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A reactive flux correlation function formalism for the calculation of rate constants for mixed
quantum-classical systems undergoing nonadiabatic dynamics is presented. The linear response
formalism accounts for the stationarity of the equilibrium density under quantum-classical dynamics
and expresses the rate constant in terms of an ensemble of surface-hopping trajectories. Calculations
are carried out on a model two-level system coupled to a nonlinear oscillator which is in turn
coupled to a harmonic heat bath. Relevant microscopic species variables for this system include two
stable states, corresponding to the ground state adiabatic surface, as well as another species
corresponding to the excited state surface. The time-dependent rate constants for the model are
evaluated in the adiabatic limit, where the dynamics is confined to the ground Born–Oppenheimer
surface, and these results are compared with calculations that account for nonadiabatic transitions
among the system states. ©2003 American Institute of Physics.@DOI: 10.1063/1.1566731#
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I. INTRODUCTION

A knowledge of the mechanisms and rates of conden
phase reactive processes is a necessary prerequisite f
understanding of many problems in chemical and bioche
cal systems. If a condensed phase chemical rate proces
volves quantum degrees of freedom the calculation of
reaction rate is an especially challenging task. While the
liest derivation of a reactive flux correlation function expre
sion for a rate constant was carried out for a reacting qu
tum system,1 the evaluation of such quantum correlatio
functions remains a difficult task.

The calculation of quantum mechanical rates in ma
body environments has been performed using a variety
computational techniques. These include, among oth
semiclassical methods,2 influence-functional techniques3

and real-time path integral methods,4 centroid dynamics,5 ex-
tensions of transition state theory,6–8 golden rule and
Fokker–Planck formulations,9 and schemes based on mixe
quantum-classical surface hopping dynamics.10–14

We consider systems where a description in terms
quantum-classical dynamics is appropriate.15 Situations
where the dynamics of the reaction coordinate must be c
sidered to be quantum in nature while all the other degree
freedom can be described by classical dynamics are not
ficult to find. Charge transfer processes involving electro
or protonic degrees of freedom in an environment of he
atoms are typical examples of systems where quant
classical dynamics may apply. Since complex and reali
models of the classical environment can be treated by m
ods based on quantum-classical dynamics, it provide
promising route for the simulation of condensed mat
quantum rate processes.

If the classical environment simply provides a slow

a!Electronic mail: rkapral@gatto.chem.utoronto.ca
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varying, almost-static field for the quantum dynamics,
Born–Oppenheimer approximation can be made and a
batic dynamics can be used to compute the rate. Such ca
lations are straightforward since the dynamics is purely c
sical and takes place on a single Born–Oppenheimer surf
In this paper we focus on the calculation of rate constants
systems where such an adiabatic description breaks dow

Our calculations and analysis utilize a formalism that
based on a quantum-classical evolution equation of mo
for either the density matrix or dynamical variables.16–22

Quantum-classical evolution may be expressed in terms
an ensemble of surface-hopping trajectories.23 By accounting
for the distinctive features of quantum-classical dynamics
formulation of the statistical mechanics of mixed quantu
classical systems and a framework for linear response th
and the calculation of correlation functions has be
given.24,25 These results provide a method for the formu
tion of correlation function expressions for rate constants
quantum-classical systems and a means to compute them
ing surface-hopping schemes.

The rate constant formulation we present is general
to illustrate the theory we consider a two-level syste
coupled to a classical nonlinear oscillator which is in tu
coupled to classical harmonic bath. This mimics a physi
system where the quantum reactive degree of freedom is
rectly coupled to a subsystem of the environment and
subsystem is, in turn, coupled to the remaining large num
of classical degrees of freedom comprising the rest of
environment. For this model, the identification of the re
evant species variables involves both reactant and pro
states on the ground adiabatic surface as well as the ex
adiabatic state. The quantum-classical dynamics account
transitions among all of these states. The explicit calculati
for this model show how various nonadiabatic transitio
contribute to the reaction rate.
6 © 2003 American Institute of Physics
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The paper is organized as follows. In Sec. II we der
expressions for the rate constants of a set of coupled r
tions using linear response theory. Section III introduces
two-level model we use to illustrate the numerical calcu
tion of nonadiabatic rate constants for quantum-classical
tems. In Sec. IV we give a discussion of the phenomenolo
cal rate law for the model system that takes into account
existence of an excited state as a third species in the ch
cal reaction. The linear response results of Sec. II are
cialized in Sec. V to derive the explicit form of the time
dependent rate constant for the model. The results of
calculations are presented in Sec. VI along with a discuss
of the various contributing terms involving nonadiaba
transitions. Section VII contains the conclusions of th
study.

II. RATE CONSTANTS FOR QUANTUM-CLASSICAL
SYSTEMS

Consider a quantum system in a classical bath descr
by the time-independent Hamiltonian operator,

ĤW~R,P!5
P2

2M
1

p̂2

2m
1V̂W~ q̂,R!, ~1!

which is the sum of the classical kinetic energyP2/2M , a
quantum kinetic energy operatorp̂2/2m, and a potential en-
ergy operatorV̂W(q̂,R). The subscriptW is used to indicate
that the quantum-classical description can be derived fro
fully quantum one by means of a partial Wigner transform22

An intuitive picture of a quantum-classical system is o
tained by imagining that for every set of classical pha
space coordinates (R,P) one has a Hilbert space upon whic
the operatorsq̂ andp̂ act. Taking thisEulerianpoint of view
the dynamics of the classical and quantum degrees of f
dom can be consistently formulated and one can derive
quantum-classical Liouville equation for the density mat
r̂W in the form,22

]r̂W~R,P,t !

]t
52 iLWr̂W~ t !52~ĤW ,r̂W~ t !!. ~2!

The quantum-classical Liouville operatori L̂ is defined in
terms of the algebraic quantum-classical bracket

~ĤW~ t !,ÂW!5
i

\
@ĤW~ t !,ÂW#2

1

2
~$ĤW~ t !,Â%

2$Â,ĤW~ t !%!, ~3!

where, for any operatorsÂW andB̂W , @ÂW ,B̂W# is the com-
mutator and$ÂW ,B̂W% is the Poisson bracket. The quantum
classical equilibrium density matrix of the system is statio
ary under the dynamics and satisfies (ĤW ,r̂We)50.

The quantum-classical Liouville equation~2! can be de-
rived from the quantum Liouville equation by performing
partial Wigner transform on the bath degrees of freedo
introducing scaled variablesq̂85q̂/lm , R85R/lm p̂8
5 p̂/pm , P85P/PM , where lm5(\2/me0)1/2, pm

5(me0)1/2, PM5(Me0)1/2 with e0 andt05\/e0 energy and
time units, respectively, and finally taking the quantu
classical limit by expanding the propagator to linear orde
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the small parameterm5(m/M )1/2.22 In these scaled vari-
ables the quantum-classical bracket and the Liouville ope
tor can be written as

~ĤW8 ,ÂW8 !5 iL8ÂW8 5 i F ĤW8 S 11
mL8

2i D ÂW8

2ÂW8 S 11
mL8

2i D ĤW8 G , ~4!

where theO(m) dependence is manifest. The operatorL8 is
the negative of the Poisson bracket operator in scaled u

L85¹QP8•¹WR82¹QR8•¹WP8 , ~5!

and the direction of an arrow indicates the direction in wh
the operator acts.

Suppose we have a multicomponent system wherer in-
dependent chemical reactions take place. We may asso
progress variables,x̄ i and affinitiesAi ( i 51, . . . ,r ), with
each independent reaction step. From linear irreversible t
modynamics the chemical rate law describing the time e
lution of the reaction ratesJi takes the following form:26

Ji[
dx̄ i

dt
52(

j 51

r

Li j bAj , ~6!

HereLi j is an Onsager coefficient.
This rate law can be derived from the microscop

quantum-classical dynamics using linear response theory
this approach one considers a system subject to exte
time-dependent forces~affinities! that couple to microscopic
progress variablesx̂Wi so that the hamiltonian is given by

ĤW~ t !5ĤW2(
i 51

r

x̂Wi
† Ai~ t !, ~7!

where the dagger stands for the adjoint. The dynamical v
ables are, in general, operators in Hilbert space and funct
of the classical phase space variables,x̂Wi(R,P).

The chemical rate law can be derived by calculating
nonequilibrium average ofx6 W,i ,

Ji[
dx̂Wi~ t !

dt
5Tr8E dR dPx6 Wir̂W~R,P,t !, ~8!

to linear order in the affinities. Assuming the time depe
dence of the affinities can be represented by a single Fou
componentAi(t)5exp(ivt)Ai(v), linear response theory
gives

dx̄Wi~ t !

dt
5(

j 51

r

F i j ~v!Aj~ t !, ~9!

where the one-sided Fourier transform of the matrix respo
function is given by

F i j ~v!5E
0

`

dt^~x6 Wi~ t !,x̂W j
† !&e2 ivt. ~10!

While the zero frequency limit of Eq.~9! has the same
form as the phenomenological rate law~6!, the zero fre-
quency limit of Eq.~10! may be shown to be identically zero
This is the well-known plateau value problem, which
solved by using a projection operator formalism to proje
out the time variations that occur on the time scale of
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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chemical relaxation processes. Provided the time scale
the chemical relaxation processes,tc , are much slower than
those for other microscopic relaxation processes in the
tem,tm , the phenomenological coefficients may be obtain
through the correlation function expression,

bLi j 52E
0

t*
dt8 Tr8E dR dPx6 Wi~ t8!~ x̂W j

† ,r̂We!, ~11!

where tm!t* !tc . In writing this expression we hav
moved the quantum-classical bracket to act on the equ
rium density and the initial value of the species operator. I
also convenient to define the time-dependent Onsager c
ficients by

bLi j ~ t !52E
0

t

dt8 Tr8E dR dPx6 Wi~ t8!~ x̂W j
† ,r̂We!5

2Tr8E dR dPx̂Wi~ t !~ x̂W j
† ,r̂We!, ~12!

where the time integral has been performed to obtain
second line of Eq.~12!. The true phenomenological coeffi
cients, appearing in Eq.~6!, may be determined from th
plateau value of this expression, should such a plateau e

To investigate the validity of the Onsager reciprocal
lations among the phenomenological coefficientsLi j (t) in
quantum-classical dynamics, it is convenient to return
scaled variables in order to explicitly see the dependence
the small parameterm. Introducing the scaled Onsager coe
ficient Li j8 (t8)5(\/e0)Li j (t) and the scaled inverse temper
ture b85e0b we can write

Li j8 ~ t8!52
1

b8
Tr8E dR8 dP8 x̂Wi8 e2 i L̂8t8~ x̂W j8† ,r̂We8 !.

~13!

Applying the propagator to the bracket yields,24

e2 i L̂8t8~ x̂W j8† ,r̂We8 !5~ x̂W j8† ~2t8!,r̂We8 !1O~m2!, ~14!

where we have used the fact thatr̂We8 is stationary under
quantum-classical dynamics. Using this result in Eq.~13! we
find

Li j8 ~ t !52
1

b8
Tr8E dR8 dP8 x̂W j8† ~2t8!~ x̂Wi8 ,r̂We8 !1O~m2!

52
1

b8
FTr8E dR8 dP8 x̂W j8 ~2t8!

3~ x̂Wi8† ,r̂We8 !G* 1O~m2!

5
1

b8
F2Tr8E dR8 dP8 x̂W j8 ~ t8!~ x̂Wi8† ,r̂We8 !G* 1O~m2!

5L ji8 ~ t !* 1O~m2!. ~15!

The penultimate line in this equation follows from time r
versal symmetry. Equation~15! shows that the Onsager re
ciprocal relations are valid only to linear order in the sm
parameterm in quantum-classical dynamics. In Sec. VI w
show that the deviations are negligibly small for our tw
level model.
Downloaded 22 May 2003 to 193.175.8.108. Redistribution subject to A
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This result has its origin in the action of the quantum
classical propagator on the bracket in Eq.~14! and it is a
consequence of the fact that, given three arbitrary opera
within quantum-classical algebra the Jacobi relation ho
only to linear order in the small parameterm:

~ÂW8 ,~B̂W8 ,ĈW8 !!1~ĈW8 ,~ÂW8 ,B̂W8 !!1~B̂W8 ,~ĈW8 ,ÂW8 !!

5O~m2!. ~16!

This discussion establishes the microscopic founda
of the rate law for a reacting quantum-classical system
expressing the Onsager coefficients in terms of equilibri
time correlation functions of the reaction fluxes. In the r
maining sections we illustrate the use of this formalism
computing the rate constant for a model system evolv
according to nonadiabatic dynamics.

III. TWO-LEVEL SYSTEM COUPLED
TO A CLASSICAL BATH

In order to show how the formalism outlined in Sec.
may be used to determine the rate constant, we consid
two-level system coupled to a classical bath. In accord w
the standard picture of reaction rates for such systems,
Hamiltonian operator, expressed in a diabatic ba
$u↑.,u↓.%, is taken to have the form

H5S Vn~R0!1\g0R0 2\V

2\V Vn~R0!2\g0R0
D 1S P0

2

2M0

1(
j 51

N Pj
2

2M j
1(

j 51

N
1

2
M jv j

2Rj
22gbR0(

j 51

N

cjRj D I .

~17!

This Hamiltonian describes a two-level system direc
coupled to a classical nonlinear oscillator with massM0 and
phase space coordinates (R0 ,P0). The nonlinear oscillator
has a quartic potential energy function,Vn(R0)5aR0

4/4
2bR0

2/2. The linear coupling to the two-level system
given by \g0R05\g(R0). From the structure of the firs
232 matrix in Eq.~17! the diabatic energies are given b
E1,2

d (R0)5Vn(R0)6\g0R0 and the coupling between the d
abatic states is2\V. The classical nonlinear oscillator i
bilinearly coupled, in turn, to a bath ofN independent har-
monic oscillators labeledj 51, . . . ,N with massesM j and
frequenciesv j . This contribution to the Hamiltonian is de
scribed by the second term in Eq.~17!, which is proportional
to the unit matrixI . The coupling strength between the no
linear oscillator and the harmonic bath is gauged bygb and
the bilinear coupling is characterized by a spectral dens
J(v)5p( j 51

N (cj
2/(2M jv j

2)d(v2v j ), of Ohmic type
where27,28cj5(j\v0M j )

1/2v j , v j52vc ln(12jv0 /vc) and
v05(vc /N) (12e2vmax/vc).

Henceforth, we use a convenient set of dimensionl
coordinatesR̃05(M0vc /\)1/2R0 , P̃05(\M0vc)

21/2P0 , R̃j

5(M jvc /\)1/2Rj , and P̃j5(\M jvc)
21/2Pj , so that Ĥ̃

5Ĥ/(\vc) and the dimensionless parameters of the mo
are Ṽ5V/vc , ṽ j5v j /vc , c̃ j5(jv0 /vc)

1/2v j8 , ã

5(\/(M0
2vc

3))a, b̃5b/(M0vc
2), g̃05(\/M0vc

3)1/2g0 , and
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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g̃b5(\/M0vc)
1/2gb . The dimensionless reciprocal temper

ture and time areb̃5\vcb5\vc /kBT and t̃ 5tvc , respec-
tively. In the following the tilde will be omitted to avoid
cluttering the notation but the use of dimensionless u
should be understood. Our calculations were carried out f
bath ofN550 harmonic oscillators with the following value
for the parameters:vmax53, j51, V50.025, g051, gb

52, a53, b522, andb56.
The adiabatic states are obtained by diagonalization

the two-level system Hamiltonian~17! and are given by

u1;R0&5
1

N @~11G!u↑&1~12G!u↓&], ~18!

u2;R0&5
1

N @2~12G!u↑&1~11G!u↓&], ~19!

whereN(R0)5A2(11G2(R0)) with

G~R0!5
1

g~R0!
@2V1AV21g2~R0!#. ~20!

In the following we use the notation (R,P)
5(R0 ,R1 , . . . ,RN ,P0 ,P1 , . . . ,PN) for the point in the
2(N11) dimensional phase space of the model. The co
sponding adiabatic energies are

E1,2~R!5Vb~R!7AV21g2~R0!, ~21!

where

Vb~R!5Vn~R0!1(
j 51

N
M j

2
v j

2Rj
22R0S (

j 51

N

cjRj D . ~22!

In order to plot the adiabatic energies as a function of
coordinateR0 we define an adiabatic free energyW1,2(R0)
by

e2bW1,2(R0)5E )
j 51

N

dRj Z1,2
21e2bE1,2(R), ~23!

whereZ1,25*dRexp(2bE1,2(R)). The harmonic degrees o
freedom can be easily integrated out to obtain

W1,2~R0!5b21 ln Q1,21
a

4
R0

42
bR

2
R0

27AV21g0
2R0

2,

~24!

wherebR5b1gb
2( j 51

N cj
2/v j

2 and

Q1,25E dR0Fa

4
R0

42
bR

2
R0

27AV21g0
2R0

2G . ~25!

These adiabatic free energy curves are shown in Fig
The ground state free energy profileW1 and the mean profile
W12 have double-well forms while the excited stateW2 has a
single minimum with an avoided crossing atR050. The two
ground state minima are located atR0

7570.99 and the bar-
rier separating these minima has heightD51.2.

IV. PHENOMENOLOGICAL RATE LAWS

The form of a phenomenological rate law depends on
identification of chemical species in the reacting mixture
guide to the specification of the relevant chemical species
Downloaded 22 May 2003 to 193.175.8.108. Redistribution subject to A
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our model system is provided by the structure of the f
energy profiles in Fig. 1. The ground state free energy pro
has two minima corresponding to two stable states separ
by a high barrier atR050. Since transitions between thes
states will occur on a long time scale we are led to iden
the positive and negative values ofR0 with speciesA andB,
respectively, when the system is in the ground adiab
state. Because the system is not restricted to the adiab
ground state, transitions to the excited single-well adiab
state may occur and we associate a speciesC with such
configurations. The chemical species defined in this way
indicated schematically in Fig. 1.

We are then led to consider the following chemical r
actions among the three species:

I

kJI

kIJ

J, I ,J5A,B,C, ~26!

wherekIJ , IÞJ5A,B,C are the transition probabilities fo
I→J. The transition probabilities are normalized so th
(J5A

C kIJ51. In such an unimolecular scheme where all po
sible reactions take place among the components, only
of the three reactions are independent. Following de Gr
and Mazur26 we may formulate the irreversible thermod
namics for this case in terms of two independent species
the corresponding affinities in place of ther independent
reactions considered in the general formulation in Sec. II
this circumstance we may write the entropy production in
form

s52 (
I 5A

B
dn̄I

dt
bAIC~ t !, ~27!

wheredn̄I /dt is a reactive flux andAIC(t)5mC(t)2m I(t) is
the corresponding affinity, (I 5A,B). The linear phenomeno
logical laws now take the form

dn̄I

dt
52 (

J5A

B

LIJbAIC~ t !, ~28!

for I 5A,B. We may compare this phenomenological ra
law with that assuming mass action kinetics,

FIG. 1. Free energy surfaces of the model. The bold lines are the gro
state and excited state surfaces while the dashed line is the coupled su
The two vertical dashed lines atR0560.25 are the selected window for th
calculation ~details in the text!. The free energy curves defines the thr
chemical speciesA, B, andC. A andB, reactant and product, are define
on the ground state surface and they are separated by a vertical lineR0

50 ~not drawn in the picture!. The speciesC is defined on the excited state
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dn̄I

dt
5 (

J5A

B

~kJI2dJI!S n̄J2
n̄J

eq

n̄C
eqn̄CD , ~29!

for I 5A,B. If we write m I5m I
o1kBT ln n̄I as is appropriate

for dilute reacting species, and assume small deviations f
equilibrium, we may identify the phenomenological coef
cients as

LIJ5~kJI2dJI!n̄J
eq, ~30!

for I ,J5A,B. We have the relationsLAA(n̄A
eq)215kAA21

52(kAB1kAC) which describes the net decay of speciesA
and LBA(n̄A

eq)215kAB , with similar relations forLBB and
LAB . In view of the symmetry of the model there are on
two independent rate constants which may be expresse
terms of the two Onsager coefficientsLAA andLBA .

V. TIME-DEPENDENT RATE COEFFICIENT

Using the results of Secs. II and IV we may write e
pressions for the time-dependent Onsager coefficients for
model. The general linear response results given in Se
may be specialized to our unimolecular reaction case
writing the time-dependent Hamiltonian as

ĤW~ t !5ĤW2 (
I 5A

B

x̂WI
† AIC~ t !, ~31!

where the sum is over the two independent species. The
ear response analysis then leads to

LIJ~ t !52
1

b
Tr8E dR dPx̂WI~ t !~ x̂WJ ,r̂We!. ~32!

Equation ~32! provides a microscopic expression for th
time-dependent Onsager coefficient in terms of a quant
classical progress variablex̂W,I(t) and the quantum-classica
bracket of the progress variable at time zero with the stat
ary density matrix. To simplify the notation we drop theW
subscript on species variables.

In order to evaluate this expression we must choose
cific microscopic forms for the species variables. In view
the discussion in Sec. IV, operators for theA, B, and C
species may be defined as

N̂A5u1;R0&Q~R0!^1;R0u,

N̂B5u1;R0&Q~2R0!^1;R0u, ~33!

N̂C5u2;R0&^2;R0u,

whereQ(6R0) is the Heaviside function selecting the rig
or left wells anduI ;R0&^I ;R0u is a projector onto the adia
batic stateuI ;R0&. Note that( I 5A

C N̂I51, consistent with the
fact that the combined Hilbert and configuration space
completely partitioned into regions corresponding to
three species.

Consider the calculation ofLBA(n̄A
eq)215kAB . Using Eq.

~32! and the definition~30! we have
Downloaded 22 May 2003 to 193.175.8.108. Redistribution subject to A
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kAB~ t !52~bn̄A
eq!21Tr8E dR dPx̂B~ t !~ x̂A ,r̂We!,

52~bn̄A
eq!21(

aa8
E dR dPxB

a8a~ t !~ x̂A ,r̂We!aa8 . ~34!

The second line of Eq.~34! introduces the adiabatic basis
compute the trace. Given the fact thatx̂A(t)52x̂B(t)
2x̂C(t) in view of total number conservation, we ma
substitute this expression into Eq.~32! for LAA(t) and use
Eq. ~34! to deduce that

kAC~ t !52~bnA
eq!21Tr8E dR dPx̂C~ t !~ x̂A ,r̂We!. ~35!

These correlation function expressions can be used to c
putekAB andkAC , thus determining the two independent ra
constants in the problem.

Representation of the species variables in the adiab

basis givesN̂A
aa85da1da81Q(R0), N̂B

aa85da1da81Q(2R0)

andN̂C
aa85da2da82 . The progress variablex̂A , which is de-

fined as the deviation ofN̂A from its equilibrium value, may
be replaced byN̂A when computing Eq.~34!. We use the
dimensionless variables introduced Sec. III and express
time-dependent rate coefficients in units ofvc .

The mixed quantum-classical bracket in Eq.~34! takes
the following form in the adiabatic basis:

~N̂A ,r̂We!aa85 iQ~R0!~da12da81!rWe
aa8

2
1

2

]Q~R0!

]R0
~da11da81!

]rWe
aa8

]P0

2
1

2
Q~R0!S da1

]rWe
1a8

]P0
2

]rWe
a1

]P0
d1a8

2da1(
b

d1b

]rWe
ba8

]P0

1(
b

]rWe
ab

]P0
db1da81D , ~36!

where the nonadiabatic coupling matrix element is

daa85^a;R0u]/]R0ua8;R0&, ~37!

and we have used the fact that

K a;R0U ]N̂A

]R0
Ua8;R0L

5
]NA

aa8

]R0
1 (

g51

2

~dagNA
ga82NA

agdga8!. ~38!

In the following we will also assume the adiabatic basis to
real so thatd115d2250 and d1252d21. The equilibrium

density matrixrWe
aa8 is stationary under quantum-classic

evolution but its explicit form is not known in general. How
ever, it is known to order\ and to this order it coincides with
the exact quantum canonical density matrix. To this first
der in \ ~in dimensionless units! it is given by24
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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rWe
aa8'rWe

(0)adaa82 i f We
aa8~12daa8!, ~39!

where

rWe
(0)a5Z0

21e2bHW
a
, Z05(

a
E dR dP e2bHW

a
, ~40!

and

f We
aa85P0•daa8rWe

(0)aS b

2
~11e2bEa8a!1

12e2bEa8a

Eaa8
D ,

~41!

with a,a851,2. Equation~39! gives also the decompositio
of the density matrix into diagonal and off-diagonal par
From Eq. ~41! it is clear thatrWe

12 5(rWe
21 )* and rWe

12 1rWe
21

50. The diagonal and off-diagonal contributions to the de
sity matrix can be substituted into Eq.~36! and the time-
dependent rate coefficient in Eq.~34! can be decompose
into the sum of three contributions:

kAB~ t !5kAB
d ~ t !1kAB

o1 ~ t !1kAB
o2 ~ t !. ~42!

The diagonal part of the density matrix gives rise to t
contribution

kAB
d ~ t !5~bnA

eq!21E dR dP NB
11~R,P,t !

]Q~R0!

]R0

]rWe
11

]P0
,

~43!

while the off-diagonal part of the density matrix yields th
following two terms

kAB
o1 ~ t !5~bnA

eq!21E dR dPIm$NB
12~R,P,t !%

3
]Q~R0!

]R0

] f We
12

]P0
, ~44!

kAB
o2 ~ t !522~bnA

eq!21E dR dPRe$NB
12~R,P,t !%Q~R0!

3bd12P0rWe
11 12e2bE21

bE12
. ~45!

Equations~43!–~45! provide well-defined formulas to calcu
late the time-dependent rate coefficientkAB(t) from whose
plateau value the rate constantkAB may be determined.

A completely analogous set of formulas can be used

computekAC by replacingNB
aa8(t) by NC

aa8(t) in Eq. ~44!
and ~45!.

VI. CALCULATION AND RESULTS

A numerical scheme to compute the time-dependent
coefficient given by Eqs.~43!–~45! requires a sampling pro
cedure to evaluate the ensemble averages over the clas
and quantum degrees of freedom, and a method to com

the time evolution of dynamical variablesx I
aa8(R,P,t) un-

der quantum-classical dynamics.
In general the initial classical phase space coordina

(R,P) can be sampled, using the diagonal part of the stat
ary density matrix as a weight function, by means of a va
ety of molecular dynamics or Monte Carlo techniques. In
case of our model (R,P) can be directly sampled fromrWe

11
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using Gaussian random numbers with the proper mean
viation. For the phase space sampling in Eqs.~43! and ~44!,
R0 is fixed at the barrier top. The evaluation of Eq.~45!
requires an analogous scheme apart from the fact thatR0 is
uniformly sampled in the reactant~speciesA) well.

To compute the quantum-classical evolution

x I
aa8(R,P,t) we must solve the equation of motion,

dx I
aa8~R,P,t !

dt
5(

nn8
iLaa8,nn8x I

nn8~R,P,t !, ~46!

where the evolution operator in the adiabatic basis is gi
by22

iLaa8,nn85 iL aa8
(0) danda8n82Jaa8,nn8

5~ ivaa81 iL aa8!danda8n82Jaa8,nn8 . ~47!

Herevaa85(Ea2Ea8)/\[Eaa8 /\ and

iL aa85
P

M
•

]

]R
1

1

2
~FW

a 1FW
a8!•

]

]P
, ~48!

where

FW
a 52K a;RU ]V̂W~ q̂,R!

]R
Ua;RL

is the Hellmann–Feynman force for statea. The operatorJ
that gives rise to nonadiabatic dynamics is

Jaa8,nn852
P

M
•danS 11

1

2
San•

]

]PD da8n8

2
P

M
•da8n8

* S 11
1

2
Sa8n8
* •

]

]PD dan . ~49!

The quantitySan is defined as

San5EandanS P

M
•danD 21

. ~50!

The solution of Eq.~46! in terms of a sequence o
surface-hopping trajectories was discussed in ear
papers.22,23,25 Using the symbolsi5(a ia i8) to refer to the
pair of quantum state indices, we may write the solution
Eq. ~46! as

x I
s0~R,P,t !5eL s0

0 tx I
s0~R,P!1 (

n51

`

~21!n (
s1 . . . sn

E
0

t

dt1

3E
t1

t

dt2¯E
tn21

t

dtn

3)
k51

n

@eiL sk21

0 (tk2tk21)Jsk21sk
#

3eiL sn

0 (t2tn)x I
sn~R,P!. ~51!

In Eq. ~51! n labels the number of nonadiabatic transition
To evaluate this expression we use the fact that the actio
the diagonal part of the evolution operator on any ph
space function is given by

eiL sj

0 t f sj
~R,P!5expS E

0

t

dtvsj
~R̄sj ,t ! D eiL sj

t f sj
~R,P!

[Wsj
~ t,0! f sj

~R̄sj ,t ,P̄sj ,t!. ~52!
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The forward-evolved classical trajectory segment is defi
as the trajectory that starts at (R,P) at time 0 and ends a
(R̄sj ,t ,P̄sj ,t) at time t:

~R̄sj ,t ,P̄sj ,t!5eiL sj
t~R,P!. ~53!

The constant-energy trajectory segments entering in
quantum-classical evolution have been numerically in
grated using a time-reversible algorithm29 and a time step
dt50.01. The phase factorWsj

(t,0) associated with the clas
sical evolution segment is nontrivial when the evolution o
curs on the mean of two adiabatic surfaces and it mus
properly taken into account.

The operatorJ is evaluated in the momentum-jump a
proximation. Noticing that25

1

2
Sa jak

•

]

]P
5

1

2
Ea jak

da jakS P

M
•da jakD 21

•

]

]P

5Ea jak
M0

]

]~P0d̂a jak
!2

, ~54!

and approximating (111/2 Sa jak
•¹P)'exp(1/2Sa jak

•¹P)
we may expressJ as

Ja jak ,a
j8a

k8
'2

P0

M0
da jak

e[Ea jak
M0]/](P0d̂a jak

)2]

2
P0

M0
da

a8 j a
k8
e[Ea j8ak8

M0]/](P0d̂a j8ak8
)2] . ~55!

The action of the operators inJ on any function of the mo-
mentum is given by

eDEa jak
M0]/](P•d̂a jak

)2
f ~P!5 f ~P1d̂a jak

•DP0!, ~56!

where

DP052d̂a jak
~ d̂a jak

•P0!1d̂a jak
sgn~P0•d̂a jak

!

3A~P0•d̂a jak
!21Ea jak

M0. ~57!

All the other components are identically zero because in
model only the coordinateR0 is coupled to the quantum
subsystem.

For a fixed time intervalt and a fixed number of jump
Eq. ~51! provides a well defined algorithm for the comput
tion of the time evolution of the species variables. One c
sample the times,t i , i 51, . . . ,n, when the quantum jump
occur from a uniform distribution. One has also to samp
with probability 1/2, which of the two terms in Eq.~49! acts.

A. Adiabatic dynamics

In the adiabatic limit the dynamics is restricted to t
ground adiabatic state. Only the first term in Eq.~51! con-
tributes and the time-dependent rate coefficient in Eqs.~42!
and ~43! reduces to

kAB
ad ~ t !5

1

n̄A
eqE dR dP~eiL 11tQ~R0!!d~R0!

P0

M0
rWe

11 .

~58!
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This is the standard reactive flux autocorrelation express
for a classical activated barrier crossing problem. The ti
evolution ofR0(t) under this ground state adiabatic dynam
ics is shown in Fig. 2. One can see the infrequent transiti
between the two stable states of the bistable potential c
acteristic of an activated process.

The t501 value of kAB
ad (t) gives the transition state

theory approximation to the rate constant,30

kAB
TST5kAB

ad ~ t501 !5nA,eq
21 ^Q~P0!P0d~R0!&,

5A 2

bp

ebV

Q . ~59!

For the parameters of our model we findkAB
TST54.531024.

The time-dependent transmission coefficient is defined as
ratio kAB

ad (t)/kAB
TST and this quantity is plotted in Fig. 3. On

can identify a ‘‘plateau’’ which starts at approximatelyt
53, after which the transmission coefficient decays slowly
zero on the chemical relaxation time scale. Consequently
the chosen parameter values, the model exhibits a w
defined rate process in the adiabatic limit.

B. Nonadiabatic dynamics

Before presenting the results for the rate constants u
nonadiabatic dynamics, we give some additional details
the simulation scheme used in their evaluation.

An important feature of quantum-classical dynamics
that oscillatory quantum phase factorsWaa8(t) are linked to

FIG. 2. Time series of the coordinateR0(t) along a trajectory evolving on
the ground state surface, typical of classical activated barrier crossing
namics.

FIG. 3. Transmission coefficientkAB(t)5kAB
ad (t)/kAB

TST vs time for adiabatic
dynamics.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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classical trajectory segments on the mean surfaces. For
times and large energy gaps these phase factors rapidly
cillate. The rapidly oscillating phases are canceled by
structive interference with other trajectories in the ensem
with nearby initial conditions, consistent with the fact th
the system should lie on the adiabatic surfaces outside
region of strong interaction.

The algorithm for the evaluation of the quantum
classical propagation in Eq.~51! forces the nonadiabati
transitions to occur at the sampled timest i , i 51, . . . ,n,
regardless of the value of energy gap and nonadiabatic
pling matrix elementdaa8 , at phase points evaluated
timest i . The nonadiabatic coupling matrix elementdaa8 in
Eq. ~37! acts as a statistical weight for every nonadiaba
transition. The physics of the problem suggests a way
circumvent this difficulty. The probability of jumping be
tween the adiabatic surfaces is high in a narrow region ofR0

around the barrier top where the energy gap is small
daa8 is large~see Fig. 4!.

One can reasonably expect that once the coordin
R0(t) lies outside this small region, the probability of
nonadiabatic transition will be small, as an inspection of
nonadiabatic coupling matrix as a function ofR0 shows.
Thus, in our calculations, we have used a window for theR0

coordinate,20.25<R0<0.25, around the barrier topR0

50 ~see Figs. 1 and 4! within which nonadiabatic transition
occur. A nonadiabatic contribution was counted with a u
weight only if R0(t) at the moment of the transition wa
inside this window, otherwise it was given a zero weight. W
have confirmed that the results are insensitive to the pre
value of the size of the window provided it covers the im
portant region around the barrier top. We tested the appr
mation using a larger window of20.5<R0<0.5 and no ap-
preciable difference in the results was observed, apart f
an increase of the statistical error consistent with the in
pretation of the effect of the above-given phase factors. T
approximation should be contrasted with schemes that fo
the transition to occur strictly and only at the barrier top.14

The action of the momentum-jump operator in Eq.~55!

on a function f (P0) can be approximated byf (P01d̂a jak

•DP0). If there is insufficient kinetic energy correspondin
to the bath momentum alongd̂a jak

, DP0 defined in Eq.~57!

FIG. 4. Nonadiabatic coupling matrix element~labeledd12) and adiabatic
free energy differenceW2(R0)2W1(R0) vs R0 . The window discussed in
the text is indicated by two vertical lines atR0560.25.
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will be imaginary. In this case no transition was permitted
occur and the contribution of the trajectory to the rate co
stant was set to zero. OccasionallyDP0 can take large values
where the momentum-jump approximation fails. For this re
son quantum jumps with high momentum shiftsDP0

.d̂a jak
•DP0

c were removed from the ensemble. In our ca

culation we have usedDP0
c52.

While the results presented in the following can
obtained using relatively few trajectories for short tim
(t,2) we used 43106 trajectories for longer times to reduc
the statistical errors. Statistical fluctuations are larger
these times because of the incomplete cancellation of
phase factors in the ensemble. In addition we have c
structed the algorithm to be able to examine the contributi
to the rate from fixed numbers of nonadiabatic transitio
which places additional demands on the computation. O
more efficient schemes can be used to compute the rate
stant directly without computing these individu
contributions.31–33

The evaluation of the rate constant for nonadiabatic
namics entails the computation of the three terms in Eq.~42!
which describe different contributing factors to the reacti
rate. The ‘‘diagonal’’ termkAB

d (t) in Eq. ~43! has nonadia-
batic contributions arising from even numbers of quant
transitions. The contribution with no nonadiabatic transitio
is just the adiabatic result discussed earlier. The two-ju
contribution, normalized bykAB

TST, is shown in Fig. 5. This
contribution starts at zero fort50 and quickly decays to a
plateau value of approximatelykAB

d (t)/kAB
TST'20.6 for times

t.2.
It is interesting to analyze the two-jump nonadiaba

contribution to Eq.~43! in terms of the trajectory segmen
appearing in the evaluation of Eq.~51!. The dynamics is
depicted schematically in Fig. 6.

For this contribution the trajectory starts att50 from the
ground state at the top of the barrier and evolves on
ground state surface until timet1 where a quantum transition
occurs. Between the timest1 andt2 evolution occurs on the
mean surface. The jump at timet2 must bring the trajectory
back to the ground state surface after which the evolut
proceeds on the ground state until timet. Thus, one has three
trajectory segments: the first and the last have no quan
phase factor but the middle trajectory segment has a non

FIG. 5. Time-dependent rate coefficientskAB
d (t)5kAB

d (t)/kAB
TST ~lower curve!

andkAB
o2 (t)5kAB

o2 (t)/kAB
TST ~upper curve! vs time showing the diagonal two

jump and off-diagonal one-jump contributions, respectively.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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phase factor arising from the coherent evolution on the m
surface (E1(R)1E2(R))/2. In Fig. 7 we show the classica
time evolution ofR0(t) on this mean potential energy su
face.

The free-energy barrier on the mean surface is equa
0.097 so that on this surface much more frequent, alm
periodic, transitions between its left and right shallow we
are observed. This feature influences the nature of the n
diabatic dynamics. The calculation of the contributionkAB

d (t)
involves a short trajectory segment on the mean surface
that at the timet2 of the second jump to the ground state t
coordinate R0(t) lies inside the window of20.25<R0

<0.25.
The calculation ofkAB

o1 (t) and kAB
o2 (t) in Eqs. ~44! and

~45!, respectively, depends on a knowledge of the o
diagonal part of bracket (N̂A ,r̂We)aa8 , and the off-diagonal

part of the species variableNB
a8a(t), (aÞa8). Only an odd

number of nonadiabatic transitions contributes to th
terms. Direct numerical evaluation ofkAB

o1 (t) in Eq. ~44! has
shown that it contributes negligibly to the rate constant.

Instead we have found thatkAB
o2 (t) in Eq. ~45! gives a

non-negligible contribution which is well approximated b
events coming from a single nonadiabatic transition. The

FIG. 6. Schematic representation of the sequence of the two nonadia
transitions giving the main contribution to the rate constant. The ground
excited state free energy surfaces are depicted by heavy lines while the
line is the mean of these two adiabatic surfaces. The temporal sequen
events proceeds from left to right. The first arrow from the ground s
surface to the mean surface represents the first quantum jump. The s
arrow represents the coherent propagation on the mean surface. Th
arrow represents the jump from the mean surface back to the ground
with a destruction of the coherence.

FIG. 7. Plot of the evolution ofR0(t) vs time on the mean potential energ
surface, (E1(R)1E2(R))/2.
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culation of this term requires a trajectory starting at t50 on
the ground state surface and then jumping at timet1 onto the
mean surface where it evolves until timet. In Fig. 5 we plot
kAB

o2 (t)/kAB
TST where one can see that fort.2 the contribution

is close to zero but for earlier times one has a somew
larger contribution. This term carries information about t
coherent dynamics at short times but contributes neglig
to the final rate constant.

The full transmission coefficient resulting from the su
of the above-discussed adiabatic and nonadiabatic contr
tions is shown in Fig. 8.

The inclusion of nonadiabatic effects significantly r
duces the rate constant with respect to that obtained u
adiabatic dynamics. Also, the ‘‘plateau’’ is reached earl
and is seen for timest>2.0.

We have also computedkBA(t) defined by

kBA~ t !52~bn̄B
eq!21Tr8E dR dPx̂A~ t !~ x̂B ,r̂We!, ~60!

in order to check the validity of the Onsager reciprocal re
tions discussed in Sec. II. Sincen̄A

eq5n̄B
eq in view of the sym-

metry in the problem, we should havekBA(t)5kBA(t) if the
reciprocal relations were exactly satisfied. In quantu
classical dynamics the reciprocal relations are valid only
O(m2) so that it is of interest to directly test their validity
Figure 8 also plotskBA(t) where one sees thatkAB(t) and
kBA(t) are almost indistinguishable on the scale of the fi
ure. Thus, the reciprocal relations are accurately satisfied
dicating that the corrections are negligible for this model

Using similar techniques we have computedkAC(t) de-
fined in Eq.~35!. This quantity is plotted in Fig. 9 where on
sees that it starts at zero fort50, reaches a maximum, an
then decays to a plateau at aroundt52 from which the rate
constantkAC'231025 can be determined. This should b
compared withkAB'731025.

VII. CONCLUSIONS

The correlation function expressions for the tim
dependent rate coefficients derived in Sec. II provide
basis for the computation of these quantities using quant
classical surface-hopping dynamics. These formulas al
one to compute the rate coefficient directly from short tim

tic
d
ht
of

e
ond
last
ate

FIG. 8. Transmission coefficientkAB(t)5kAB(t)/kAB
TST vs t obtained includ-

ing all nonadiabatic corrections up to two transitions~lower curve, closed
circles!. Also shown iskBA(t)5kBA(t)/kBA

TST ~lower curve, open circles!. For
comparison, the upper curve shows the adiabatic transmission coeffici
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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nonadiabatic dynamics, rather than by simply monitoring
time evolution of a species variable over long times as
often done in mixed quantum-classical schemes. The exp
sions for the rate coefficient involve averages over the
propriate quantum-classical equilibrium density mat
which is stationary under the evolution, and incorporate
act surface-hopping trajectories in the framework
quantum-classical dynamics to evolve the microscopic s
cies variables. The analysis of the Onsager coefficients
responding to the reaction rates has established the val
of detailed balance to orderm2 for systems obeying
quantum-classical dynamics.

The explicit calculations for a two-level system coupl
to a classical many-body bath have shown how the form
ism may be implemented in a computational scheme. A
aspects of this calculation merit additional comment. Rat
than using an exact surface-hopping algorithm23 to compute
the rate, we have employed the momentum-ju
approximation22,25 since this avoids trajectory branching an
is easier to implement. This approximation leads to so
difficulties discussed in the text, so it is desirable to se
simulation schemes that avoid this approximation.

The calculation algorithm we used allowed us to analy
the importance of specific nonadiabatic contributions to
rate constants. Since the trajectory segments that contri
to these nonadiabatic contributions have phase factors a
ciated with coherent evolution segments, one gains ins
into how decoherence enters the rate calculation.

The calculations have allowed us to assess the exte
which detailed balance is satisfied. For our two-state mo
the forward and backward rate constants are numerically
distinguishable, indicating that the predicted deviations fr
detailed balance in quantum-classical dynamics are ne
gible for this system.

Since the scheme is designed to treat arbitrary class
environments, the present results pave the way for app
tions of this method to more realistic systems with ma
classical degrees of freedom and a larger number of quan
states.
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