:A,B. If we write {u,|=,u,?+ kgTInn as is appropriate = _(lgﬁiqylz j dr dpxg’a(t)(j(A,;,We)w, . (39
for dilute reacting species, and assume small deviations from aa’

e_qumbnum, we may identify the phenomenological coeffi- The second line of Eq:34) introduces the adiabatic basis to
clents as compute the trace. Given the fact th&h(t)=—xg(t)
Ly=(Ky— 8,00, (30) —)‘(C(.t) in \{iew of tot'al number conservation, we may
substitute this expression into E(R2) for Laa(t) and use
for 1,J=A,B. We have the relationka(n5) *=ksa—1  EQ.(34) to deduce that
= —(kagt+kac) which describes the net decay of spedies
and Lga(n8) ~1=kag, with similar relations forLgg and kAC(t):—(,Bn,‘iq)*lTr’f dR dPxc(t)(Xa.pPwe. (35
Lag- In view of the symmetry of the model there are only
two independent rate constants which may be expressed iThese correlation function expressions can be used to com-
terms of the two Onsager coefficiertg, andLga . putekag andkac, thus determining the two independent rate
constants in the problem.
Representation of the species variables in the adiabatic

V. TIME-DEPENDENT RATE COEFFICIENT basis givesNA" = 9,18a110(Ro), Ng* = 8418410 (~Ro)
andNg* = 6,,8,12. The progress variablg, , which is de-

U_smg the res‘_‘"s of Secs. Il and IV we may Write €X- fined as the deviation d¥i,, from its equilibrium value, may
pressions for the time-dependent Onsager coefficients for our

model. The general linear response results given in Sec. ?mreenﬂicn?gsgy\j;ﬁ\;v&ig ;?:253223 52(53‘3{ Z\r/% Léier:ahses the
may be specialized to our unimolecular reaction case by ) P

i : . ime-dependent rate coefficients in units«f.
writing the time-dependent Hamiltonian as . : .
g P The mixed quantum-classical bracket in E84) takes

X A i the following form in the adiabatic basis:
Fin(t)=Hw— 2 JwviAic(d), (31) N .
I=A (Na:Pwe) aa’ =1O(R0) (801~ Sar1) Pwe
where the sum is over the two independent species. The lin- 1 90 (R,) apm’
ear response analysis then leads to 3 (9—R0(5“1+ Sar1) P,
1 la’ 1
Lo== 5T [ dR AP Gwopwd. (32 1 ke vl
B ~—50(Ro) dalﬁ—Po_(?_POdla’
Equation (32) provides a microscopic expression for the ,
time-dependent Onsager coefficient in terms of a quantum- 3Pﬁ/ae

classical progress variabjgy (t) and the quantum-classical - 56'1% dig a—po

bracket of the progress variable at time zero with the station-

ary density matrix. To simplify the notation we drop tidé apf,'vi

subscript on species variables. +% {9_P0d,815a’1 : (36)
In order to evaluate this expression we must choose spe-

cific microscopic forms for the species variables. In view ofwhere the nonadiabatic coupling matrix element is

the discussion in Sec. IV, operators for the B, and C d,,. = (@:Ry| 9l dRo| @’ Ry), 37)

species may be defined as
) and we have used the fact that
Na=[1;R0)O(Ro){(1;Ro|,

.R aNA I.R
Ng=|1;R0)®(—Ro){1:Rq|, 33 |\ O R, ¢ M0
N = . . ﬁNaa’ 2 ,
Ne=12;Ro)(2;R|, S S AN NS, a9
IRy 371

where® (£ R,) is the Heaviside function selecting the right
or left wells and|l;Ry){l;Ro| is a projector onto the adia- In the following we will also assume the adiabatic basis to be
batic statd!;R,). Note thatS{~ ,N,=1, consistent with the real so thatd;;=d;,=0 andd;,=—d;. The equilibrium
fact that the combined Hilbert and configuration space islensity matriXp\”,‘V”g' is stationary under guantum-classical
completely partitioned into regions corresponding to theevolution but its explicit form is not known in general. How-

three species. ever, it is known to ordefi and to this order it coincides with
Consider the calculation afga(n%) *=kag. Using Eq.  the exact quantum canonical density matrix. To this first or-
(32) and the definition(30) we have der in# (in dimensionless unijst is given by'24
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p\”,‘v%,%p\(,\%% —ifffvcé,(l—%ar), (39) using Gaussian random numbers v.wth.the proper mean de-
viation. For the phase space sampling in E48) and (44),
where R, is fixed at the barrier top. The evaluation of E¢5)

. . requires an analogous scheme apart from the factRhas
pOla=7 e Fw,  Z,=> f dRdPeftw,  (40)  uniformly sampled in the reactargpeciesA) well.
* To compute the quantum-classical evolution of

and Xf““/(R,P,t) we must solve the equation of motion,
o By mpry, 1o dxi ' (R,P.t ,
Fiie = Po- duar e (E(“e s —g ) g c(jt LS Lt (RP, (46)
(41) VV’

. . . ... where the evolution operator in the adiabatic basis is given
with @,a’=1,2. Equation(39) gives also the decomposition by22

of the density matrix into diagonal and off-diagonal parts. _ )

From Eq.(41) it is clear thatpyi.=(pad* and pyiet pare 1 Loar v =1L g1 0avSarvr = Jaa’ v

=0. The diagonal and off-diagonal contributions to the den- . .

. . . . . = + ’ 1o ’ ’ .

sity matrix can be substituted into E(B6) and the time- (10aar Tl aar) Gavdarv = Jaar v (“47)
dependent rate coefficient in E¢4) can be decomposed Herew,, =(E,—E,)/h=E,, /% and

into the sum of three contributions: " P 4 1(F Fe') d 49
iLyy=— —=+=(F3+F}) —,
kas(1)=KAa() +kRa(D) +KRa(1). (42) M aR 2T H TR P
The diagonal part of the density matrix gives rise to theWhere

contribution Nw(d,R)
1 Fov=—\ a; —R a;R
Kdo()=(BneY 1 | dR dP NY(R,P FORy) IPiwe ’
as(t) = (BN (R,P,1) JR, P,  isthe Hellmann—Feynman force for stateThe operatod

(43  that gives rise to nonadiabatic dynamics is

while the off-diagonal part of the density matrix yields the 3 L ES s
following two terms ST VIR 2 v gp) YV
_ P 1 J
kag(t)=(Bnga) 1f dR dPIM{Nz*(R,P,t)} ——.d*, | 1+=S5 - —]|6,.. (49
M e 27 9P
I0(Ry) ofe The quantityS,, is defined as
( 0) We 44
IRy 9Py’ (44) P -1
SaV: Eavdav M'dav . (50)
24y _ - 12 . . .
Kag(t)=—2(Bnz) lf dR dPReN5(R,P,1)}®(Ro) The solution of Eq.(46) in terms of a sequence of
_gE surface-hopping trajectories was discussed in earlier
% BdpPoplt 1-e 21_ (45 papers2225sing the symboks;=(a;a/) to refer to the
We  BE,, pair of quantum state indices, we may write the solution of
Equations(43)—(45) provide well-defined formulas to calcu- Eq. (46) as .
late the time-dependent rate coefficidngg(t) from whose S 20 s t
plateau value the rate constdggg may be determined. X"(R.P.t)=e"s XIO(R’Panl (_1):12_ s, OdTl
A completely analogous set of formulas can be used to
H aa' aa' H t t
computekac by replacingNg® (t) by N&* (t) in Eq. (44) Xf de,,,f dr,
and (45) . T1 Th—1
n
VI. CALCULATION AND RESULTS % H [eiﬁgkil(fk*Tk_l)JSk 1Sk]
k=1 -

A numerical scheme to compute the time-dependent rate
coefficient given by Eq943)—(45) requires a sampling pro- Xeiﬁgﬂ(t—rn)xsn(R P). (51)
cedure to evaluate the ensemble averages over the classical !

and quantum degrees of freedom, and a method to compul@ Eqg. (51) n labels the number of nonadiabatic transitions.
. . . . o To evaluate this expression we use the fact that the action of
the time evolution of dynamical variableg® (R,P,t) un-

der quantum-classical dynamics. the diagonal part of the evolution operator on any phase

In general the initial classical phase space coordinate2P € function is given by

(R,P) can be sampled, using the diagonal part of the station-
ary density matrix as a weight function, by means of a vari-
ety of molecular dynamics or Monte Carlo techniques. In the
case of our modelR,P) can be directly sampled frorpt\l,\}e

.0 t — )
e'szthj(R,P)ZeXL( J drwsj(st T)) e'szthj(R,P)
0
=Ws (t0fs (R ¢.Ps o). (52
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The forward-evolved classical trajectory segment is defined

as the trajectory that starts aR,P) at time 0 and ends at
(st ,t,st 1) at timet:

(Rs 1P )=e"5'(R,P). (53

The constant-energy trajectory segments entering in the
quantum-classical evolution have been numerically inte- -1t

grated using a time-reversible algoritfitrand a time step
dt=0.01. The phase fact(WSj(t,O) associated with the clas-

A. Sergi and R. Kapral

0 1500 3000 4500

sical evolution segment is nontrivial when the evolution oc- t
curs on the mean of two adiabatic surfaces and it must be

properly taken into account.

The operatod is evaluated in the momentum-jump ap-

proximation. Noticing thaf

1 0 1 . Yy
E ajak'E_E ajay - ajay M ajay E
J
~Eq oM (54)

0,\—21
(9( POdajak)

and approximating (% 1/2 Sajak-Vp)%exp(llzsajak-vp)
we may expresd as

Po
~ — [
Ao o8

J o E MO(?/&(POdaJak)Z]
@jay ,aj ay M 0 i

ajay

P
_Poy
Mo

ot ;) d ror 2
o) al;e[EaJ aMo?l3(Poy o)1,

(59

The action of the operators ihon any function of the mo-
mentum is given by

A, Mo?li(P- 00,0 )°f (P) = f (P + oo APo),  (56)
where
APo= =y (A oy Po) + Uy SIMPo- U )
X \[(Po+8, )2+ E Mo (57)

FIG. 2. Time series of the coordinai®(t) along a trajectory evolving on
the ground state surface, typical of classical activated barrier crossing dy-
namics.

This is the standard reactive flux autocorrelation expression
for a classical activated barrier crossing problem. The time
evolution of Ry(t) under this ground state adiabatic dynam-
ics is shown in Fig. 2. One can see the infrequent transitions
between the two stable states of the bistable potential char-
acteristic of an activated process.

The t=0+ value of k3%(t) gives the transition state
theory approximation to the rate constadht,

kag = KaE(t=0+)=n,1{O(Po)Po8(Ry)),

[ 2 e

Bm Q
For the parameters of our model we fikffy'=4.5x 10",
The time-dependent transmission coefficient is defined as the
ratio k3%(t)/k 3" and this quantity is plotted in Fig. 3. One
can identify a “plateau” which starts at approximatety
=3, after which the transmission coefficient decays slowly to
zero on the chemical relaxation time scale. Consequently, for
the chosen parameter values, the model exhibits a well-
defined rate process in the adiabatic limit.

(59

B. Nonadiabatic dynamics

Before presenting the results for the rate constants using

All the other components are identically zero because in oufonadiabatic dynamics, we give some additional details of

model only the coordinat&, is coupled to the quantum
subsystem.
For a fixed time intervat and a fixed number of jumps

the simulation scheme used in their evaluation.
An important feature of quantum-classical dynamics is
that oscillatory quantum phase factong,,,(t) are linked to

Eq. (51) provides a well defined algorithm for the computa-
tion of the time evolution of the species variables. One can
sample the timesz;, i=1,... n, when the quantum jumps
occur from a uniform distribution. One has also to sample,
with probability 1/2, which of the two terms in E€49) acts.

A. Adiabatic dynamics

kap(t)

In the adiabatic limit the dynamics is restricted to the
ground adiabatic state. Only the first term in E§1) con-
tributes and the time-dependent rate coefficient in E42).
and(43) reduces to

1 . P
KRe(V) = s f dR dRe"10(Ro) (Ro) - pie
(58)

dynamics.

0.95 1
09
0.85 r
08

:
HHHHHIHHHHHHHHIH'

2 4 6 8 10

FIG. 3. Transmission coefficient,s(t) =ka%(t)/krg' vs time for adiabatic
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FIG. 4. Nonadiabatic coupling matrix elemeftbeledd;,) and adiabatic
free energy differenc®V,(Ry) — W, (Ry) vs Ry. The window discussed in
the text is indicated by two vertical lines By= *=0.25.
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FIG. 5. Time- dependent rate coefficiertss(t) = kig(t)/kag (lower curve
and k9%(t) =k33(t)/krg' (upper curvg vs time showing the diagonal two-
jump and off- dlagonal one-jump contributions, respectively.

will be imaginary. In this case no transition was permitted to

classical trajectory segments on the mean surfaces. For lorgcur and the contribution of the trajectory to the rate con-
times and large energy gaps these phase factors rapidly ostant was set to zero. Occasionall, can take large values
cillate. The rapidly oscillating phases are canceled by dewhere the momentum-jump approximation fails. For this rea-

structive interference with other trajectories in the ensemblgon quantum jumps with high momentum shiftsP,

with nearby initial conditions, consistent with the fact that - g

APC were removed from the ensemble. In our cal-

the system should lie on the adiabatic surfaces outside thc?ulatlon we have used PS=2.

region of strong interaction.

The algorithm for the evaluation of the quantum-

classical propagation in Eq51) forces the nonadiabatic
transitions to occur at the sampled times i=1,...n,

regardless of the value of energy gap and nonadiabatic co

pling matrix elementd,,,, at phase points evaluated at
times 7; . The nonadiabatic coupling matrix elemeht,, in
Eq. (37) acts as a statistical weight for every nonadiabati

circumvent this difficulty. The probability of jumping be-
tween the adiabatic surfaces is high in a narrow regioRf

around the barrier top where the energy gap is small ana

d,. is large(see Fig. 4.

One can reasonably expect that once the coordlnatﬁa

Ro(t) lies outside this small region, the probability of a
nonadiabatic transition will be small, as an inspection of the
nonadiabatic coupling matrix as a function Bf, shows.
Thus, in our calculations, we have used a window forRge

While the results presented in the following can be
obtained using relatively few trajectories for short times
(t<2) we used X 10° trajectories for longer times to reduce
the statistical errors. Statistical fluctuations are larger for

Yrese times because of the incomplete cancellation of the

phase factors in the ensemble. In addition we have con-
structed the algorithm to be able to examine the contributions

. . %o the rate from fixed numbers of nonadiabatic transitions
transition. The physics of the problem suggests a way tQ,

hich places additional demands on the computation. Other
more efficient schemes can be used to compute the rate con-
tant directly without computing these individual
ontributions®*~33

The evaluation of the rate constant for nonadiabatic dy-
mics entails the computation of the three terms in(Eg).
which describe different contributing factors to the reaction
Gate. The “diagonal” termkiB(t) in Eq. (43) has nonadia-
batic contributions arising from even numbers of quantum
transitions. The contribution with no nonadiabatic transitions

coordinate, —0.25<R,=<0.25, around the barrier toR, ;¢ just the adiabatic result discussed earlier. The two-jump
13T, is shown in Fig. 5. This

=0 (fei ?gns.; abndngnhr;nri\ghl[?hnnvc\)lnad|abiilc;r\?vntiltlonsnitcontribution, normalized bkLS,
\c/)vce?;nt onlc;/ ;‘Ra(g (a:\tc'?he mlzm?ent 2‘;’ fr?eu trznsition E\iN:S contribution starts at zero fdr=0 and quickly decays to a
e Y o - . . | value of approxim kIST~ —0.6 for tim
inside this window, otherwise it was given a zero weight. wePateau value of appro atekg(t)/ ki~ — 0.6 for times
have confirmed that the results are insensitive to the precise
value of the size of the window provided it covers the im-
portant region around the barrier top. We tested the approxiz
mation using a larger window of 0.5<Ry=<0.5 and no ap-
depicted schematically in Fig. 6.
preciable difference in the results was observed, apart from P y 9.

an increase of the statistical error consistent with the inter- For this contribution the trajectory startstat0 from the
éround state at the top of the barrier and evolves on the

It is interesting to analyze the two-jump nonadiabatic
contribution to Eq.(43) in terms of the trajectory segments
appearing in the evaluation of E¢51). The dynamics is

gretiﬁggfiézesﬁzi% (l))fetr(]:ir?ttr)gs\,/tzo?l\\llvirn Fs)r;ﬁZ?nfeasCttz;St. f-:; ?(': round state surface until timg where a quantum transition
PP ccurs. Between the times and 7, evolution occurs on the

the transition to occur strictly and only at the barrier t8p. f The i ¢ ti ¢ bring the traiect
The action of the momentum-jump operator in E8b) mean surface. 1he Jump at ime must bring the trajectory
back to the ground state surface after which the evolution
on a functionf(Pg) can be approximated bf(Po+d proceeds on the ground state until tim&hus, one has three
-APy). If there is insufficient kinetic energy correspondlng trajectory segments: the first and the last have no quantum
to the bath momentum alorfg,jak, AP, defined in Eq(57) phase factor but the middle trajectory segment has a nonzero

aak
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FIG. 6. Schematic representation of the sequence of the two nonadiabatfdG. 8. Transmission coefficientag(t) =kas(t)/KA3' Vst obtained includ-

transitions giving the main contribution to the rate constant. The ground andng all nonadiabatic corrections up to two transitiqiever curve, closed

excited state free energy surfaces are depicted by heavy lines while the ligkircles. Also shown iskga(t) =kga(t)/ki3' (lower curve, open circlésFor

line is the mean of these two adiabatic surfaces. The temporal sequence eémparison, the upper curve shows the adiabatic transmission coefficient.
events proceeds from left to right. The first arrow from the ground state
surface to the mean surface represents the first quantum jump. The second

arrow represents the.coherent propagation on the mean surface. The 'Elﬁﬁlation of this term requires a trajectory starting abton
arrow represents the jump from the mean surface back to the ground Sta{ﬁe ground state surface and then jumping at t"rmento the
with a destruction of the coherence.
mean surface where it evolves until tiheln Fig. 5 we plot
k3%(t)/kA3" where one can see that for 2 the contribution
phase factor arising from the coherent evolution on the meais$ close to zero but for earlier times one has a somewhat
surface E1(R)+E,(R))/2. In Fig. 7 we show the classical larger contribution. This term carries information about the
time evolution ofRy(t) on this mean potential energy sur- coherent dynamics at short times but contributes negligibly
face. to the final rate constant.

The free-energy barrier on the mean surface is equal to  The full transmission coefficient resulting from the sum
0.097 so that on this surface much more frequent, almo%f the above-discussed adiabatic and nonadiabatic contribu-
periodic, transitions between its left and right shallow wellstions is shown in Fig. 8.
are observed. This feature influences the nature of the nona- The inclusion of nonadiabatic effects significantly re-
diabatic dynamics. The calculation of the contributidfa(t) ~ duces the rate constant with respect to that obtained using
involves a short trajectory segment on the mean surface sudfliabatic dynamics. Also, the “plateau” is reached earlier
that at the timer, of the second jump to the ground state theand is seen for timets=2.0.

coordinate Ry(t) lies inside the window of—0.25<R, We have also computekA(t) defined by
=0.25.
The calculation ofk3g(t) and k33(t) in Egs. (44) and kBA(t)z—(,BﬁEq)*lTr’f dR dPxa(t)(X&,Pwe, (60

(45), respectively, depends on a knowledge of the off-

diagonal part of bracketNa ,pwe .o, and the off-diagonal in order to check the validity of the Onsager reciprocal rela-
1PWelaa’s . . . . d_ e\ )

part of the species variabMg “(t), (a«# «'). Only an odd tlonts d.'sirlssed g} Sec. Il. Sr:na% hnin n ;"e_V\II(Of tpe.fst);lm

number of nonadiabatic transitions contributes to these c.” 'N the probiem, we should ha BA() =Kga(t) if the

terms. Direct numerical evaluation bf\lB(t) in Eq. (44) has recipr_ocal relatipns were_exactly sa_tisfied. In quantum-
shown that it contributes negligibly to the rate constant. classical dynamics the reciprocal relations are valid only to

2 . . . . . . .
Instead we have found thkﬁzB(t) in Eq. (45) gives a O(u9) so that it is of interest to directly test their validity.

non-negligible contribution which is well approximated by Figure 8 also plotscga(t) where one sees thatag(t) and
events coming from a single nonadiabatic transition. The caIKBA(t) are almost_ |nd|st|ngU|s_habIe on the scale of .th(_e f'g'
ure. Thus, the reciprocal relations are accurately satisfied in-
dicating that the corrections are negligible for this model.
Using similar techniques we have computeg(t) de-
fined in Eq.(35). This quantity is plotted in Fig. 9 where one
sees that it starts at zero for 0, reaches a maximum, and
then decays to a plateau at arourd?2 from which the rate
constantkac~2x 10 ° can be determined. This should be

compared withkyg~7x10"°.

Ro(t)
o

VIl. CONCLUSIONS

1' ' 4' The correlation function expressions for the time-
0 500 3000 500 dependent rate coefficients derived in Sec. Il provide the
t basis for the computation of these quantities using quantum-

FIG. 7. Plot of the evolution oR,(t) Vs time on the mean potential energy Classical surface-hopping dyn_a_mics. _These formulas QHOW
surface, E;(R)+E,(R))/2. one to compute the rate coefficient directly from short time
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