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Abstract: The calculation of quantum canonical time correlation functions is considered in this paper. Transport proper-
ties, such as diffusion and reaction rate coefficients, can be determined from time integrals of these correlation functions.
Approximate quantum-classical expressions for correlation functions, which are amenable to simulation, are derived. These
expressions incorporate the full quantum equilibrium structure of the system but approximate the dynamics by quantum-
classical evolution where a quantum subsystem is coupled to a classical environment. The main feature of the formulation
is the use of a mapping basis where the subsystem quantum states are represented by fictitious harmonic oscillator states.
This leads to a full phase space representation of the dynamics that can be simulated without appeal to surface-hopping
methods. The results in this paper form the basis for new simulation algorithms for the computation of quantum transport
properties of large many-body systems.
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Résumé : Dans ce travail, on s’applique à calculer les fonctions de corrélation du temps quantique canonique. Il est pos-
sible de déterminer les propriétés de transport, tels les coefficients des vitesses de diffusion et de réaction, à partir des inté-
grales de temps de ces fonctions de corrélation. On a dérivé des expressions quantiques classiques approximatives pour les
fonctions de corrélation qui peuvent éventuellement être utilisées en simulation. Ces expressions incorporent la structure
d’équilibre quantique complète du système, mais ne donne qu’une approximation de la dynamique par le biais d’une évo-
lution quantique classique dans lequel un sous système quantique est couplé à un environnement classique. La caractéris-
tique principale de la formulation est l’utilisation d’une base de cartographie dans laquelle les états quantiques du sous
système sont représentés par des états d’oscillateurs harmoniques fictifs. Ce traitement conduit à une représentation spatiale
complète de l’espace de la dynamique qui peut être simulée sans faire appel aux méthodes de sauts de surface. Les résul-
tats obtenus dans ce travail forment la base de nouveaux algorithmes de simulation pour le calcul des propriétés de trans-
port de systèmes à plusieurs composantes.

Mots-clés : base de représentation, dynamique quantique classique, fonctions de corrélation quantique.

[Traduit par la Rédaction]

1. Introduction

In the investigation of condensed-phase systems, one is
usually interested in the average value of some observable
or in a time correlation function from which a transport co-
efficient can be computed. Since the basic description of
matter is quantum mechanical, we are interested in the aver-
age value of a quantum-mechanical operator, which is given
by BðtÞ ¼ TrbBðtÞbrð0Þ, where, for a system with HamiltonianbH , the time-dependent operator satisfies the Heisenberg
equation of motion,

½1� d

dt
bBðtÞ ¼ i

Z
½bH ; bB�

and brð0Þ is the initial value of the density matrix. Quantum
time correlation functions of two operators bA and bB have
the form,2 CABðtÞ ¼ Trðbreq

bAbBðtÞÞ, where breq is the quan-

tum canonical equilibrium density matrix. Either of these
quantum expressions requires a knowledge of the time evo-
lution of a quantum operator in a many-body system that is
often very large. Consequently, these general expressions
are not computationally tractable, and appeal must be made
to approximations if they are to be evaluated for problems
of physical interest.

The approximate dynamical description we consider in
this paper is quantum-classical Liouville dynamics.4 In this
formulation, the system is partitioned into two subsystems,
which we call quantum subsystem and bath or environment.
The partition is dictated by physical principles. For example,
in electron or proton transfer problems, the electron or pro-
ton may constitute the quantum subsystem, while the envi-
ronment in which the transfer takes place, a molecular
group or biomolecule dissolved in a solvent, forms the bath.
In quantum-classical Liouville dynamics, the bath is treated
classically while retaining the full quantum character of the
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quantum subsystem. In this theory, the analog of the Heisenberg equation of motion for an operator is4,5

½2� d

dt
bBWðX; tÞ ¼

i

Z
bHW; ; bBW

h i
� 1

2
bHW; bBW

n o
� bBW; bHW

n o� �
where X = (R,P) are the positions and momenta of the bath degrees of freedom. The subscript W indicates that operators are
expressed in a partial Wigner representation, defined below. In addition to the usual quantum commutator, the equation of
motion also involves a Poissson bracket denoted by { , }. While this equation is far more tractable than the full quantum
equations of motion, its numerical simulation presents challenges and a number of different schemes have been constructed
for this purpose.6,7 These include Trotter-based methods that use an adiabatic basis,8 as well as trajectory methods that use
the diabatic9 and force bases,10 schemes based on the multiple threads algorithm,11 and a method that utilizes the mapping
basis.12 The mapping method has proved to be especially promising for the evaluation of expectation values of operators, as
shown by calculations of population relaxation in the spin-boson model, one of the standard test cases for quantum dy-
namics.12 In this paper, we show how the mapping method can be extended to the computation of time correlation functions
within the quantum-classical Liouville framework.

In the next section, we present the explicit expression for the quantum correlation function that forms the basis of our
calculations. Section 3 outlines the mapping formulation, where subsystem quantum states are replaced by fictitious harmonic
oscillator states. Section 4 reformulates the quantum correlation function in the mapping basis. This fully quantum description
is exact and the dynamics is embodied in the spectral density function. A quantum-classical approximation for the spectral
density dynamics is derived in Section 5. The details of this derivation are presented in the Appendix. This result is used in
Section 6 to obtain the final result for the quantum-classical correlation function in the mapping basis. The conclusions of the
study are presented in Section 7.

2. Correlation function
Before considering quantum-classical approximations to the dynamics, we first rewrite the exact quantum correlation func-

tion in a form that is suitable for the introduction of the mapping basis and passage to the quantum-classical limit. Suppose
the quantum subsystem and bath have Ns and Nb degrees of freedom with characteristic masses m and M, respectively. To
introduce a phase space description of the bath, we first introduce a coordinate representation of the bath so that the correla-
tion function takes the form

½3�

CABðtÞ ¼ Tr breq
bAbBðtÞ� �

¼
�

Trbreq
bAeibHt=ZbBe�ibHt=Z

�
¼ Tr0

Z
dQ1dQ2dQ3dQ4 Q1

����breq
bA����Q2

� �
Q2

����eibHt=Z

����Q3

� �
Q3

����bB����Q4

� �
Q4

����e�ibHt=Z

����Q1

� �
¼ Tr0

Z
dR1dR2dZ1dZ2 R1 �

Z1

2

����breq
bA����R1 þ

Z1

2

* +
R1 þ

Z1

2

����eibHt=Z

����R2 �
Z2

2

* +

� R2 �
Z2

2

����bB����R2 þ
Z2

2

* +
R2 þ

Z2

2

����e�ibHt=Z����R1 �
Z1

2

* +

In these equations, Tr’ stands for a trace over the quantum subsystem degrees of freedom, and in the fourth equality above,
we have made a change of variables Q1 = R1 – Z1/2, Q2 = R1 + Z1/2, etc.

Two further manipulations are required to cast the correlation function into a form that is suitable for the calculations using
the mapping basis described below. The coordinate space matrix elements may be replaced with bath phase space functions
by introducing the partial5 Wigner transforms13–15 of an operator and density matrix

½4� R� Z

2

����bB����Rþ Z

2

� �
¼ 1

ð2pZÞNb

Z
dPbBWðR;PÞe�iP�Z=Z; R� Z

2

����breq
bA����Rþ Z

2

� �
¼
Z

dPðbreq
bAÞWðR;PÞe�iP�Z=Z

Note that the partially Wigner-transformed quantities are still operators in the quantum subsystem Hilbert space. In addi-
tion, Tr’ may be written explicitly using the eigenfunctions of the Hamiltonian of the quantum subsystem. The Hamiltonian
for the entire system is given by

½5� bH ¼ bP2

2M
þ bV b

�bR�þ bp2

2m
þ bV sðbqÞ þ bV c

�bR;bq�
where bP and bp are momentum operators of the bath and subsystem, and bV b, bV s, and bV c are, respectively, the bath, subsys-
tem, and coupling potentials. The coordinate operators for the subsystem and bath are bq and bR, respectively. Equation [5] can

be written as bH ¼ bP2

2M
þ bV b þ bV c þ bhs, where bhs ¼ bp2

2m
þ bV s is the subsystem Hamiltonian. The eigenstates of bhs are defined

by the eigenvalue problem bhsjli ¼ 3ljli. We suppose that there are N quantum subsystem states. Making use of subsystem
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energy eigenstates as a basis and introducing the Wigner-transformed forms of breq
bA and bB given in eq. [4] we have

½6� CABðtÞ ¼
1

ð2pZÞNb

XN

l;l0;m;m0¼1

Z
dX1dX2dZ1dZ2 hljðbreq

bAÞWðX1Þjl0i

� l0
���� R1 þ

Z1

2

� ����eibHt=Z� ����R2 �
Z2

2

�����m� m

����bBWðX2Þ
����m0� �

m0
�����R2 þ

Z2

2

����e�ibHt=Z����R1 �
Z1

2

�����l�e� i
ZðP1�Z1þP2�Z2Þ

�
The spectral density function in the subsystem basis may be defined as

½7� Wl0lm0mðX1;X2; tÞ ¼
Z

dZ1dZ2 l0
�����R1 þ

Z1

2

����eibHt=Z

����R2 �
Z2

2

�����m� ��
m0
�����R2 þ

Z2

2

����e�ibHt=Z

����R1 �
Z1

2

�����lie� i
ZðP1�Z1þP2�Z2Þ

and contains all information needed to compute the quantum time evolution contribution to the correlation function. The
spectral density defined via full Wigner transform was used by Filinov et al.16–18 in a reformulation of the quantum correla-
tion function. In terms of the spectral density function in the subsystem basis, the correlation function takes the form

½8� CABðtÞ ¼
1

ð2pZÞNb

XN

l;l0;m;m0

Z
dX1dX2 l

	 ��ðbreq
bAÞWðX1Þjl0ihmjbBWðX2Þjm0iWl0lm0mðX1;X2; tÞ

This expression for the quantum correlation function is exact. To compute it, the matrix elements of the forward and back-
ward propagators must be evaluated to solve for the time dependence of the spectral density function. This is the most diffi-
cult part of the problem. A similar expression utilizing the adiabatic basis in place of the subsystem basis was derived
earlier.19 In addition to the time-dependent spectral density function, the time-independent matrix elements of the quantum
operators and quantum equilibrium density matrix must also be computed to evaluate the ensemble average appearing in the
definition of the correlation function. While these equilibrium quantities may be difficult to evaluate for complex systems,
they are far easier to compute than the quantum time dependence, and algorithms have been developed for this purpose.20,21

3. Mapping basis
To construct a useful simulation algorithm for the quantum correlation function, it is convenient to use an alternative but

equivalent mapping form for the quantum subsystem matrix elements of the operators that enter in its definition. A well-
known mapping approach was introduced by Schwinger.22 In his scheme, the eigenstates of the angular momentum operator
are mapped onto eigenfunctions of two bosonic oscillators, and the angular momentum operators are mapped onto combina-
tions of creation, âl

{ , and annihilation, âl’, operators (l,l’ = 1 or 2). Such a mapping yields a simple treatment of the angular
momentum problem in quantum mechanics. In this formalism, the resolution of identity is mapped to â1

{â1 + â2
{â2 = 1. This

equality is used in the Holstein–Primakoff mapping scheme to eliminate one bosonic oscillator and represent angular momen-
tum states by a single oscillator.23 An extension of these mapping schemes was used to map discreet states of a quantum
system onto fictitious harmonic oscillators, so that all degrees of freedom in the system can be treated with semiclassical
approximations.24–30 The mapping approach has also been used in other closely related contexts.31–33

In the mapping scheme used in this work, an N level quantum system is mapped onto N harmonic oscillators. The wave
function of the system in a given quantum state is mapped onto a product of harmonic oscillator wave functions where all
oscillators are in their ground state, except for one oscillator corresponding to the given quantum state, which is in its first
excited state. This mapping is schematically represented in Fig. 1. Therefore, we have a physical space with a cardinality N,
which is much lower than the cardinality of the Hilbert space of the N harmonic oscillators, which is infinite. More specifi-
cally, the subsystem quantum states are mapped through the relations,

Fig. 1. Schematic representation of the mapping for a five-level system. Subsystem states are on the left and the mapping states are on the right.
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½9� jli ! jmli ¼ j01; . . . ; 1l; . . . ; 0Ni

where

hqjmli ¼ hq1; q2; . . . ; qN j01; . . . ; 1l; . . . ; 0Ni ¼ f0ðq1Þ . . .f0ðql�1Þf1ðqlÞ . . .f0ðqNÞ

with f0 and f1, respectively, being the ground and the first excited state wave functions of an harmonic oscillator. The crea-
tion and annihilation operators on the mapping states act in the following ways34

½10� baylj0i ¼ j01; . . . ; 1l; . . . ; 0Ni ¼ jmli and baljmli ¼ j01; . . . ; 0Ni ¼ j0i

where

½11� bal ¼
ffiffiffiffiffiffiffi
mu

2Z

s �bql þ
i

mu
bpl

�
; bayl ¼ ffiffiffiffiffiffiffi

mu

2Z

s �bql �
i

mu
bpl

�
; and ½bql;bpl� ¼ iZ

We may then introduce the mapping representation of an operator bA as

½12� bAm ¼
X
ll0

All0baylbal0

For example, the mapping form of the Hamiltonian in eq. [5] is

½13�

bHm ¼
X
ll0

bP2

2M
dll0 þ bV BðbRÞdll0 þ hll0 ðbRÞ

24 35baylbal0

¼
bP2

2M
þ bV BðbRÞ þ mu

2Z

X
ll0

hll0 ðbRÞðbrlbrl0 þ bplbpl0

m2u2
� Z

mu
dll0 Þ

where bh ¼ bp2

2m
þ bV sðbqÞ þ bV cðR;bqÞ, and hll’ is its matrix element. We used the fact that hll’ = hl’l in writing this expression.

Note that unlike eq. [5], where bq and bp are the subsystem coordinates and momenta, in eq. [13] br and bp are the mapping
space coordinates and momenta. These quantities have dimensions equal to the number of subsystem quantum states.

From the definition in eq. [12] it is clear that the matrix elements of bA in the subsystem basis are identical to those of bAm
in the mapping basis: hljbAjl0i ¼ All0 ¼ hmljbAmjml0 i. Consequently, any matrix element in the quantum subsystem basis can
be substituted by its equivalent form in the mapping basis. We show that this substitution leads to computational advantages
when simulating quantum correlation functions.

4. Correlation function in mapping basis
The matrix elements in the correlation function expression (eq. [6]) can be replaced by their mapping equivalent forms to

yield

½14� CABðtÞ ¼
1

ð2pZÞNb

XN

ll0mm0¼1

Z
dX1dX2dZ1dZ2 ml

����ðbreq
bAÞWmðX1Þ

����ml0

� �
� ml0

���� R1 þ
Z1

2

����eibHmt=Z

����R2 �
Z2

2

� �����mm

� �
mm

����bBWmðX2Þ
����mm0

� �
� mm0

���� R2 þ
Z2

2

����e�ibHmt=Z

����R1 �
Z1

2

� �����ml

� �
e�

i
ZðP1�Z1þP2�Z2Þ

The next step in the analysis of this correlation function is to introduce a coordinate space representation of the abstract

mapping eigenfuctions. Inserting resolutions of the identity,
Z

dq jqihqj ¼ 1, and making use of the closure relation for map-

ping states,
X

l
hq0jmlihmljqi ¼ dðq� q0Þ, the correlation function takes the form

½15� CABðtÞ ¼
1

ð2pZÞNb

Z
dX1dX2dZ1dZ2dq1dq2dq4dq6 q1

���� breq
bA� �

Wm
ðX1Þ

����q2

� �
� q2

���� R1 þ
Z1

2

����eibHmt=Z

����R2 �
Z2

2

� �����q4

� �
q4

����bBWmðX2Þ
����q6

� �
q6

���� R2 þ
Z2

2

����e�ibHmt=Z

����R1 �
Z1

2

� �����q1

� �
e�

i
ZðP1�Z1þP2�Z2Þ

It is important to note that the dimensionality of the mapping coordinate space representation is fixed by the number of quan-
tum states.
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A phase space description of this coordinate representation can be obtained by introducing Wigner transforms of the matrix
elements. Making the change of variables, q1 = r1 – z1/2, q2 = r1 + z1/2, etc., and using the analog of eq. [4] for the mapping
coordinates, we find

½16� CABðtÞ ¼
1

ð2pZÞðNbþNÞ

Z
dX1dX2dx1dx2 breq

bA� �
Wm
ðX1; x1ÞBWmðX2; x2ÞWðX1;X2; x1; x2; tÞ

where in analogy with the bath phase space terminology, x = (r, p). The full Wigner representation of the mapping spectral
density W is defined as

½17� WðX1;X2; x1; x2; tÞ ¼
Z

dZ1dZ2dz1dz2 r1 þ
z1

2

���� R1 þ
Z1

2

����eibH mt=Z

����R2 �
Z2

2

� �����r2 �
z2

2

� �
� r2 þ

z2

2

���� R2 þ
Z2

2

����e�ibHmt=Z

����R1 �
Z1

2

� �����r1 � z12
� �

e�
i
ZðP1�Z1þP2�Z2þp1�z1þp2�z2Þ

All of these manipulations have served simply to cast the exact expression for the quantum correlation function into an
equivalent exact form involving a phase-space-like representation for both the bath and the mapping version of the quantum
subsystem degrees of freedom. There are advantages to defining W and deriving its dynamics rather than directly considering
the dynamics of the correlation function. Not only are the algebraic manipulations simplified, but also all correlation func-
tions for a specific system share the same spectral density. This fully quantum problem is still intractable for complex
many-body systems. We now turn to the evaluation of the spectral density function in the quantum-classical limit that will
provide the basis for simulation algorithms of the dynamics.

5. Quantum-classical dynamics for W
Given the development presented above, the dynamical problem consists in finding a tractable equation of motion for the

spectral density function W(X1,X2,x1,x2,t) and constructing an algorithm for its solution. The equation of motion can be de-
rived by differentiating W with respect to time. However, to derive the quantum-classical equation for W we must introduce
approximations. For this purpose we make use of an expansion in the small mass ratio m = (m/M)1/2, where it is assumed that
the characteristic mass M of the bath particles is much larger than m for the quantum subsystem particles. The manner in
which this expansion is carried out is analogous to that discussed earlier for the quantum-classical Liouville equation
(eq. [2]). More specifically, given the energy 30, time t0 ¼ Z=30, and length lm ¼ ðZ2=m30Þ1=2 units, we scale the light and
heavy particle momenta, respectively, with pm = (mlm/t0) = (m30)1/2 and PM = (M30)1/2. Note that the only difference between
subsystem and bath particles is scaling their momenta with different factors. As the subsystem and bath are in thermal equili-
brium, their average kinetic energies are equal, and therefore, on average, p/P = m, so that after scaling both subsystem and
bath momenta have the same order of magnitude. After scaling variables, we obtain

½18� W 0ðR01;P01;R02;P02; r01; p01; r02; p02; t0Þ ¼
Z

dZ 01dZ 02dz01dz02 r01 þ
z01
2

���� R01 þ
Z 01
2

����eibH 0mt0
����R02 � Z 02

2

� �����r02 � z02
2

� �
� r02 þ

z02
2

���� R02 þ
Z 02
2

����e�ibH 0mt0 ����R01 � Z 012

� �����r01 � z012
� �

e�im
�1ðP01�Z 01þP02�Z 02Þe�iðp

0
1�z01þp02�z02Þ

where a prime means that the variable is divided by the corresponding scaling factor. To avoid cumbersome notation, we
drop the primes in the following relations. Differentiation of the scaled form of W yields the equation of motion

½19�
@WðtÞ
@t
¼ i

Z
dZ1dZ2dz1dz2dQdq

"
r1 þ

z1

2

���� R1 þ
Z1

2

����bHm

����Q
* +����q

* +
� q

���� Q

����eibH mt

����R2 �
Z2

2

* +����r2 �
z2

2

* +

� r2 þ
z2

2

���� R2 þ
Z2

2

����e�ibHmt

����R1 �
Z1

2

* +����r1 � z12
* +

� r1 þ
z1

2

���� R1 þ
Z1

2

����eibHmt

����R2 �
Z2

2

* +����r2 � z22
* +

� r2 þ
z2

2

���� R2 þ
Z2

2

����e�ibHmt

����Q
* +����q

* +
Q

���� q

����bHm

����R1 �
Z1

2

* +����r1 � z12
* +#

e�im
�1ðP1�Z1þP2�Z2Þe�iðp1�z1þp2�z2Þ

The mapping Hamiltonian (eq. [13] in scaled variables is bHm ¼ bP2

2
þ bVBðbRÞ þX

ll0
hll0 ðbRÞ

2
ðbrlbrl0 þ bplbpl0 � dll0 Þ, while the

scaled quantum mechanical momentum operators are bP ¼ m

i
@
@Q

and bp ¼ �i @
@q

. Substituting the Hamiltonian and momentum
operators into eq. [19] yields
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½20�
@WðtÞ
@t

¼ im2Nb

Z
d ~Z 1d ~Z 2dQdz1dz2dqe

�iðP1� ~Z 1þP2� ~Z 2Þe�iðp1�z1þp2�z2Þ

� �m2

2

@2

@Q2
þ VBðQÞ þ 1

2

X
ll0

hll0 ðQÞ qlql0 � @

@ql

@

@ql0
� dll0

� �" #((

� d Q� R1 � m ~Z 1

2

� �
d q� r1 � z1

2

� �)
q

���� Q

����eibHmt

����R2 � m ~Z 2

2

� �����r2 � z2

2

� �
� r2 þ z2

2

���� R2 þ m ~Z 2

2

����e�ibHmt

����R1 � m ~Z 1

2

� �����r1 � z1

2

� �
� �m2

2

@2

@Q2
þ VBðQÞ þ 1

2

X
ll0

hll0 ðQÞ qlql0 � @

@ql

@

@ql0
� dll0

� �" #(

� d Q� R1 þ m ~Z 1

2

� �
d q� r1 þ z1

2

� �)
r1 þ z1

2

���� R1 þ m ~Z 1

2

����eibHmt

����R2 � m ~Z 2

2

� �����r2 � z2

2

� �
� r2 þ z2

2

���� R2 þ m ~Z 2

2

����e�ibHmt

����Q� �����q� �	
where the change of variable ~Z 1 ¼ Z1=m was performed to transfer the m dependence from the exponential to the argument of
the potential energy terms, after integrations over Q and q have been performed. It is more convenient to expand a potential
energy term around a small parameter rather than to deal with an oscillatory exponential.

We begin the calculation by performing the integrals over q and Q, followed by Taylor expansion of the potential energy
terms around m = 0, keeping terms up to the first order in m. Finally, we introduce the definition of W into the resulting
expression. The algebra is lengthy so it is presented in the Appendix. While the algebra leading to the result is lengthy, the
final equation of motion is relatively simple. In unscaled coordinates it takes the form

½21� @WðtÞ
@t
¼ � 1

Z

X
ll0

hll0 ðR1Þ r1l

@

@p1l0
� p1l

@

@r1l0

 �
WðtÞ þ P1

M
� @
@R1

� @Hm

@R1

� @
@P1

� �
WðtÞ

þ Z

8

X
ll0

@hll0 ðR1Þ
@R1

� @

@r1l

@

@r1l0
þ @

@p1l0

@

@p1l

� �
@

@P1

WðtÞ

� iLmðx1; X1ÞWðtÞ

Here, the Wigner transform of the Hamiltonian15 is given by

½22� Hm ¼
P2

2M
þ VBðRÞ þ

X
ll0

hll0 ðRÞ
2
ðrlrl0 þ plpl0 � dll0 Þ

This equation of motion is one of the principal results of this paper. It results from an expansion of the evolution operator
for W to order m and is equivalent to quantum-classical Liouville dynamics for the spectral density function.19 The first term
in eq. [21] represents the subsystem dynamics of the spectral density in the mapping phase space. The second term is the
dynamics of the spectral density due to classical evolution of the bath degrees of freedom and the third term is a higher order
correlation between the quantum mapping and classical degrees of freedom. The last equality defines the quantum-classical
Liouville operator in the mapping basis. This equation must be solved subject to the initial condition

½23� WðqÞ ¼ ð2pZÞðNbþNÞd r1 � r2

�
d R1 � R2

�
d p1 � p2

�
d P1 � P2

�����
In eq. [19], since bHm commutes with propagator eibHmt when differentiating with respect to time, bHm could be placed on

either side of the propagator. In this derivation, we chose to put it to the left of the propagator in the first term in eq. [19] and
to the right of the propagator in the second term. If instead one places bHm to the right of the propagator in the first term and to
the left of the propagator in the second term, we can obtain an alternate form of the equation of motion35. The manipulations
are similar to those described above and in the Appendix and are not repeated her. The resulting equation of motion is
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This alternate form of the dynamics not only shows the symmetry of the dynamics of W in its variables but also allows us
to move the time evolution from W to the observable BWm in the correlation function expression. The formal solution of
eq. [24] is

½25� WðX1;X2; x1; x2; tÞ ¼ e�iLmðx2;X2ÞtWðX1;X2; x1; x2; 0Þ

These results will be used in the next section to derive a quantum-classical approximation to the time correlation function.

6. Quantum-classical correlation function
We can now employ the results of the last two sections to find an expression for the quantum-classical approximation to

the correlation function in the mapping basis. Using eq. [25] in eq. [16], we have

½26� CABðtÞ ¼
1

ð2pZÞðNbþNÞ

Z
dX1dX2dx1dx2 breq

bA� �
Wm
ðX1; x1ÞBWmðX2; x2Þe�iLmðx2;X2ÞtWðX1;X2; x1; x2; 0Þ

Performing an integration by parts to move the evolution operator onto the BWm and integrating over the coordinates with
subscript 1, making use of the delta functions in the initial value of W, yields

½27� CABðtÞ ¼
Z

dXdxðbreq
bAÞWm

ðX; xÞBWm
ðX; x; tÞ

where BWmðX; x; tÞ ¼ eiLmðx;XÞtBWmðX; xÞ. (We have dropped the subscripts on the phase space coordinates since this notation
is no longer needed.) This expression contains the full quantum equilibrium structure of the subsystem and bath and the
quantum-classical Liouville evolution of the operator bB in the mapping representation.

The evolution equation for BWm(X,x,t) that one obtains in this derivation is identical to that found earlier in the calculation
of the average value of an observable.12 This evolution equation can be written in the form,

½28� d

dt
BWmðx;X; tÞ ¼ iLmBWmðtÞ ¼ �fHm;BWmðtÞgx;X þ

Z

8

X
ll0

@hll0

@R
� @

@rl0

@

@rl
þ @

@pl0

@

@pl

� �
@

@P
BWmðtÞ

where f ; gx;X denotes a Poisson bracket in the full mapping-bath phase space of the system. The quantum-classical Liouville
operator in the mapping basis can be decomposed into two terms, iLm ¼ iL 0

m þ iL 0m, where

½29�
iL 0

m ¼ �fHm; gx;X

iL 0m ¼
Z

8

X
ll0

@hll0

@R
�
�

@
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@

@rl
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@pl0

@

@pl

�
@

@P

The iL 0
m evolution operator, corresponding to the Poisson bracket in eq. [28], leads to a classical-like evolution of the

coupled dynamics of the quantum mapping and classical bath phase space variables that can be simulated by Newtonian tra-
jectories. The force field that the classical variables feel varies with time as a result of the dependence of the forces on the
mapping phase space variables. If iL 0m is dropped in the evolution equation, BWm(t) has a solution in terms of characteristics.
The set of ordinary differential equations that determines its solution is

½30�

drlðtÞ
dt
¼ 1

Z

X
l0

hll0 ðRðtÞÞpl0 ðtÞ

dplðtÞ
dt
¼ � 1

Z

X
l0

hll0 ðRðtÞÞrl0 ðtÞ

dRðtÞ
dt
¼ PðtÞ

M
;
dPðtÞ

dt
¼ � @Hm

@RðtÞ

The utility of this approximation to eq. [28] is a topic of current research. Tests of its accuracy have been carried out on
the spin-boson model where eq. [28] is equivalent to full quantum dynamics and are being carried out on other model systems
with nonlinear coupling between the quantum and classical degrees of freedom where eq. [28] is not exact. For the spin-bo-
son model, eq. [30] yields results that are indistinguishable from the known exact quantum results for this system.12 Tests
being carried out on other model systems show that while the results are often in close accord with exact quantum results,
sometimes discrepancies are observed that cannot be ascribed to approximations in eq. [28] for these more general interac-
tions, and must be attributed to the use of eq. [30] for the dynamics. Consequently, further research is underway to fully
characterize the contributions arising from iL 0m and construct algorithms that account for its action.
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7. Conclusion
In the adiabatic basis, the correlation function may be

evaluated in terms of an ensemble of surface-hopping trajec-
tories.5,7 While this simulation scheme has been used in a
number of applications it is difficult to obtain accurate results
for long times because of the presence of oscillating terms in
the Monte Carlo sampling. In this paper, we show that it is
possible to reformulate the calculation of the correlation
function in the mapping basis. Simulation schemes based on
this formulation do not suffer from some of the problems that
arise in the implementation of surface-hopping schemes.

To evaluate the expression for the correlation function ob-
tained in this paper, two ingredients are required. The expres-
sion involves an average over the full quantum equilibrium
structure. As briefly discussed above, the computation of
quantum equilibrium structure is a more tractable problem
than the calculation of quantum dynamics. Nevertheless, ap-
proximations are usually required to evaluate the equilibrium
structure. In the high-temperature limit it is possible to derive
analytical expressions that are useful in many applications.36–38

The main result of this paper is the quantum-classical ex-
pression for the correlation function that involves time evo-
lution of the quantum subsystem in the mapping basis.
Provided the quantum-classical evolution is approximated
by iLm ’ iL 0

m, the time evolution of the dynamical variable
in the correlation function can be computed easily by solv-
ing a set of Newtonian-like equations. Thus, difficulties as-
sociated with the accumulation of Monte Carlo weights in
the evaluation of an oscillatory function that arise in the sur-
face-hopping solution of the quantum-classical Liouville
equation in the adiabatic basis are by-passed. Of course,
this simple scheme relies on the ability to neglect iL 0m,
which accounts for higher-order correlations in the dynam-
ics. Thus, the focus of future research is on the characteriza-
tion of the nature of the dynamics generated by iL 0m and the
construction of simulation algorithms that account for its
presence. The results in this paper form the basis for future
applications to the calculation of transport properties, such
as rate constants for nonadiabtic chemical reactions.
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Appendix: Derivation of the dynamics
In this appendix, we give the details of the calculations needed to obtain the quantum-classical evolution equation for the

spectral density function. There are ten terms in eq. [20], and because of the symmetry of the expression, it is convenient to
group term i with term i + 5 and evaluate the contributions group by group. First, we perform the integrals over Q and q. The
first and sixth terms contain @2

@ ~Z
2

1

and @2

@ ~Z
2

2

, respectively, after this integration. Integration by parts with respect to ~Z 1 and ~Z 2 and

summation of the results yield mP1 � @W@R1
. The second and seventh terms involve bath potentials. After expansion of VBðR1 �

m ~Z 1

2
Þ in m, the first and third terms in the series, which are proportional to m0 and m2, cancel, and the second terms, which are

proportional to m, yield �m @VBðR1Þ
@R1

� @W
@P1

. The contribution from the fifth and tenth terms is derived similarly to yield
m

2
@TrðhÞ
@R1
� @W
@P1

. The derivations of the third and eighth and also the fourth and fifth groups of terms are more complicated and
are presented in the following two subsections.

Third and eighth terms
The sum of the third and eighth contributions to the time derivative of W is

½A1�
�
@W

@t

�
3þ8

¼ im2Nb

2

X
ll0

Z
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where we have performed a McLauren expansion of hll’ in the small parameter m, and retained the first two terms. Finally,
using the fact that a partial differential with respect to momentum acting on the exponential term has the same effect as
multiplication by the variable z1 or ~Z 1 that results from the expansion, we have
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where in the last equality the expression for the scaled W is inserted.
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Fourth and ninth terms
The sum of the fourth and ninth terms in eq. [20] is
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Again, in the second equality we have carried out a McLauren expansion of hll’ to first order in m. Equation [A3] itself has
four terms. In the sum of the first and third subcontributions, one of the partial derivatives over r may be replaced by a
partial derivative over z, and an integration by parts may be carried out. We find
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Here, we see that the two terms with a momentum multiplier are added together, while the other terms cancel each other.
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The second and fourth subcontributions in eq. [A3] are treated in the following way: We replace multiplication by the
variable ~Z with a partial differentiation with respect to the momentum. Furthermore, the sum of these contributions is written
as one half the sum of two equal contributions, the expressions appearing in eq. [A3] and the same expression but with the
differentials over r replaced with those over z. Thus, the sum of the second and fourth contributions can be written as
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If in both expressions we replace @2A
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, the cross terms cancel. Finally, integrating by parts
over z1l and z1l’, we obtain
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Summing all the contributions from the above calculations, we find the comparatively simple result
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Restoring unscaled coordinates, we have eq. [21] in the text.
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