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Nonadiabatic reaction rates for dissipative quantum-classical systems
Alessandro Sergi and Raymond Kapral
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto,
Ontario M5S 3H6, Canada

~Received 27 August 2003; accepted 26 September 2003!

The dynamics of a quantum system which is directly coupled to classical degrees of freedom is
investigated. The classical degrees of freedom are in turn coupled to a classical bath whose detailed
dynamics is not of interest. The resulting quantum-classical evolution equations are dissipative as a
result of coupling to the classical heat bath. The dissipative quantum-classical dynamics is used to
study nonadiabatic chemical reactions and compute their rates. The reactive flux correlation
formalism for the calculation of nonadiabatic rate constants is generalized to dissipative
quantum-classical dynamics and implemented in terms of averages over surface-hopping Langevin
trajectory segments. The results are illustrated for a simple quantum-classical two-state model. The
techniques developed in this paper can be applied to complex classical environments encountered,
for example, in proton and electron transfer processes in the condensed phase where local
environmental degrees of freedom must be treated explicitly but the remainder of the environment
can be treated simply as a heat bath. ©2003 American Institute of Physics.
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I. INTRODUCTION

There are many instances where chemical reactions
intrinsically quantum in nature but the environment in whi
they occur can be treated classically to a good approxi
tion. For instance, in signalling processes in biomolecu
the primary events often involve phenomena taking place
the quantum level, such as photon absorption leading to
motion to an excited electronic state. Successive reac
steps typically involve a classical flow of information
larger scales where dissipation is an essential ingredien
the passage back to the initial state. Proton and elec
transfer reactions are often strongly influenced by the lo
media in which they occur, with the remainder of the degr
of freedom characteristic of the system providing a dissi
tive environment for the reactive dynamics. These consid
ations motivate the study of quantum-classical dynamics
dissipative baths where a portion of the system is trea
quantum mechanically, its immediate surroundings is trea
classically in full detail and the remainder of the enviro
ment is treated as a stochastic dissipative medium. For
tems of this type one would like to investigate the micr
scopic nature of the quantum reactive dynamics and com
the reaction rate constants. These issues are discussed i
paper.

A variety of techniques can be used to study quant
dissipative dynamics~see Refs. 1 and 2 and referenc
therein!. Path-integral influence functional techniques3,4 and
imaginary time path integrals with analytic continuatio
through maximum entropy methods5 have been used to com
pute rate constants for quantum dissipative systems. R
constants have also been computed using the golden
formula with time evolution treated by means of mean-fie
semiclassical stochastic dynamics6 and through the evalua
tion of the flux–flux correlation function expressions for t
12770021-9606/2003/119(24)/12776/8/$20.00
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rate constant by means of surface-hopping schemes.7

We utilize the formulation of quantum-classical dynam
ics based on a quantum-classical Liouville equation and
representation in terms of surface-hopping trajectories.8 The
statistical mechanics of such quantum-classical systems
been developed9 so that the rate constants can be compu
from reactive flux autocorrelation functionsin situ ations
where nonadiabatic effects are important.10 In this paper we
extend this approach to the simulation of nonadiaba
quantum-classical dynamics to situations where part of
classical bath is described by dissipative stochastic dyn
ics.

Dissipative quantum-classical dynamics bath can be c
sidered as a particular form of an open quantum system.11,12

The equations of motion for such dynamics which we e
ploy have been derived from the quantum-classical Liouv
equation by means of projection operator techniques,13 and
take the form of a quantum-classical Fokker–Planck eq
tion for the density matrix. We show how the time evolutio
of such a system can be represented by means of sur
hopping trajectory segments described by stochastic Lan
vin dynamics. This is the most convenient form of the d
namics for large scale numerical studies. To illustrate
method we compute the reaction rates for a simple two-le
model. The model is similar to that used previously to inve
tigate nonadiabatic reaction dynamics in quantum-class
systems,10 except that now part of the classical environme
is treated stochastically.

The paper is organized as follows: In Sec. II we intr
duce quantum-classical dynamics in a dissipative bath
scribed by a Fokker–Planck equation of motion for the d
sity matrix and its associated Kramers operators. In Sec
we show how to map the dissipative evolution to an aver
over different realizations of Langevin trajectories. In Se
IV we introduce the model system used to illustrate the f
6 © 2003 American Institute of Physics
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malism, give the expressions for the time-dependent rate
efficients, and discuss the equilibrium density matrix. In S
V we describe the simulation method, which generalizes
sequential short-time propagation algorithm14 to the case of
explicitly time-dependent propagators and, in Sec. VI pres
the results of our computation of the nonadiabatic rate c
stants. Section VII contains the conclusions of our study. T
general proof of existence of a stationary density matrix
quantum-classical dynamics in a dissipative bath is given
the Appendix.

II. QUANTUM-CLASSICAL DYNAMICS
IN A STOCHASTIC BATH

Consider a quantum-classical system comprising a qu
tum subsystem and a classical environment. The class
environmental phase space degrees of freedom are p
tioned into two sets: one set (R,P) is directly coupled to the
quantum subsystem and the details of its dynamics is ne
sary for an accurate description of the system dynamics;
second set (R8,P8) is coupled directly to the first set o
classical degrees of freedom and its main effect is to func
as a thermal bath leading to dissipative dynamics in
system.13

An equation of motion for the quantum-classical syst
composed of the quantum subsystem and the classical (R,P)
degrees of freedom only has been derived using projec
operator methods.13 It takes the form

]r̂W~ t !

]t
52

i

\
@ĤW ,r̂W~ t !#1

1

2
~$ĤW ,r̂W~ t !%

2$r̂W~ t !,ĤW%!1z
]

]P S P

M
1kBT

]

]PD r̂W~ t !

52 i L̂Dr̂W~ t !, ~1!

where z is the friction constant andkBT is the Boltzmann
constant times the temperature. The Hamiltonian

ĤW5
P2

2M
1

p̂2

2m
1V̂W~ q̂,R!5

P2

2M
1ĥW~R! ~2!

depends only on the (R,P) phase space coordinates and co
tainsV̂W(q̂,R), the potential of mean force resulting from th
average over the primed bath variables. The quantum
classical degrees of freedom have massm and M , respec-
tively, with m!M . The last equality in Eq.~1! defines the
Liouville operatori L̂D determining the dissipative dynamic
of the system. The dissipative quantum-classical Liouv
operator in Eq.~1! differs from that derived for an isolate
quantum-classical system8 by the presence of the Fokker
Planck-type operator and the renormalized potential of m
force in the Hamiltonian.

The dissipative Liouville operator can be written in th
adiabatic basis, being defined by the solution of the eig
value problemĥWua;R&5Ea(R)ua;R&, as

2 i L̂aa8bb8
D

52@ ivaa8
8 ~R!1 iL aa8

K
#dabda8b81Jaa8bb8 ,

~3!

where we have defined the Kramers operator as
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iL aa8
K

5F P

M

]

]R
1

1

2
~F W

a 1F W
a8!•

]

]P

2z
]

]P S P

M
1kBT

]

]PD G , ~4!

where F W
a 52]V W

a /]R denotes the effective Hellmann
Feynman force acting on the relevant variables. The oper
J, giving rise to nonadiabatic transitions and correspond
bath momentum changes, has the same form as in ea
studies8,15,10and is given by

Jaa8bb852
P

M
•dab8 S 11

1

2
Sab•

]

]PD da8b8

2
P

M
•da8b8

* S 11
1

2
Sa8b8
* •

]

]PD dab , ~5!

whereSab5DEab@(P/M ) •d̂ab#21.
The quantum-classical average of any operator or

namical variablex̂ can be written as

^x̂&~ t !5 (
aa8bb8

E dRdPxa8a~R,P!

3exp@2 iLaa8bb8
D t#rW

bb8~R,P!

5 (
aa8bb8

E dRdPrW
bb8~R,P!

3exp@ iLb8ba8a
DB t#xa8a~R,P!, ~6!

where iLb8ba8a
DB is the backward operator that can be o

tained by integrating by parts and using cyclic permutatio
under the trace. The explicit expression for the backw
operator is

i L̂aa8bb8
DB

5@ ivaa8
8 ~R!1 iL aa8

KB
#dabda8b82Jaa8bb8 , ~7!

where the backward Kramers operator

iL aa
KB5F P

M

]

]R
1

1

2
~F W

a 1F W
a8!•

]

]P

2zS P

M
2kBT

]

]PD ]

]PGdabda8b8 . ~8!

III. LANGEVIN DYNAMICS

From the classical theory of random processes16 the time
evolution under the backward Kramers operatoriLaa8bb8

KB

can be replaced by an average over realizations of stoch
Langevin dynamics. In this representation the time evolut
of the classical trajectory segments is determined by
Langevin equations of motion,

Ṙ5
P

M
, ~9!

Ṗ52
z

M
P1

1

2
~F W

a 1F W
a8!1j~ t !, ~10!

wherej(t) is a Gaussian white-noise process with the pro
erties
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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^j~ t !&50, ~11!

^j~ t !j~ t8!&52kBTzd~ t2t8!. ~12!

We can associate a time-dependent Liouville operator,

iL aa8
L

~ t !

5
P

M

]

]R
1S 2

z

M
P1

1

2
~F W

a 1F W
a !1j~ t ! D ]

]P
, ~13!

and a time-ordered propagator,

Uaa8
L

~ t,0!5T expF E
0

t

dt8iL aa8
L

~ t8!G , ~14!

with Eqs.~9! and~10!. Consequently one is led to consider
total time-dependent Langevin–Liouville operator,

i L̂aa8bb8
L

~ t !5@ ivaa8~R8!1 iL aa8
L

~ t !#dabda8b8

2Jaa8bb8 ~15!

and the propagator

Uaa8bb8
L

~ t,0!5T expF E
0

t

dt8iLaa8bb8
L

~ t8!G . ~16!

In this Langevin representation, the quantum-classical a
age ofx̂ can be written as

^x̂&~ t !5 (
aa8bb8

E dRdPrW
bb8~R,P!

3Ubb8aa8
L

~ t !xa8a~R,P!, ~17!

where the over line stands for an average over the diffe
realizations of the Langevin stochastic process. We can
mute the order of the average over phase space and ove
stochastic process given byj since they are independen
from each other. So we can write

^x̂&~ t !5 (
aa8bb8

E dRdPrW
bb8~R,P!Ubb8aa8

L
~ t !xa8a

8 ~R,P!.

~18!

Equation~18! expresses dissipative quantum-classical av
ages as phase space weighted averages over different re
tions of Langevin trajectories and is in a form that is conv
nient for numerical simulations.

IV. MODEL SYSTEM

To illustrate the formalism we consider a quantum tw
level system which is directly coupled to a classical qua
oscillator; this quartic oscillator is in turn coupled to a dis
pative bath. The Hamiltonian of the model is

ĤW~R,P!5
P2

2M
1Vq~R!2\Vŝx2\g0Rŝz , ~19!

whereVq(R)5 (a/4) R42 (b/2) R2 and ŝx and ŝz are Pauli
matrices. Henceforth we use dimensionless coordinateR̃

5(Mvc /\)1/2R, p̃5(\Mvc)
21/2P, so that Ĥ̃5Ĥ/(\vc).

The dimensionless parameters of the model areṼ5V/vc ,
ã5@\/(M2vc

3)#a, b̃5b/(Mvc
2), g̃05(\/Mvc

3)1/2g0 while
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the dimensionless reciprocal temperature and time arb̃

5\vcb5\vc /kBT and t̃ 5tvc , respectively. We also de
fine a dimensionless friction constantz̃5z/Mvc . Herevc is
some characteristic frequency. In the following the tilde w
be omitted to simplify the notation but the use of dimensio
less units should be understood. The dimensionless pa
eters chosen for the calculation have the valuesV50.025,
a53, b51.8, andg051.

The Hamiltonian in Eq.~19! together with Eq.~1! com-
pletely specify the dynamics of the model. In the adiaba
basis the Hamiltonian takes the formHW

a 5P2/21Ea(R),
where the adiabatic eigenvalues are given by

E1,25Vq~R!7AV21g0
2R2. ~20!

The adiabatic energy curves are shown in Fig. 1. T
ground-state energy profile has two minima atR560.97
separated by a barrier with heightDV51.13. The frequency
at the barrier top isvb5178.77 while the frequency at th
well minima isv052.49.

From the shapes of the energy profiles in Fig. 1 one m
define three chemical speciesA, B, andC which undergo the
following chemical reactions:

A
B
kBA

kAB

, A
C
kCA

kAC

, B
C
kCB

kBC

. ~21!

Due to mass conservation and detailed balance only two
dependent rate coefficients need to be computed. We ch
to focus on the computation ofkAB andkAC .

Time-dependent rate coefficients

Microscopic dynamical variables for the species ope
tors A, B, andC may be defined as

N̂A5u1;R&Q~R!^1;Ru,

N̂B5u1;R&Q~2R!^1;Ru, ~22!

N̂C5u2;R&^2;Ru,

whereQ(6R) is the Heaviside function selecting the rig
or left wells andu1(2);R&^1(2);Ru is a projector onto the

FIG. 1. Adiabatic energy surfaces of the model. The heavy solid line is
ground-state curve while the dashed line denotes the excited-state c
The shapes of the energy curves suggest the definition of the three che
speciesA, B, andC. SpeciesA andB, reactant and product, are defined o
the ground-state surface and they are separated by a vertical line atR50.
SpeciesC is defined on the excited-state curve.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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adiabatic stateu1(2);R&. Note that( I 5A
C N̂I51, reflecting the

fact that the combined Hilbert and configuration space
completely partitioned into regions corresponding to
three species.

The expressions for the time-dependentkAB(t) and
kAC(t) rate constants were derived in Ref. 10 and are gi
by

kAB~ t !52~bn̄A
eq!21Tr8E dRdPx̂B~ t !~ x̂A ,r̂We!, ~23!

kAC~ t !52~bnA
eq!21Tr8E dRdPx̂C~ t !~ x̂A ,r̂We!. ~24!

In Eqs. ~23! and ~24! we have used the quantum-classic
bracket defined as (x̂ I ,r̂We)5 i /\@x̂ I ,r̂We#21/2($x̂ I ,r̂We%
2$r̂We,x̂ I%). The progress variablex̂ I is defined as the de
viation of N̂I from its equilibrium value andr̂We is the sta-
tionary density of the dissipative quantum-classical dyna
ics ~see the Appendix for a discussion!.

The plateau value of these correlation function expr
sions can be used to computekAB andkAC , thus determining
the two independent rate constants in the problem. Repre
tation of the species variables in the adiabatic basis g

N̂A
aa85da1da81Q(R), N̂B

aa85da1da81Q(2R), and N̂C
aa8

5da2da82 . The progress variablesx̂A and x̂C may be re-
placed byN̂A and N̂C when computing Eqs.~23! and ~24!.
An explicit formula for the stationary density matrix fo
quantum-classical dissipative dynamics can be easily de
mined to orderO(\). In the adiabatic basis and in dimen
sionless units it is given by

rWe
aa8'rWe

(0)adaa82 i f We
aa8~12daa8!. ~25!

Equation ~25! gives also the decomposition of the dens
matrix into diagonal and off-diagonal parts. The off-diagon
part of the density matrix has the propertiesrWe

12 5(rWe
21 )*

andrWe
12 1rWe

21 50. For the diagonal part one finds

rWe
(0)ab~R,P!5Z21e2bHW

a
dab , ~26!

with Z5(a51
2 *dRdPexp@2bHW

a #. For the off-diagonal part
one gets

f aa8~R,P!5rWe
(0)aPdaa8S b

2
~11e2bEa8a!1

12e2bEa8a

Eaa8
D ,

~27!

with a,a851,2. The nonadiabatic coupling matrix eleme
daa85^a;Ru]/]Rua8;R& which, assuming that the adiabat
basis is real, has the propertiesd115d2250 and d12

52d21.
The diagonal and off-diagonal contributions to the de

sity matrix can be substituted into the explicit form of th
quantum-classical bracket in the adiabatic basis and the t
dependent rate coefficient in Eq.~23! can be decompose
into the sum of three contributions:

kAB~ t !5kAB
d ~ t !1kAB

o1 ~ t !1kAB
o2 ~ t !. ~28!

The diagonal part of the density matrix gives rise to t
contribution
Downloaded 06 Jan 2004 to 142.150.225.29. Redistribution subject to A
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kAB
d ~ t !5~bnA

eq!21E dRdPNB
11~R,P,t !d~R!

]rWe
11

]P
,

~29!

while the off-diagonal part of the density matrix yields th
two terms

kAB
o1 ~ t !5~bnA

eq!21E dRdPIm$NB
12~R,P,t !%

3d~R!
] f We

12

]P
, ~30!

kAB
o2 ~ t !522~bnA

eq!21E dRdPRe$NB
12~R,P,t !%Q~R!

3bd12PrWe
11 12e2bE21

bE12
. ~31!

Equations~29!–~31! provide formulas to calculate the time
dependent rate coefficientkAB(t) from whose plateau value
the rate constantkAB may be determined.

A completely analogous set of formulas can be used

computekAC by replacingNB
aa8(t) by NC

aa8(t) in the above
equations.

V. SIMULATION METHOD

The calculation of quantum-classical averages and c
relation functions using the dynamics specified by the tim
dependent Langevin–Liouville operatoriLss8

L (t) in Eq. ~15!

and its associated propagatorUss8
L (t) in Eq. ~16! is no more

complicated than that for deterministic quantum-classi
dynamics.10,14,15,17A simulation scheme requires a procedu
to sample phase space points and an integration schem
the Langevin trajectories. The average over phase space
different realizations of the stochastic process can be
formed independently. To calculate Eqs.~29! and ~30! R is
kept fixed at the barrier top. To calculate Eq.~31! R is
sampled uniformly in the right well. In all cases the mome
tum P is sampled from a Boltzmann distribution.

An efficient way to simulate the quantum-classical d
namics is provided by the sequential short-time propaga
algorithm.14,17 To obtain the results below, we have applie
this scheme within the momentum-jump appro
imation.10,18,19 The sequential short-time propagation alg
rithm for time-independent propagators is described in de
elsewhere.14,17 In the present case the propagatorUss8

L (t) is
defined as a time ordered product due to the explicit ti
dependence ofiLss8

L (t). In the following we will show how
the scheme of Refs. 14 and 17 can be extended to the m
general time-dependent case using the formalism
Suzuki.20 We will also describe how the numerical integr
tion of the Langevin trajectories can be performed with
Suzuki’s framework.20

A. Sequential short-time propagation
for time-dependent propagators

Dividing the time interval t into N segments with
lengthsDt j5t j2t j 21 , the time-dependent propagator in E
~16! can be written as a time-ordered composition of evo
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion operators with time segments of arbitrary length. W
suppose all the time segments have equal lengthDt and it is
sufficient to restrict the description of the algorithm to prop
gation in a single intervalDt. The propagation fort5NDt is
achieved by the ordered concatenation of the single inte
propagation steps. Thus, considering the propagator in
~16! for a small time intervalDt, one can use Suzuki’s
result20 where any ordered exponential can be expressed
an ordinary exponential operator in terms of a super-oper
I,

Ua j 21a
j 218 ,a ja j8

L
~Dt,0!5~eDt[ iL L(t50)1I] !a j 21a

j 218 ,a ja j8
.

~32!

The super-operatorI is given by the following differential
operator:

I5
]Q

]t
, ~33!

defined so that, given any two time-dependent operator
functionsF(t) andG(t), one has

F~ t !etIG~ t !5F~ t1t!G~ t !; ~34!

i.e., I acts on whatever is on its left and does not aff
functions on its right.20 AssumingDt is small we can use a
symmetric Trotter factorization21 in Eq. ~32!,

Ua j 21a
j 218 ,a ja j8

L
~Dt,0!

5~e~Dt/2!IeDt iL L(t50)e~Dt/2!I!a j 21a
j 218 ,a ja j8

5~eDtIeDt iL L(Dt/2)!a j 21a
j 218 ,a ja j8

. ~35!

In the second line of Eq.~35! we must keep the operato
exp@DtI# because, even if it no longer acts o
exp@DtiL L(Dt/2)#, one has to take it into account whe
building the entire time-ordered concatenation of propa
tors to determine the propagation for the full time lengtht,

Ua0a
08 ,aNa

N8
L

~ t,0!5 (
(a1a18) ¯ (aN21aN218 )

3)
j 51

N

~eDt iL L[ ~ t j 2t j 21!/2]!a j 21a
j 218 ,a ja j8

.

~36!

Equation~36! clearly shows that the symmetric Trotter fa
torization of the propagator in Eq.~35! amounts to a mid-
point time discretization for exp@DtiL L(t)#. Different or-
dered break-up of the propagator, in Eq.~32!, using the
Trotter formula would result in different discretization rec
pes in Eq.~36!. If Dt is sufficiently small the propagator i
Eq. ~35! can be approximated as

Ua j 21a
j 218 ,a ja j8

L
~Dt,0!5eDtIWa j 21a

j 218 ~ t j 21 ,t j !

3eDt iL
a j 21a j 218
L

(Dt/2)~da j 21a j
sda

j 218 a
j8

2DtJa j 21a
j 218 ,a ja j8

!. ~37!
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Equation~37! is the propagator that may be used for evo
tion in a single time step in the sequential short-time pro
gation algorithm. Starting from Eq.~37! the implementation
of the algorithm proceeds as described in Refs. 14 and 1

B. Numerical integration of Langevin dynamics

The action of the time-dependent operatorLaa8
L (t) @Eq.

~13!# appearing in the single time slice propagator in Eq.~37!
generates trajectory segments following Langevin dynam
according to Eqs.~9! and~10!. So one has to employ a sui
able scheme to integrate numerically the Langevin stocha
differential equations of motion.

A number of schemes to perform such stochastic integ
tions exist. In particular, algorithms have been proposed
ing the Runge–Kutta integrator22,23 and the velocity Verlet
integrator.24 Here we discuss a low-order scheme deriv
from the factorization of the time-dependent propagator
Suzuki’s approach.20,25

The time-dependent Langevin–Liouville operator in E
~13! can be decomposed asLL(t)5L1

L1L2
L1L3

L1L4
L(t)

where

L1
L5P

]

]R
, ~38!

L2
L5~F W

a 1F W
a8!

]

]P
, ~39!

L3
L52zP

]

]P
, ~40!

L4
L~ t !5j~ t !

]

]P
. ~41!

The Langevin propagator, defined by the time-ordered ex
nential in Eq.~14!, can be factorized using a symmetric Tro
ter formula using Suzuki’s20 approach as

U~t!5e~t/2!Ie~t/2! L4
L(t)e~t/2! L3

L
e~t/2! L2

L
etL1

L
e~t/2! L2

L

3e~t/2! L3
L
e~t/2! L4

L(t)e~t/2!I. ~42!

A numerical algorithm to propagate the phase space p
along the trajectory segments can be easily derived using
~42! along the lines described in Refs. 26 and 27. The al
rithm is correct only to orderO(t3/2) but, using an integra-
tion stept5131022 in scaled units, the scheme has be
shown to be sufficient for the calculation of the short traje
tory segments needed to the compute the rate constants

VI. RESULTS

A. Adiabatic dynamics

In the adiabatic limit only the species variablesA andB
need to be considered and the rate constantkAB suffices to
describe the chemical kinetics. Thus we need to evaluate
~29! using adiabatic dynamics on the ground-state surface
which NB(R,P,t)5NB„R(t),P(t)…. In Fig. 2 we show the
phase space (R,P) sampled by adiabatic dynamics on th
ground adiabatic surface~11! in an ensemble of 53104 tra-
jectories forb56 andz51. This figure shows the expecte
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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concentration of phase space points around the two min
with small density aroundR50, typical of an activated rate
process.

While keepingb56 fixed we have performed calcula
tions for z51, . . . ,10. Inorder to study Kramers crossove
regime we have also considered low values of the fricti
z50.2,0.4,0.6,0.8. The transition state result is independ
of the friction z and its calculated value iskAB

TST54.5
31025. In Fig. 3 we show the time-dependent transmiss
coefficientkAB(t)5kAB(t)/kAB

TST for z50.2, 5, and 8. Note
that for low friction z50.2 the time-dependent transmissio
coefficient has structure at short times before the platea
established. We have used 53105 trajectories to sample th
phase space to achieve a statistical error of 1% for ten
ferent values ofz. In Fig. 4 we show the dependence of t
adiabatic transmission coefficientkAB on the frictionz. We
compare our numerical results with Kramers’ formulakAB

K

5vmax
21 (Az2/41vmax

2 2 z/2). In order to fit of our numerica
results we have setvmax53.6 in the theoretical formulas
This value should be compared with the high frequency
the barrier top (vb5178.77) which is due to the ‘‘pimple’’ in
the adiabatic ground-state energy atR50 ~not easily dis-
cerned on the resolution of Fig. 1! which arises from the nea
avoided crossing with the excited state curve. The va
vmax53.6 is consistent with the curvature of the ground-st
profile at the barrier top, excluding the ‘‘pimple.’’ In Fig.
we see that the Kramers expression agrees well with
adiabatic simulation results for high friction but, as expect
does not capture the turnover at small values ofz.

FIG. 2. Phase space (R,P) sampled by adiabatic dynamics on the grou
adiabatic surface~11! in an ensemble of 53104 trajectories forb56 and
z51.

FIG. 3. Transmission coefficient forb56 and three different values ofz.
The upper curve is forz50.2, the middle curve forz55, and the lowest
curve forz58.
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B. Nonadiabatic dynamics

Nonadiabatic dynamics accounts for the possibility
transitions to the excited-state surface and the mean of
excited- and ground-state surfaces using the algorithm
cussed above. We have used 106 trajectories to sample phas
space and considered up to six quantum transitions~we have
verified the convergence of our results by calculating up
eight nonadiabatic transitions!. In Fig. 5 we showFn the
fraction of trajectories in the ensemble involvingn
50,1,2,3,4,5,6 transitions versus time. This figure shows
importance of nonadiabatic transitions for timest.0 and the
decreasing importance of the dynamics with large numb
of nonadiabatic transitions within the time interval display
in the figure.

In Fig. 6 we show the phase space (R,P) sampled by
nonadiabatic dynamics including up ton56 quantum tran-
sitions in an ensemble of 53104 trajectories starting and
ending in the ground state~11! for b56 andz51. In con-
trast to Fig. 2 for adiabatic dynamics, one sees additio
density in the vicinity ofR50 reflecting effects arising from
transitions to the excited state. Note also the distribution
phase space points corresponding to positive~negative! mo-
menta leading to speciesA (B).

Using the ensemble of 106 trajectories to compute
kAB

d (t) we have obtained a statistical error of the same or
of magnitude as that in the adiabatic calculation. The con
butions coming fromkAB

o1 (t) andkAB
o2 (t) are zero within the

FIG. 4. Adiabatic transmission coefficientkAB ~black circles! as function of
z for b56. Nonadiabatic results including up to six transitions~black
squares!. The solid line is a plot of Kramers’ formula.

FIG. 5. The fraction of trajectories in the ensembleFn vs time for a calcu-
lation involvingn50,1,2,3,4,5,6 quantum transitions. The upper curve is
n50 then, in descending order, the remaining curves are for higher va
of n with the lowest curve corresponding ton56.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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statistical error. The convergence of the calculationkAB with
respect to the number of nonadiabatic transitions is show
Fig. 7.

Figure 4 summarizes the results for the nonadiab
transmission coefficients as a function of the friction. O
sees a substantial decrease inkAB since nonadiabatic trans
tions provide an additional recrossing mechanism. The
fects are even more pronounced for low and intermed
values of the friction.

For nonadiabatic dynamics the ratekAC also comes into
play. In Fig. 8 we show the phase space points involved
the calculation of the main contribution tokAC for z55. The
configuration space points are sampled uniformly on
right side of the coupled surface in Fig. 1 and the trajecto
include up ton56 quantum transitions and must end on t
excited~22! surface after a timet55. One again sees a con
centration of phase space points nearR50 and the distribu-
tion of points reflects the single well character of the excit
state potential-energy curve.

Figure 9 shows the time-dependent rate coeffici
kAC(t) for b52 andz51,5, and 10. The main contributio
comes fromkAC

o2 with kAC
d andkAC

o1 zero within the statistica
error. Since this rate constant has no classical analog it h
structure typical of quantum rate processes. It starts a ze
t50 and rises to form a plateau at long times. Its value
quite small and for low friction (z51) a well defined rate
process is not established. The statistical errors are m
larger for the calculation of this rate constant.

FIG. 6. Phase space (R,P) sampled by nonadiabatic dynamics including u
to n56 quantum transitions in an ensemble of 53104 trajectories starting
and ending in the ground state~11! for b56 andz51.

FIG. 7. Transmission coefficient forb56 andz51. The upper dotted curve
shows the adiabatic resultn50 and, in descending order, the solid curv
are forn52, 4, 6, and 8. The curves forn56 andn58 are not distinguish-
able within the statistical error.
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VII. CONCLUSIONS

We have shown how correlation function expressions
rate constants can be computed for a quantum-classical
tem embedded in a dissipative environment. The rate c
stants are determined by nonadiabatic evolution of mic
scopic species variables expressed in terms of surf
hopping Langevin trajectories. The sequential short-ti
propagation algorithm has proved to be very effective for
computation of the correlation functions involved in rare r
active dynamics and is to be preferred to the Dyson form
ism used in our earlier study of nonadiabatic reaction rate
the context of deterministic quantum-classical dynamics.10

While explicit calculations have been performed for
simple two-level system coupled to a quartic potential in
dissipative environment, the methods we have developed
be used to study arbitrary quantum-classical subsystem
dissipative environments. The stochastic algorithms d
cussed in this paper are directly applicable to these m
complicated cases. Consequently, the methods developed
illustrated in this paper should provide the tools needed
investigate realistic models where the detailed dynamics
portion of the environment is not important and can
treated as a stochastic heat bath.

FIG. 8. Phase space (R,P) sampled by nonadiabatic dynamics including u
to n56 quantum transition in an ensemble of 53104 trajectories starting
from the coupled surface~12! and ending in the state~22! for b56 andz
55.

FIG. 9. Time-dependent rate coefficientkAC(t) for b56. The upper curve is
for z51, the middle curve forz55, and the lower curve is for andz
510. The error bars indicate61 standard deviation. They axis is in units
of 1025.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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APPENDIX: STATIONARY DENSITY MATRIX OF THE
QUANTUM-CLASSICAL SYSTEM IN THE BATH

An important element in the calculation of correlatio
functions at equilibrium is the density matrix which is st
tionary under the Liouville operator defining the dynamics
the system.10 The stationary density matrix for a gener
quantum-classical system has been derived in Ref. 9. H
we derive the stationary density matrixr̂We for the dissipa-
tive quantum-classical Liouville operator Eq.~1! which sat-
isfies2 iL Dr̂We50. To find r̂We we follow Ref. 9 and con-
sider the expansion of the density matrix in powers of\,

r̂We5 (
n50

`

\nr̂We
(n) . ~A1!

We seek an explicit solution in the adiabatic basis. Using
expansion of the density matrix in powers of\ the stationary
condition is equivalent to an infinite set of equations cor
sponding to the various powers of\:

iEaa8rWe
(0)aa850, ~A2!

iEaa8rWe
(n11)aa85(

bb8
2 iLaa8bb8

K rWe
(n)bb8

1(
bb8

Jaa8,bb8rWe
(n)bb8 ~n>1!. ~A3!

As discussed in Ref. 9, to ensure that solution can be fo
by recursion one must discuss the solution of Eq.~A3! when
calculating the diagonal elementsrWe

(n)aa in terms of the off-

diagonal ones rWe
(n)aa8 . To this end, using rWe

(n)aa8

5(rWe
(n)a8a)* , Jaa,bb85Jaa,b8b

* and the fact thatJaa,bb50
when a real basis is chosen, it is useful to rewrite Eq.~A3! in
the form

iL aa
K rWe

(n)aa5 (
b.b8

2R~Jaa,bb8rWe
(n)bb8!. ~A4!

In the present case the left-hand side of Eq.~A4! is not a
self-adjoint operator and it does not have a Poisson bra
form. In order to find a solution to Eq.~A4!, the theorem of
Fredholm alternatives requires that the null space of the
joint operator iL aa

K,B must be orthogonal to the right-han
side of Eq.~A4!. The second term of the left-hand side of E
~A4! is dissipative in character so that neitherHW

a is a con-
stant of motion nor is any general functionf (HW

a ). However
we can consider the left eigenvalue ofiL aa

K which is any
constant numberC so that the condition of orthogonality be
comes
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E dRdP(
n.n8

2R~Jaa,nn8rWe
(n)nn8!C50. ~A5!

Due to the fact thatJ is an odd function of momenta, Eq

~A5! is satisfied if one assumes thatrWe
(n)nn8 is an even func-

tion of momenta. To first order in\ the results are the sam
for deterministic quantum-classical dynamics and are gi
in the text.
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