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Nonadiabatic reaction rates for dissipative quantum-classical systems

Alessandro Sergi and Raymond Kapral
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto,
Ontario M5S 3H6, Canada

(Received 27 August 2003; accepted 26 September)2003

The dynamics of a quantum system which is directly coupled to classical degrees of freedom is
investigated. The classical degrees of freedom are in turn coupled to a classical bath whose detailed
dynamics is not of interest. The resulting quantum-classical evolution equations are dissipative as a
result of coupling to the classical heat bath. The dissipative quantum-classical dynamics is used to
study nonadiabatic chemical reactions and compute their rates. The reactive flux correlation
formalism for the calculation of nonadiabatic rate constants is generalized to dissipative
guantum-classical dynamics and implemented in terms of averages over surface-hopping Langevin
trajectory segments. The results are illustrated for a simple quantum-classical two-state model. The
techniques developed in this paper can be applied to complex classical environments encountered,
for example, in proton and electron transfer processes in the condensed phase where local
environmental degrees of freedom must be treated explicitly but the remainder of the environment
can be treated simply as a heat bath.2@03 American Institute of Physics.

[DOI: 10.1063/1.1627752

I. INTRODUCTION rate constant by means of surface-hopping schémes.
We utilize the formulation of quantum-classical dynam-

There are many instances where chemical reactions aies based on a quantum-classical Liouville equation and its
intrinsically quantum in nature but the environment in whichrepresentation in terms of surface-hopping trajectdtigse
they occur can be treated classically to a good approximastatistical mechanics of such quantum-classical systems has
tion. For instance, in signalling processes in biomoleculesheen developedso that the rate constants can be computed
the primary events often involve phenomena taking place ofrom reactive flux autocorrelation functioris situ ations
the quantum level, such as photon absorption leading to prawhere nonadiabatic effects are import&hin this paper we
motion to an excited electronic state. Successive reactioaxtend this approach to the simulation of nonadiabatic
steps typically involve a classical flow of information to quantum-classical dynamics to situations where part of the
larger scales where dissipation is an essential ingredient iclassical bath is described by dissipative stochastic dynam-
the passage back to the initial state. Proton and electroigs.
transfer reactions are often strongly influenced by the local Dissipative quantum-classical dynamics bath can be con-
media in which they occur, with the remainder of the degreesidered as a particular form of an open quantum systém.
of freedom characteristic of the system providing a dissipaThe equations of motion for such dynamics which we em-
tive environment for the reactive dynamics. These considerploy have been derived from the quantum-classical Liouville
ations motivate the study of quantum-classical dynamics irequation by means of projection operator techniddes)d
dissipative baths where a portion of the system is treatethke the form of a quantum-classical Fokker—Planck equa-
guantum mechanically, its immediate surroundings is treatetlon for the density matrix. We show how the time evolution
classically in full detail and the remainder of the environ-of such a system can be represented by means of surface-
ment is treated as a stochastic dissipative medium. For sysopping trajectory segments described by stochastic Lange-
tems of this type one would like to investigate the micro-vin dynamics. This is the most convenient form of the dy-
scopic nature of the quantum reactive dynamics and computeamics for large scale numerical studies. To illustrate the
the reaction rate constants. These issues are discussed in thisthod we compute the reaction rates for a simple two-level
paper. model. The model is similar to that used previously to inves-

A variety of techniques can be used to study quantuntigate nonadiabatic reaction dynamics in quantum-classical
dissipative dynamicgsee Refs. 1 and 2 and referencessystems? except that now part of the classical environment
therein. Path-integral influence functional technigtiéand s treated stochastically.
imaginary time path integrals with analytic continuation The paper is organized as follows: In Sec. Il we intro-
through maximum entropy methodsave been used to com- duce quantum-classical dynamics in a dissipative bath de-
pute rate constants for quantum dissipative systems. Ratzribed by a Fokker—Planck equation of motion for the den-
constants have also been computed using the golden ruity matrix and its associated Kramers operators. In Sec. IlI
formula with time evolution treated by means of mean-field,we show how to map the dissipative evolution to an average
semiclassical stochastic dynanfi@nd through the evalua- over different realizations of Langevin trajectories. In Sec.
tion of the flux—flux correlation function expressions for the IV we introduce the model system used to illustrate the for-
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malism, give the expressions for the time-dependent rate co-

efficients, and discuss the equilibrium density matrix. In Sec. ik 4= [m IR + §(f3v+ Fw) 9P
V we describe the simulation method, which generalizes the

sequential short-time propagation algoritfrto the case of P d

explicitly time-dependent propagators and, in Sec. VI present “toplm Tt kBTﬁ ' @

the results of our computation of the nonadiabatic rate con- N N _

stants. Section VII contains the conclusions of our study. Thi/nere Fw=—3dVy/JdR denotes the effective Hellmann-—
general proof of existence of a stationary density matrix fof-eynman force acting on the relevant variables. The operator

quantum-classical dynamics in a dissipative bath is given ing» giving rise to nonadiabatic transitions and corresponding
bath momentum changes, has the same form as in earlier

the Appendix.
bp studie&>%and is given by
1 d
Il. QUANTUM-CLASSICAL DYNAMICS J o= —d' 11+ =5 ._)5 o
IN A STOCHASTIC BATH aa' BB M Tep 2 B gp | “a'B

Consider a quantum-classical system comprising a quan- L (1+ ES* . _) s ®)
tum subsystem and a classical environment. The classical M Ta'B 27a'B gp | ek
environmental phase space degrees of freedom are parti- N a1
tioned into two sets: one seR(P) is directly coupled to the WhereSyz=AE.z[(P/M) -d,g]" "
quantum subsystem and the details of its dynamics is neces- "€ quantum-classical average of any operator or dy-
sary for an accurate description of the system dynamics; the@mical variabley can be written as
second setR’,P’) is coupled directly to the first set of
classical degrees of freedom and its main effect is to function  {(X)(t)= > dRdPy. 4(R,P)
as a thermal bath leading to dissipative dynamics in the aa’ pp’
system:® . . xex —i L2, . t106F (RP)
An equation of motion for the quantum-classical system
composed of the quantum subsystem and the clas$Gal)(

- BB’
degrees of freedom only has been derived using projection - E dRdPoy” (R.P)

operator method¥ It takes the form aapp .
) - 1 Xexp[i[iﬁ,ﬁa,at]xa,a(R,P), (6)
ot~ pHwPwO1 5 ({Hw pudV} where L}’ ., is the backward operator that can be ob-
tained by integrating by parts and using cyclic permutations
—{pw(t) |:|W})+§i E+kBTi) Pu() under the trace. The explicit expression for the backward
’ JP\M P operator is
= —iLPhw(1), 1) i Lo g =10 (RVHILED 180500 51— aarppr» (7)

where ¢ is the friction constant an#gT is the Boltzmann \yhere the backward Kramers operator
constant times the temperature. The Hamiltonian

b2 g2 b2 | KB [P d +1(fa+}_a,) d
L S PP O VI R A R
Hw=5 1 5m P W8.R) = 57 +hw(R) 2
. P d
depends only on theR,P) phase space coordinates and con- _g(ﬁ_kBTﬁ)ﬁ 8upOarpr - 8

tains(§,R), the potential of mean force resulting from the
average over the primed bath variables. The quantum an
classical degrees of freedom have mas&nd M, respec-
tively, with m<M. The last equality in Eq(1) defines the From the classical theory of random proce&t time
Liouville operatori Yol determining the dissipative dynamics evolution under the backward Kramers opera’tﬁﬁs,ﬁﬁ,

of the system. The dissipative quantum-classical Liouvillecan be replaced by an average over realizations of stochastic
operator in Eq(1) differs from that derived for an isolated | angevin dynamics. In this representation the time evolution

quantum-classical systénby the presence of the Fokker— of the classical trajectory segments is determined by the
Planck-type operator and the renormalized potential of meapangevin equations of motion,

force in the Hamiltonian.

I?I. LANGEVIN DYNAMICS

P

The dissipative Liouville operator can be written in the R= 9)
adiabatic basis, being defined by the solution of the eigen- M’
value problemhy|a;R)=E(R)|a;R), as _ ¢ 1 '
n P=——P+ - (Fyt+Fw)t+E&Q1)), 10
—iLp =10 (RYFILY  180pBur g+ Jaar g v Pt R e (10

3 whereé(t) is a Gaussian white-noise process with the prop-
where we have defined the Kramers operator as erties
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(&(1))=0, (12)

(E(DE&(L"))=2kgTLS(t—t"). (12)
We can associate a time-dependent Liouville operator,

iLS ()

P ( éVPJrl(F“wLF“H—g(t)) J (13
= — — _— — w W -, L R H s L
M IR M 2 P 15 1 05 0 05 1 15
and a time-ordered propagator, R

FIG. 1. Adiabatic energy surfaces of the model. The heavy solid line is the
) (14) ground-state curve while the dashed line denotes the excited-state curve.
The shapes of the energy curves suggest the definition of the three chemical
speciesA, B, andC. SpecieA andB, reactant and product, are defined on
the ground-state surface and they are separated by a vertical IRe @t

UL _ t o L ’
we (1,0)=Tex 0dt iL,,(t")

with Egs.(9) and(10). Consequently one is led to consider a

total time-dependent Langevin—Liouville operator, SpecieC is defined on the excited-state curve.
. AL . L
I’Caa’ﬁﬁ’(t) =[iwaa (R +IL,, (1)]0,564 5
~Jaappr (15)

the dimensionless reciprocal temperature and time fare

and the propagator =hwB=ho. kT andt=tw., respectively. We also de-
toooL fine a dimensionless friction constant {/M w,. Herew, is

M';Q,BB,(t,O)=Texp{ fodtl'ﬁaa’ﬁﬁ'(t’) ' (16 some characteristic frequency. In the following the tilde will

) ) ) ) be omitted to simplify the notation but the use of dimension-
In this Langevin representation, the quantum-classical aveless units should be understood. The dimensionless param-

age ofy can be written as eters chosen for the calculation have the val(es0.025,
, a=3,b=1.8, andy,=1.
(= 2 f dRdPo{’ (R,P) The Hamiltonian in Eq(19) together with Eq(1) com-
aa’ BB’ pletely specify the dynamics of the model. In the adiabatic
. . . o 2
Xu;g’aa’(t)Xa’a(R!P)' (17) basis the Hamiltonian takes the forhhy,=P</2+E_(R),

where the adiabatic eigenvalues are given by
where the over line stands for an average over the different
realizations of the Langevin stochastic process. We can per- E12=Vq(R)F Q2+ y5R%. (20)
mute the_ order of the average over phase Sspace and over the The adiabatic energy curves are shown in Fig. 1. The
stochastic process given by since they are independent

. ground-state energy profile has two minimaRs +0.97
from each other. So we can write

separated by a barrier with heighty=1.13. The frequency
, at the barrier top isv,=178.77 while the frequency at the
0= 2 | dRAPGI (RPUsp 0 (DXL o(RP). well minima is wo=2.49.

aa' pp! (18) From the shapes of the energy profiles in Fig. 1 one may

) o ) define three chemical speci@s B, andC which undergo the
Equation(18) expresses dissipative quantum-classical averfo|iowing chemical reactions:

ages as phase space weighted averages over different realiza-
. ) i 4 o . Kag Kac ksc
tions of Langevin trajectories and is in a form that is conve-

. : g . A=B, A=C, B=C. (21
nient for numerical simulations. K K K
BA CA CB

Due to mass conservation and detailed balance only two in-

dependent rate coefficients need to be computed. We choose
To illustrate the formalism we consider a quantum two-to focus on the computation &g andkac .

Ievgl system which is d|r¢ctly cpu_pled to a classical q“_art,'CTime-dependent rate coefficients

oscillator; this quartic oscillator is in turn coupled to a dissi-

pative bath. The Hamiltonian of the model is Microscopic dynamical variables for the species opera-
torsA, B, andC may be defined as

IV. MODEL SYSTEM

. P2 ) .

AW(R,P) = 5or + Vo(R) — Q65— yoR&, (19 RA=|1:R)O(R)(LR],
wher.qu(R)= (al4) R*— (b/2) R2'and &'x ando, are P.aijli Ng=|1;R)®(—R)(1;R], (22)
matrices. Henceforth we use dimensionless coordinRtes A
= (Mw JH) YR, P=(EMw,) Y2P, so thatH=H/(fiw.). Nc=[2;R)(2:R],

The dimensionless parameters of the model@reQ/w;,  where®(=R) is the Heaviside function selecting the right
a=[h/(M?03)]a, b=b/(Mw?), o= (AIMwd)*?y, while  or left wells and|1(2);R)(1(2);R| is a projector onto the
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adiabatic statél (2);R). Note thatEf:: AN, =1, reflecting the ﬂp\%e

fact that the combined Hilbert and configuration space is kiB(t)Z(ﬂnf\q)_lf dRAPNS'(R,P,t) (R) p
completely partitioned into regions corresponding to the (29)
three species.

The expressions for the time-dependdgig(t) and

while the off-diagonal part of the density matrix yields the

kac(t) rate constants were derived in Ref. 10 and are giveﬁwo terms
b
Y kjilB(t)z(ﬂniq)’lf dRAPIM{NF(R,P,t)}
()=~ (BT T [ dRARRG(0) (. (29 s

X 8(R) &—;Ve, (30)

ncl) =~ (B Tr" [ dRAPRC(D (i w29
kXZB(t)z—Z(an\q)‘lf dRAPRENE(R,P,1)}O(R)

In Egs. (23) and (24) we have used the quantum-classical

bracket defined asx(,pwe =i/A[ X1 Pwel— 12X\ ,Pwe} 1—e BE2

—{pwe.X1}). The progress variablg, is defined as the de- XIBd12Pp\lI\}eBT12' (32)

viation of N, from its equilibrium value angy. is the sta- ) . .
tionary density of the dissipative quantum-classical dynamEduations(29)—(31) provide formulas to calculate the time-

ics (see the Appendix for a discussjon dependent rate coefficiekg(t) from whose plateau value
The plateau value of these correlation function exprestl€ rate constarit,g may be determined.

sions can be used to compikig; andk ¢, thus determining A completely analogous ;et of formylas can be used to

the two independent rate constants in the problem. Represefomputekac by replacingNg® (t) by Nc* (t) in the above

tation of the species variables in the adiabatic basis give§quations.

N2 = 5,18,10(R), N3*'=5,.56,,0(—R), and N

=6,20,2. The progress variableg, and yc may be re- V. SIMULATION METHOD

placed byN, andN¢ when computing Eqsi23) and (24). The calculation of quantum-classical averages and cor-

An etxplicitl for_mulla:jlfor. tht? stgttionar_y densi:)y matr_:x cfiort relation functions using the dynamics specified by the time-
quantum-classical dissipalive dynamics can be easlly delefranangent Langevin—Liouville operatiof- (t) in Eq. (15
mined to orderO(#). In the adiabatic basis and in dimen- P g P s (V a. (19

sionless units it is given by and its associated propagalmb’s,(t) in Eqg. (16) is no more

complicated than that for deterministic quantum-classical

’ R H 0,14,15,17, H H H

pas ~p$éa5aa’ —ifet (1—5,,). (25) dynamics' A S|mulatlpn scheme requires a procedure
to sample phase space points and an integration scheme for

Equation(25) gives also the decomposition of the density the Langevin trajectories. The average over phase space and

matrix into diagonal and off-diagonal parts. The off-diagonaldifferent realizations of the stochastic process can be per-

part of the density matrix has the propertle\%f(p\z,\} * formed independently. To calculate E¢29) and (30) R is
and py2.+ pal.=0. For the diagonal part one finds kept fixed at the barrier top. To calculate E®1 R is
© I sampled uniformly in the right well. In all cases the momen-
pWrP(RP)=Z"te PPws, 4, (260 tum P is sampled from a Boltzmann distribution.
with Z=32_, [dRdPexd — BH%]. For the off-diagonal part An efficient way to simulate the quantum-classical dy-
one gets a=1 Wi namics is provided by the sequential short-time propagation
9 algorithm*17 To obtain the results below, we have applied
1—e BEaa this scheme within the momentum-jump approx-
aa’ (0)a ﬁ —-BE,’ . . 10,18 1 . . .
F* (RP)=pwe Plaar| 5 (1+E7 PR e) 4 ———], imation1%'81°The sequential short-time propagation algo-

aa’

(27 rithm for time-independent propagators is described in detail
elsewheré®!" In the present case the propagald,(t) is
defined as a time ordered product due to the explicit time
dependence de'S‘S,(t). In the following we will show how

the scheme of Refs. 14 and 17 can be extended to the more
general time-dependent case using the formalism of
Suzuki?® We will also describe how the numerical integra-
tion of the Langevin trajectories can be performed within
Suzuki's framework®

with a,a’=1,2. The nonadiabatic coupling matrix element
d..={a;R|d/dR|a’;R) which, assuming that the adiabatic
basis is real, has the propertied;;=d,,=0 and dj,
=—dy;.

The diagonal and off-diagonal contributions to the den-
sity matrix can be substituted into the explicit form of the
guantum-classical bracket in the adiabatic basis and the tim
dependent rate coefficient in ER3) can be decomposed

into the sum of three contributions: A. Sequential short-time propagation

g o1 o2 for time-dependent propagators
Kag(t) =Kag(t) +kap(t) +kas(t). 28
As(t) = Kag(t) + Kag(t) +kas(t) 8 Dividing the time intervalt into N segments with

The diagonal part of the density matrix gives rise to thelengthsAt;=t;—t;_,, the time-dependent propagator in Eq.
contribution (16) can be written as a time-ordered composition of evolu-
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tion operators with time segments of arbitrary length. WeEquation(37) is the propagator that may be used for evolu-
suppose all the time segments have equal leAdtand itis  tion in a single time step in the sequential short-time propa-
sufficient to restrict the description of the algorithm to propa-gation algorithm. Starting from Eq37) the implementation
gation in a single intervaht. The propagation for=NAt is  of the algorithm proceeds as described in Refs. 14 and 18.
achieved by the ordered concatenation of the single interval

propagation steps. Thus, considering the propagator in E@. Numerical integration of Langevin dynamics

(16) for a small time intervalAt, one can use Suzuki's . .

result® where any ordered exponential can be expressed by The action of the time-dependent operatdy,, (1) [Eq.

an ordinary exponential operator in terms of a super-operatdit-3)] appearing in the single time slice propagator in &)

7, generates trajectory segments following Langevin dynamics
. according to Egs(9) and(10). So one has to employ a suit-
M‘;_ o a_a,(At,0)=(eA‘['L (t:(’)ﬂl)aj 1)yl able scheme to integrate numerically the Langevin stochastic
j—1%-1%% “L-

(32) differential equations of motion.
o . _ . Anumber of schemes to perform such stochastic integra-
The super-operataf is given by the following differential  tjons exist. In particular, algorithms have been proposed us-

operator: ing the Runge—Kutta integrafér’® and the velocity Verlet
< integrato”* Here we discuss a low-order scheme derived
d . . .
I=—, (33)  from the factorization of the time-dependent propagator in
at Suzuki's approach??®
defined so that, given any two time-dependent operators or _ The time-dependent Langevin-Liouville operator in Eq.
where
F(t)e™G(t)=F(t+ 7)G(t); (34 5
i.e., Z acts on whatever is on its left and does not affect L&:pﬁ, (38)

functions on its right® AssumingAt is small we can use a

symmetric Trotter factorizatich in Eq. (32), N a9
L5=(Fo+F) o5 (39)
U, (A0
aj*laj—l’ajaj
— (e(AU2)TgAtiL L(t:O)e(AtIZ)I)aj71&]/71’011'0(], L'3‘= —(P P (40)
_ [ QAT AL LY(AL2) , , d
(e™e Jaj_a]_yaja: (35) Li(t)=¢() 5. (41)

In the second line of Eq(35) we must keep the operator The Langevin propagator, defined by the time-ordered expo-

eXF[iQEL Zefzause’ e\;]en if 'L no longer acts hon nential in Eq.(14), can be factorized using a symmetric Trot-
exdAtiL-(At/2)], one has to take it into account when ter formula using Suzuki® approach as

building the entire time-ordered concatenation of propaga-

tors to determine the propagation for the full time length U(7)=el"2Tg(72) Li(ﬂe(ﬂ?) '-'ée<7/2> LEeTLEeWZ) L5
L L
_ X e( 7/2) L3e( 712) L4(T)e( 7'/2)2' (42)
Zj;zoacrl'aNal’\l(t’O) ’ 2 ’ ) . .
(agay) - (an-1ay-1) A numerical algorithm to propagate the phase space point
N along the trajectory segments can be easily derived using Eq.
X H (eAtiEL[<trt,>1>/21)w N (42) along the lines described in Refs. 26 and 27. The algo-
j=1 R rithm is correct only to orde@(7>?) but, using an integra-

(36)  fion stepr=1X 10 2 in scaled units, the scheme has been

] ] shown to be sufficient for the calculation of the short trajec-
Equation(36) clearly shows that the symmetric Trotter fac- tory segments needed to the compute the rate constants.
torization of the propagator in E¢35) amounts to a mid-

point time discretization for expti£(t)]. Different or-
dered break-up of the propagator, in E®2), using the
Trotter formula would result in different discretization reci- A. Adiabatic dynamics
pes in Eq.(36). If At is sufficiently small the propagator in
Eq. (35) can be approximated as

VI. RESULTS

In the adiabatic limit only the species variabksandB
need to be considered and the rate conskagtsuffices to
u (AL =W, (t_q.t) describe the chemical kinetics. Thus we need to evaluate Eq.
1% 1099 A EER ) (29) using adiabatic dynamics on the ground-state surface for
xeA“LZ. L s 5. which Ng(R,P,t) =Ng(R(t),P(t)). I'n Fig. 2 we s.how the
i-1%-1 aj_12;>%;_ o phase spaceR,P) sampled by adiabatic dynamics on the
AL , N 37 ground adiabatic surfacgd1) in an ensemble of 810 tra-
Aj-1%j- 1yt jectories for8=6 and{=1. This figure shows the expected
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2
1}
a0 2
1|
-2 .
-2 -1 0 1 2 0 2 4 6 8 10
R g

FIG. 2. Phase spac&k(P) sampled by adiabatic dynamics on the ground FIG. 4. Adiabatic transmission coefficiert g (black circles as function of
adiabatic surfacél11) in an ensemble of % 10* trajectories for8=6 and ¢ for B=6. Nonadiabatic results including up to six transitiofdack
{=1. squares The solid line is a plot of Kramers’ formula.

concentration of phase space points around the two miniMa Nonadiabatic dynamics

with small density aroundk=0, typical of an activated rate _ . _ -
process. Nonadiabatic dynamics accounts for the possibility of

While keeping3=6 fixed we have performed calcula- transitions to the excited-state surface and the mean of the
tions for /=1, ...,10. Inorder to study Kramers crossover €Xcited- and ground-state surfaces using the algorithm dis-
regime we have also considered low values of the frictioncussed above. We have usecT.lJ@tjectories to sample phase
{=0.2,0.4,0.6,0.8. The transition state result is independerftPace and considered up to six quantum transitjargshave
of the friction ¢ and its calculated value i%,g'=4.5 verified the convergence of our results by calculating up to
x1075. In Fig. 3 we show the time-dependent transmissiorfight nonadiabatic transitiopsin Fig. 5 we showF, the
coeﬁicientKAB(t)=kAB(t)/kX§T for ¢=0.2, 5, and 8. Note fraction of trajectories in the ensemble involving
that for low friction {=0.2 the time-dependent transmission = 0.1,2,3,4,5,6 transitions versus time. This figure shows the
coefficient has structure at short times before the plateau inPortance of nonadiabatic transitions for times0 and the
established. We have usedka0 trajectories to sample the decreasing importance of the dynamics with large numbers
phase space to achieve a statistical error of 1% for ten difof nonadiabatic transitions within the time interval displayed
ferent values of. In Fig. 4 we show the dependence of the in the figure.
adiabatic transmission coefficierfyg on the friction . We In Fig. 6 we show the phase spade,P) sampled by
compare our numerical results with Kramers’ formulfy; ~ Nonadiabatic dynamics including up fo=6 quantum tran-
—w, L[ /—r§2/4+wmax_ Z12). In order to fit of our numerical sitio_ns i_n an ensemble of 610" trajectories starting and
results we have seb,,—=3.6 in the theoretical formulas. €nding in the ground stadl) for =6 and{=1. In con-
This value should be compared with the high frequency at'@st to Fig. 2 for adiabatic dynamics, one sees additional
the barrier top ¢, = 178.77) which is due to the “pimple” in density in the vicinity ofR=0 reflecting effects arising from
the adiabatic ground-state energy R0 (not easily dis- transitions to the excited state. Note also the distribution of
cerned on the resolution of Fig) tvhich arises from the near PNase space points corresponding to posithegative mo-
avoided crossing with the excited state curve. The valudnenta leading to species (B). $otra _
wma=3.6 is consistent with the curvature of the ground-state , USing the ensemble of Otrajectories to compute
profile at the barrier top, excluding the “pimple.” In Fig. 4 kag(t) we have obtained a statistical error of the same order
we see that the Kramers expression agrees well with thaf magnitude as that in the adiabatic calculation. The contri-
adiabatic simulation resuits for high friction but, as expectedPutions coming fromkgg(t) andky(t) are zero within the
does not capture the turnover at small valueg.of

1 0.8
0.9 '
0.8 06 ¢
o
= = w
% 07 ¢=0.2 04 |
< 06 ¢=5
05 | 0.2
0.4 &=8 0
0.3 : : : 1 2 3 4 5
0 5 10 15 20 25 t

FIG. 3. Transmission coefficient fg8=6 and three different values d¢f
The upper curve is for=0.2, the middle curve fot=5, and the lowest

curve for{=8.

t

FIG. 5. The fraction of trajectories in the ensemBlg vs time for a calcu-
lation involvingn=0,1,2,3,4,5,6 quantum transitions. The upper curve is for
n=0 then, in descending order, the remaining curves are for higher values
of n with the lowest curve corresponding te=6.
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FIG. 6. Phase spac®(P) sampled by nonadiabatic dynamics including up FIG. 8. Phase spac®(P) sampled by nonadiabatic dynamics including up

to n=6 quantum transitions in an ensemble of §0* trajectories starting  to n=6 quantum transition in an ensemble ok &0* trajectories starting

and ending in the ground stat&l) for =6 and{=1. from the coupled surfac€l2) and ending in the stat@?2) for =6 and{
=5.

statistical error. The convergence of the calculatiqg with
respect to the number of nonadiabatic transitions is shown in

Fig. 7.
Figure 4 summarizes the results for the nonadiabatié/”' CONCLUSIONS

transmission coefficients as a function of the friction. One  \yia have shown how correlation function expressions for
Sees a supstanhal de_c_reasecmg since nonadlabgtlc transl- ate constants can be computed for a quantum-classical sys-
tions provide an additional recrossing mechanism. The €fg,y embedded in a dissipative environment. The rate con-
fects are even more pronounced for low and mtermedmtgtams are determined by nonadiabatic evolution of micro-
values of the fnchqn. ) ) scopic species variables expressed in terms of surface-
For nqnad|abat|c dynamics the rdtge alsol comes Into _hopping Langevin trajectories. The sequential short-time
play. In F'g: 8 we show .the phqse space points involved "]Jropagation algorithm has proved to be very effective for the
the (?alculr?ltlon of the main contribution kp¢ for. ¢{=5.The computation of the correlation functions involved in rare re-
configuration space points are sampled uniformly on the, e dgynamics and is to be preferred to the Dyson formal-
right side of the coupled surface in Fig. 1 and the trajectorieggn, seq in our earlier study of nonadiabatic reaction rates in

mcI_udg up ton?G qu?ntum _tran_5|t|ons and must end on they,e context of deterministic quantum-classical dynartics.
excited(22) surface after a timé=5. One again sees a con-  \ypije explicit calculations have been performed for a

centration of phase space points nBar0 and the distribu- simple two-level system coupled to a quartic potential in a

tion of point§ reflects the single well character of the eXCited'dissipative environment, the methods we have developed can
state.potentlal-energy curve. . be used to study arbitrary quantum-classical subsystems in
Figure 9 shows the time-dependent rate Cc,’eﬁ',c'enhissipative environments. The stochastic algorithms dis-
Kac(t) for '8:22 a_ndgjl,S, an? 10. Th(_a main contrl_bqtlon cussed in this paper are directly applicable to these more
comes fromic with ki andkie zero within the statistical o licated cases. Consequently, the methods developed and
error. Since this rate constant has no classical analog it has;@ sirated in this paper should provide the tools needed to
structure typical of quantum rate processes. It starts a zero g astigate realistic models where the detailed dynamics of a

t=0 and rises to form a plateau at long times. Its value ig,qion of the environment is not important and can be
quite small and for low friction {=1) a well defined rate treated as a stochastic heat bath
T .

process is not established. The statistical errors are muc
larger for the calculation of this rate constant.

Kac(t)

FIG. 7. Transmission coefficient f@¢=6 and{= 1. The upper dotted curve FIG. 9. Time-dependent rate coefficidni:(t) for 8=6. The upper curve is
shows the adiabatic result=0 and, in descending order, the solid curves for (=1, the middle curve forf=5, and the lower curve is for and
are forn=2, 4, 6, and 8. The curves for=6 andn=38 are not distinguish-  =10. The error bars indicateé 1 standard deviation. The axis is in units
able within the statistical error. of 10°5.
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APPENDIX: STATIONARY DENSITY MATRIX OF THE f

QUANTUM-CLASSICAL SYSTEM IN THE BATH dRAPY, 2R(Jue il )C=0. (A5)

v>v'

An important element in the calculation of correlation . .
functions at equilibrium is the density matrix which is sta- Due to the fact tha is an odd fU”Ct'Or,‘ of momenta, Eq.
tionary under the Liouville operator defining the dynamics of(A5) is satisfied if one assumes theff’”" is an even func-
the systent® The stationary density matrix for a general tion of momenta. To first order ifi the results are the same
guantum-classical system has been derived in Ref. 9. Heffer deterministic quantum-classical dynamics and are given
we derive the stationary density matiiy,. for the dissipa- in the text.
tive quantum-classical Liouville operator E@.) which sat-
isfies —i £LPpye=0. To find p\y. we follow Ref. 9 and con-
sider the expansion of the density matrix in powerg: of

P n-(n) IP. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phgg, 251 (1990.
Pwe ngo A pwe- (AL) 2D. Kohen, C. C. Marston, and D. J. Tannor, J. Chem. Ptg3, 5236
(1997).

We seek an explicit solution in the adiabatic basis. Using the’M. Topaler and N. Makri, J. Chem. Phy&01, 7500 (1994); J. Phys.

expansion of the density matrix in powersfothe stationary ~,Chem-100 4430(1996.
. . . P . J.-L. Liao and E. Pollak, J. Chem. Phyld.6 2718(2002.
condition is equivalent to an infinite set of equations corre-sg gim "G Kiilov, and B. J. Berne, J. Phys. Cheml@6 2824 (2001.

sponding to the various powers bf 6J. Casado-Pascual, C. Denk, M. Morillo, and R. I. Cukier, J. Chem. Phys.
) , 113 11176(2000.
IEaarpS,%aa =0, (A2) R. E. Cline, Jr. and P. G. Wolynes, J. Chem. P86;.3836(1987; D. F.

Coker, H. S. Mei, and J. P. Ryckaert,@assical and Quantum Dynamics
in Condensed Matter Simulationsdited by B. J. Berne, G. Ciccotti, and

. ! . K !
IE i =3 —ifk 5 PP D. F. Coker(World Scientific, Singapore, 19980 539.
BB’ 8R. Kapral and G. Ciccotti, J. Chem. Phyid.0, 8919(1999.
9S. Nielsen, R. Kapral, and G. Ciccotti, J. Chem. PHyiss, 5805(2001).
(nsg’ - 10A. Sergi and R. Kapral, J. Chem. Phyld8 8566(2003.
+%/ Jaar,pprPwe (n=1). (A3) 1E. B. Davis, Quantum Theory of Open Systerticademic, London,
1976.

As discussed in Ref. 9, to ensure that solution can be fountfU. Weiss, Quantum Dissipative Systeni®orld Scientific, Singapore,

; ; ; 1999.
by recursion one must discuss the solution of &8) when 15R. Kapral, J. Phys. Chem. 205, 2885(2001.

. . )aa .
calculating the diagonal e|emer)i§}e in terms of the off-  14p \ac Keran, G. Ciccotti, and R. Kapral, J. Phys.: Condens. Mater

diagonal ones p{M**" . To this end, using p{l.e®’ 9069 (2002.
_ g(n)a,a N pwe_ N g pWe_ 15D, Mac Kernan, G. Ciccotti, and R. Kapral, J. Chem. PHys5 2346
=(pwe 9*, Jaa.pp' =nap and the fact thad,, gz=0 (2002.
when a real basis is chosen, it is useful to rewrite &) in 16C. W. GardinerHandbook of Stochastic MethodSpringer, New York,
the form 2002, 2nd ed.
A, Sergi, D. Mac Kernan, G. Ciccotti, and R. Kapral, Theor. Chem. Acc.
LK (n)aa (BB’ 110 49 (2003.
iLyupwe = E 2R(J e pp Pwe - )- (A4) 18R, Kapral and G. Ciccotti, irBridging Time Scales: Molecular Simula-
B>p' tions for the Next Decad®001, edited by P. Nielaba, M. Mareschal, and

. . G. Ciccaotti (Springer, Berlin, 2008 p. 445.
In the present case the left-hand side of 5@4) IS not a ¥In the implementation of the momentum-jump approximation we have

self-adjoint operator and it does not have a Poisson bracketremoved from the ensemble trajectories with a high momentum jump
form. In order to find a solution to EqA4), the theorem of ~ 6P>d, 4, 6Pcy. In our calculations we have usé,=2.
Fredholm alternatives requires that the null space of the ao:—iM. Suzuki, Proc. Jpn. Acad., Ser. B: Phys. Biol. &9, 161(1993.
joint operatoriLX:® must be orthogonal to the right-hand ,,- F- Trotter, Proc. Am. Math. S0d0, 545(1959.
ide of Eq.(A4). The second term of the left-hand side of E E. Helfand, J. Chem. Physs, 1010(1978.
SIde OTEq.{A%). The . . G- 2E, Helfand, Bell Syst. Tech. 58, 2289(1978.
(A4) is dissipative in character so that neithi¢f, is a con-  2*w. F. van Gusteren, H. J. C. Berendsen, and J. A. C. Rullmann, Mol. Phys.
stant of motion nor is any general functié(Hy,). However 44 69 (1982- e (2003
; ; K ; ; A. Ricci and G. Ciccotti, Mol. Phys101,1927(2003.
we can consider the left elgenva!qe iaf,, which is any oy Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. F9is1990
constant numbef so that the condition of orthogonality be- (1997,

comes 27A. Sergi, M. Ferrario, and D. Costa, Mol. Phya¥, 825 (1999.
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