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Quantum rate processes in condensed phase systems are often computed by combining quantum and classical
descriptions of the dynamics. An algorithm for simulating the quantum-classical Liouville equation, which
describes the dynamics of a quantum subsystem coupled to a classical bath, is presented in this paper. The
algorithm is based on a Trotter decomposition of the quantum-classical propagator, in conjunction with Monte
Carlo sampling of quantum transitions, to yield a surface-hopping representation of the dynamics. An expression
for the nonadiabatic propagator that is responsible for quantum transitions and associated bath momentum
changes is derived in a form that is convenient for Monte Carlo sampling and exactly conserves the total
energy of the system in individual trajectories. The expectation values of operators or quantum correlation
functions can be evaluated by initial sampling of quantum states and use of quantum-classical Liouville
dynamics for the time evolution. The algorithm is tested by calculations on the spin-boson model, for which
exact quantum results are available, and is shown to reproduce the exact results for stronger nonadiabatic
coupling and much longer times using fewer trajectories than other schemes for simulating quantum-classical
Liouville dynamics.

1. Introduction

An understanding of the dynamical properties of condensed
phase quantum systems underlies the description of a variety
of quantum phenomena in chemical and biological systems.
These phenomena include, among others, nonadiabatic chemical
rate processes involving electronic, vibrational, or other degrees
of freedom, decoherence in open quantum systems, and quantum
transport processes. Quantum effects underlie the study of
ultrafast rate processes in solution.1,2 The development of
schemes for the efficient and accurate simulation of the quantum
dynamics of such systems is an active area of research in
chemical physics3-15 and is essential if problems of chemical
interest involving complex molecular species in the condensed
phase are considered. This article is concerned with the
development of such a simulation method.

In investigations of the dynamical properties of quantum
statistical mechanical systems, one is often interested in the
average value of some operator when the system evolves from
a given initially prepared distribution described by the density
matrix F̂(0). In such cases, the quantum mechanical average
value of an operatorB̂ is given by

In the last equalityB̂(t) evolves in time through the Heisenberg
equation of motion, dB̂(t)/dt ) (i/p)[Ĥ,B̂(t)], where Ĥ is the
Hamiltonian operator. Alternatively, one may be interested in
the calculation of a transport propertyλ, which may generally
be written as a time integral of a quantum mechanical correlation
function of two operatorsÂ and B̂,

whereF̂eq ) e-âĤ/Tr e-âĤ is the canonical equilibrium density
matrix. The computation of either of these expressions involves
averages over initial quantum distributions and time evolution
of a quantum operator.

In many applications, it is useful to partition the system into
a subsystem and a bath. A phase space description of the bath
can be obtained by taking a partial Wigner transform over the
bath coordinate{Q} representation of the full quantum sys-
tem.17,18The partial Wigner transform of an operatorB̂ is defined
as19

with an analogous definition for the partial Wigner transform
of the density matrix. Thus,B̂W(R, P) is an abstract operator in
the vector space of the subsystem and depends on the
phase space variables (R, P) of the bath. In this partial
Wigner representation, the expectation value ofB̂(t) takes the
form

where the prime on the trace indicates a trace over the subsystem
degrees of freedom andF̂W(R, P) ≡ F̂W(R, P, 0). All information
on the quantum initial distribution is contained inF̂W(R, P, 0).
Similarly, in the partial Wigner representation, a transport
property takes the form17,20,21
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B(t) ) TrB̂F̂(t) ) TrB̂(t)F̂(0) (1)

λ ∼ ∫0

∞
dt TrB̂(t)ÂF̂eq ≡ ∫0

∞
dt 〈B̂(t)Â〉 (2)

B̂W(R, P) ) ∫ dz eiP ‚z/p〈R - z
2|B̂|R + z

2〉 (3)

B(t) ) Tr′ ∫ dRdP B̂W(R, P, t)F̂W(R, P) (4)

λ ∼ ∫0

∞
dt Tr′ ∫ dRdP B̂W(R, P, t)(ÂF̂eq)W(R, P) (5)
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where initial quantum correlations are described by
(ÂF̂eq)W(R, P). In both cases, the quantum evolution of the
dynamical variable must be computed to obtain the expectation
value or transport property. These quantum statistical mechanical
expressions are exact. In this partial Wigner representation,
the computation of the full quantum evolution ofB̂W(R, P, t)
for a large many-body system is still an intractable problem.
Because of the difficulty of simulating the quantum dynamics
of large many-body systems, most quantum dynamics methods,
for example, surface-hopping schemes,22,16 consider the com-
bined evolution of quantum and classical degrees of freedom.

Given this perspective, we consider systems whose dynamics
may be accurately approximated by quantum-classical Liouville
equation.17,23 This is the case, for instance, if the subsystem
and bath consist of particles with massesmandM, respectively,
andm, M.18 Furthermore, if the bath is harmonic and bilinearly
coupled to the subsystem, then quantum-classical Liouville
dynamics entails no approximation and is equivalent to a full
quantum description of the dynamics of the entire system.24 The
quantum-classical Liouville equation for an observable is18

where the last line definesLˆ, the quantum-classical Liouville
operator.18,25-30,10 While the formal solution of this equation
of motion is easily written asB̂W(t) ) exp(i Lˆt)B̂W(0), the
construction of effective simulation algorithms for realistic
many-body systems is not a simple task, and a number of
different methods have been proposed.29-34

In this paper, we describe a Trotter-based scheme for
simulating quantum-classical Liouville dynamics in terms of
an ensemble of surface-hopping trajectories. The method can
be used to compute the dynamics for longer times with fewer
trajectories than the sequential short-time propagation (SSTP)
algorithm, which is also based on surface-hopping trajecto-
ries.34,35Section 2 formulates the problem in an adiabatic basis
that is convenient for a description of the dynamics in terms of
surface-hopping trajectories. The Trotter decomposition of the
quantum-classical propagator in a form that conserves energy
in nonadiabatic transitions is presented in this section for a two-
level system coupled to an arbitrary bath. On the basis of this
formulation, the Trotter-based quantum-classical (TBQC) al-
gorithm that is used to simulate the dynamics is described in
section 3. The efficacy of the simulation method is illustrated
in section 4 where results for the spin-boson model are
presented. Since quantum-classical Liouville dynamics is equiva-
lent to full quantum mechanics for this model, comparisons with
exact quantum results may be made. Appendices A and B give
additional details and sketch the generalization to the multi-
state case. Although the focus of this paper is on simulation
schemes and their application to the standard spin-boson test
case, the methods developed here should provide a means to
simulate more effectively the quantum dynamics of realistic
models of systems of chemical interest.

2. Trotter Factorization of Quantum-Classical Propagator

The evolution of quantum-classical dynamics described by
the Liouville operatorLˆ may be formulated in terms of an
ensemble of surface-hopping trajectories. For this purpose, it
is convenient to work in a basis of adiabatic eigenfunctions.
The partially Wigner transformed Hamiltonian is the sum of
the kinetic energy of the bath particles with massM, P2/2M,

and the subsystem Hamiltonian in the field of the fixed bath
particles, ĥW(R). The total Hamiltonian is given byĤW )
P2/2M + ĥW(R). The adiabatic eigenfunctions|R; R〉 are
the solutions of the eigenvalue problem,ĥW(R)|R; R〉 )
ER(R)|R; R〉. In this basis, the quantum-classical Liouville super-
operator has matrix elements (see ref 18 for derivations and
full definitions),

Here,ωRR′(R) ) (ER(R) - ER′(R))/p and iLRR′ is the Liouville
operator that describes the classical evolution determined by
the mean of the Hellmann-Feynman forces corresponding to
adiabatic statesR andR′,

whereFW
R ) -〈R; R|(∂ĤW(q̂, R))/∂R|R; R〉 is the Hellmann-

Feynman force for stateR. The operatorJ RR′,ââ′ is responsible
for nonadiabatic transitions and associated changes in the bath
momentum and can be written as the sum of two terms,

where

and dRâ(R) ) 〈R; R|∂/∂R|â; R〉 is the nonadiabatic coupling
matrix element. The matrix elements of the quantum-classical
propagator in the adiabatic basis are (exp(i L t))RR′,ââ′. The
superoperator notation involving pairs of quantum states can
be eliminated by associating an indexs ) RN + R′ with the
pair (RR′), where 0 e R,R′ < N for an N-state quantum
subsystem.24 The quantum-classical propagator then takes the
form (exp(i L t))ss′ wherei L ss′ ) i L s

0δss′ - Jss′.
The starting point of the analysis is similar to that for the

SSTP algorithm34 where the propagator is written as a product
of short-time segments. Since the Liouville operator is time
independent and commutes with itself we may write the
propagator exactly as the product ofN short time propagators
as

wheretj ) jδ and t ) Nδ. Moreover, now the propagator for
each of the small time intervalstj - tj-1 ) δ is computed by
using a Trotter factorization as

where we have used the fact thati L 0 is diagonal in the adiabatic
basis. The propagator ei L s

0(tj-tj-1) can be written as the product
of a phase factor and a classical evolution operator as18

dB̂W(t)

dt
) i

p
[ĤW, B̂W(t)] - 1

2
({ĤW, B̂W(t)} -

{B̂W(t), ĤW}) ≡ i LˆB̂W(t) (6)

i LRR′,ââ′ ) (iωRR′ + iLRR′)δRâδR′â′ - JRR′,ââ′

≡ i LRR′
0 δRâδR′â′ - JRR′,ââ′ (7)

iLRR′ ) P
M

‚ ∂

∂R
+ 1

2
(FW

R + FW
R ′) ‚ ∂

∂P
(8)

JRR′,ââ′ ) J1RR′,ââ′ + J2RR′,ââ′ (9)

J1RR′,ââ′ ) -(dRâδR′â′ + dR′â′
/ δRâ) ‚ P

M
(10)

J2RR′,ââ′ )

- 1
2

((ER - Eâ)dRâδR′â′ + (ER′ - Eâ′)dR′â′
/ δRâ) ‚ ∂

∂P
(11)

(ei L t)s0sN
) ∑

s1s2‚‚‚sN-1

∏
j)1

N

(ei L (tj-tj-1))sj-1sj
(12)

(eı L (tj-tj-1))sj-1sj
≈ eı L sj-1

0 δ/2(e-J δ)sj-1sj
eı L sj

0δ/2 + O (δ3) (13)
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whereRs,τ denotes the value ofRat timeτ obtained by classical
evolution under the Hellmann-Feynman force with quantum
state indexs. The propagator (e-J δ)ss′ is responsible for quantum
transitions and bath momentum changes and, henceforth, we
refer to it as the nonadiabatic propagator. If the nonadiabatic
propagator is set to unity, quantum-classical dynamics reduces
to adiabatic dynamics. In order to proceed, we must be able to
compute the action of the nonadiabatic propagator on partially
Wigner transformed operators.

Nonadiabatic Propagator for a Two-Level System.The
structure ofJ in eq 9 as the sum of two terms, one of which
is a differential operator in the bath momenta, suggests that the
evaluation of this propagator can be carried out by a further
Trotter decomposition. Here, we show how this term can be
evaluated for a two-level system using the momentum-jump
approximation17,18which is valid toO (δ2). A discussion of the
general multi-level case is given in Appendix B.

For a two-level system with statesR ) 0, 1, the indexs takes
the values from the setS ) {0, 1, 2, 3} corresponding to the
pairs of state indices (00), (01), (10), and (11), respectively.
The matrix operatorJ ) J1 + J2 with elementsJ ss′ ) J1,ss′ +
J2,ss′ is a 4 × 4 matrix. The J1 matrix has the explicit
antisymmetric form,

where we have used the fact thatd01 ) -d10 for a real adiabatic
basis. This matrix may be diagonalized by a matrixV, J1V )
VD1, whereD1 is the diagonal matrix of zero or purely imaginary
eigenvalues{0, 0, 2ı P/M‚d10, -2ı P/M‚d10}. Similarly, the
symmetric matrixJ2 has the form,

It may be diagonalized by a matrixK, J2K ) KD2, whereD2 is
a diagonal matrix with eigenvalues{-pω10(R)d10(R)‚∂/∂P, 0,
0, pω10(R)d10(R)‚∂/∂P}. (The matricesV and K are given in
Appendix A.) In order to obtain a form of the short time
propagator, we employ a second-order Trotter decomposition
of this operator36 and write

Here,Q1 ) e-J1δ ) V e-D1δV-1 with

wherea ) P/M‚d10(R)δ. Also, Q2 ) e-J2δ ) K e-D2δ K-1with

where the differential operatorb̂ ) pω10(R)d10(R)δ‚∂/∂P ≡
b‚∂/∂P. Sincee(b̂ are momentum translation operators, we see
that the elements of this matrix operator produce small positive
and negative momentum shifts scaled by the time stepδ when
they act on any function of the bath momenta. Thus, the action
of this contribution to the nonadiabatic propagator on phase
space functions produces a branching tree of classical trajec-
tories, which leads to an exponential growth in the number of
trajectories that must be followed. However, for smallδ, Q2

may be evaluated to linear order inδ to yield the simpler
expression,

which is correct to the same order as the Trotter approximation
used to evaluate the propagator. Using these expressions, we
may write

This expression is still not in a form that is suitable for
computation since it involves the differential operator∂/∂P
which continuously produces small momentum changes in the
bath as the system evolves nonadiabatically. However, as in
earlier studies,17,18 we may make the momentum-jump ap-
proximation that replaces the small continuous momentum
changes with momentum jumps that accompany each quantum
transition. To make the momentum-jump approximation, we
work with each matrix element in eq 21, since each matrix
element corresponds to a distinct possible quantum transition
(or no transition). We may write the matrix elements of eq 21
in the form,

where we have used the fact that (Q1A)ss′b/(Q1)ss′ ) Css′ + O (δ2)
with the matrixC given by

ei L s
0(tj-tj-1) )

ei∫tj-1
tj dτ ωs(Rs,τ) eiLs(tj-tj-1) ≡ Ws(tj-1, tj) eiLs(tj-tj-1) (14)

J1 ) ( 0 1 1 0
-1 0 0 1
-1 0 0 1

0 -1 -1 0
) P

M
‚ d10(R) (15)

J2 ) - (0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

) 1
2

pω10(R)d10(R) ‚ ∂

∂P
(16)

e-J δ ) e-J1δ e-J2δ + O (δ2) ) Q1Q2 + O (δ2) (17)

Q1 )

( cos2(a) -cos(a) sin(a) -cos(a) sin(a) sin2(a)

sin(a) cos(a) cos2(a) -sin2(a) -sin(a) cos(a)

sin(a) cos(a) -sin2(a) cos2(a) -sin(a) cos(a)

sin2(a) sin(a) cos(a) sin(a) cos(a) cos2(a)
)

(18)

Q2 ) 1
2

( 1 + eb̂ + e-b̂

2
eb̂ - e-b̂

2
eb̂ - e-b̂

2
-1 + eb̂ + e-b̂

2

eb̂ - e-b̂

2
1 + eb̂ + e-b̂

2
-1 + eb̂ + e-b̂

2
eb̂ - e-b̂

2

eb̂ - e-b̂

2
-1 + eb̂ + e-b̂

2
1 + eb̂ + e-b̂

2
eb̂ - e-b̂

2

-1 + eb̂ + e-b̂

2
eb̂ - e-b̂

2
eb̂ - e-b̂

2
1 + eb̂ + e-b̂

2

)
(19)

Q2 ≈ 1 + 1
2 (0 1 1 0

1 0 0 1
1 0 0 1
0 1 1 0

) b ‚ ∂

∂P
+O (δ2) ≡

1 + Ab ‚ ∂

∂P
+ O (δ2) (20)

e-J δ ) Q1 + Q1Ab ‚ ∂

∂P
+ O (δ2) (21)

(e-J δ)ss′ ) (Q1)ss′ + (Q1A)ss′b ‚ ∂

∂P
+ O (δ2) )

(Q1)ss′(1 +
(Q1A)ss′b

(Q1)ss′
‚ ∂

∂P) + O(δ2) ≡

(Q1)ss′(1 + Css′ ‚ ∂

∂P) + O(δ2) (22)
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whereS01 ) pω01d01/(2(P/M)‚d01) andS10 ) -S01. The terms
involving S01 in this matrix correspond to transitions (00)f
(01), (00)f (10), (01)f (11), or (10)f (11), that is, upward
transitions to or from diagonal density element to the off-
diagonal density elements (01) or (10). Also, the terms involving
S10 correspond to transitions (10)f (00), (01)f (00), (11)f
(10), or (11) f (01); that is, a similar set of downward
transitions. The terms involving 2S01 and 2S10 correspond to
transitions (00)h (11); that is, transitions between the ground
and the excited states.

The momentum jump approximation to this propagator entails
the approximation of the sum (1+ Css′‚∂/∂P) by an exponential
to give

The last line defines the matrixM whose explicit form is

In this equation,ĵR â is defined asĵR â ) exp(SR â‚∇P). Since
SR â ) pωR âMd̂R â/(2P‚d̂R â) is a function ofP, the action of the
operator in this form on any function of the momentaP cannot
be represented as a simple momentum translation. Here,d̂R â is
the unit vector alongdR â. However, it is easy to demonstrate
that it is a momentum translation operator in (d̂R â‚P)2 in the
following way.17 We may write SR â‚∂/∂P ) pωR âM‚
∂/∂(d̂R â‚P)2. In any functionf(P), P may be decomposed into
its components along and normal tod̂R â asP ) (1 - d̂R âd̂R â)‚
P + d̂R â(d̂R â‚P) ≡ P⊥ + d̂R â(d̂R â‚P) ) P⊥ + d̂R â sgn(d̂R â‚P)

x(d̂R â‚P)2. Using these results, we have

In writing the last line of this equation, we used the fact that
exp (pωRâM∂/∂(d̂Râ‚P)2)) is a translation operator on (d̂Râ‚P)2,

and we defined∆PR â ) d̂R â (sgn(d̂R â‚P)x(d̂R â‚P)2+pωR âM
- (d̂R â‚P)).

Similarly, the double jump operators that produce transitions
between the ground and excited states are given byĵRfâ )
exp(2SR â‚∇P), and their action onf(P) is

with ∆PRfâ ) d̂R â ×
(sgn(d̂R â‚P)x(d̂R â‚P)2+2pωR âM - (d̂R â‚P)).

We may verify that the energy of the system is conserved
under quantum-classical dynamics by showing that the matrix
elements of the total Hamiltonian in the adiabatic basis,
Hs(R, P), are invariant under the time propagation,

First, note that the vectorHs1 whose elements are (H0(R, P) )
P2/2M + E0(R), H1(R, P) ) H2(R, P) ) 0, andH3(R, P) )
P2/2M + E1(R)), is invariant under adiabatic dynamics

eı L s1
0 δ/2Hs1(R, P) ) Hs1(R, P). Adiabatic dynamics is the

classical evolution of the bath in the Hellmann-Feynman field
of an adiabatic state and thus conserves energy. So we need
only show that∑s1 M s0s1Hs1(R, P) ) Hs0(R, P), which results
from the direct multiplication of the matrixM with the vector
H and use of the relations

and

In eq 29, the third equality follows by direct substitution of the
explicit expression for∆P0f1.

Resulting Form of Surface-Hopping Representation.In-
serting the previous results in the original Trotter expansion
(eq 13), we have

Thus, we see that the short-time propagator represents, reading
from left to right, (1) classical propagation on thesj-1 surface
through a time intervalδ/2. This evolution will involve a phase
factor if thesj-1 index corresponds to a pair of different adiabatic
states; (2) a transitionsj-1 f sj determined by the elements of
M. Momentum changes in the bath are accounted for by the
momentum jump operators in this matrix; (3) classical propaga-
tion on thesj surface for a time intervalδ/2. The full evolution
is determined from the concatenation of evolutions over these
short time segments. These three steps constitute the surface-
hopping representation of the quantum-classical propagator. In
the next section, we describe how this propagator can be
simulated on the basis of the above formulation of the problem.

3. Simulation Algorithm

The method used to simulate the dynamics and compute the
expectation value of an observableB̂W(R, P, t) in eq 4 is based
on the development of the quantum-classical propagator as a
product of short time segments leading to eq 12. Using eq 31,
we may write the expression forB(t) more explicitly as

∑
s1

eı L s0
0 δ/2Ms0s1

eı L s1
0 δ/2Hs1

) Hs0
(28)

ĵ1f0H0 ) ĵ1f0(P
2/2M + E0(R)) )

((P + ∆P0f1)
2/2M + E0(R)) ) H3

ĵ0f1H3 ) ĵ0f1(P
2/2M + E1(R)) )

((P + ∆P1f0)
2/2M + E1(R)) ) H0 (29)

ĵ10H0 ) P2/2M + (E0(R) + E1(R))/2

ĵ01H3 ) P2/2M + (E0(R) + E1(R))/2 (30)

(eı L (tj-tj-1))sj-1sj
≈ ei L sj-1

0 δ/2Msj-1sj
(δ) ei L sj

0 δ/2 )

Wsj-1
(tj-1, tj - δ/2) eiLsj-1δ/2Msj-1sj

(δ)Wsj
(tj - δ/2, tj) eiLsjδ/2

(31)

C ) ( 0 S01 S01 2S01

S10 0 0 S01

S10 0 0 S01

2S10 S10 S10 0
) (23)

(e-J δ)ss′ ≈ (Q1)ss′ eCss′‚∂/∂P + O(δ2) ≡ Mss′(δ) + O(δ2) (24)

M (δ) )

( cos2(a) -cos(a) sin(a)ĵ01 -cos(a) sin(a)ĵ01 sin2(a)ĵ0f1

sin(a) cos(a)ĵ10 cos2(a) -sin2(a) -sin(a) cos(a)ĵ01

sin(a) cos(a)ĵ10 -sin2(a) cos2(a) -sin(a) cos(a)ĵ01

sin2(a)ĵ1f0 sin(a) cos(a)ĵ10 sin(a) cos(a)ĵ10 cos2(a)
)

(25)

ĵR âf(P) ) eSR â‚∂/∂Pf(P)

) epωR âM∂/∂(d̂R â‚P)2) f(P⊥ + d̂R â sgn(d̂R â‚P)x(d̂R â‚P)2)

) f(P + ∆PR â) (26)

ĵRfâf(P) ) e2pωR âM∂/∂(d̂R â‚P)2)f(P) ) f(P + ∆PRfâ) (27)
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where s′0 ) (R′0, R0) is obtained froms0 ) (R0, R′0) by the
interchangeR0 h R′0. The summations in the indices and the
phase space integral can be performed through Monte Carlo
sampling, but there remains the question of how to evaluate
the sequences of propagators that appear in the integrand at
successive time slices where the short time propagator itself is
complicated. Such calculations are easy to compute only
proceeding from left to right as we now discuss.

Consider a sequence of evolution operators acting on a
function f(x), for example,O1O2O3f(x) where

Theæ1(x), æ2(x), andæ3(x) denote multiplicative functions and
o1(x), o2(x), ando3(x) denote functions representing the effect
of the operator on the argument off. Mathematically,

Such sequences of operations are easy to compute recursively
going from left to right (the opposite order from right to left is
not recursive and is difficult to perform), since

This is also true ifO1, O2, andO3 are matrices of evolution
operators, since their product can be reduced to sums of products
of the above type. Hence, if we combine Monte Carlo sampling
of indices and phase space points (where the role ofx above is
played by the initial point in phase space of a trajectory) with
recursive propagation, we observe that the full quantum-classical
propagator can be calculated in terms of surface-hopping
trajectories. The simulation algorithm consists then of three steps
based on the structure of eq 32. For simplicity, we divide the
total time of the simulation intot/δ short time segments. Using
the form of the short time propagator in eq 31, we can rearrange
eq 32 into the Monte Carlo form

where the indexκ refers to the Monte Carlo sampling of the
elementary event (Rκ, Pκ, s′0

κ, s1
κ, ‚‚‚, sN

κ ) and the elements of
theM matrix are defined in eq 25. TheN 2 factor comes from
the uniform sampling for the sum on the initial statess0.
Phase space is importance sampled according to|FW

s′0 (R, P)|,
which leaves in the sum the phase factor,σ )
FW

s′0 (R, P)/|FW
s′0 (R, P)|. To continue the procedure, we need to

mix Monte Carlo sampling and propagation. The first step
(j ) 1) includes (a) classical propagation of phase space point
(R, P) to eiLs0δ/2(R, P) ) (R′,P′) and updating of the phase
factor Ws0 and all of the matrix elements and operators, including
the observable, at the value of this evolved phase point; (b)
choice of the value of the indexs1 in the matrixMs0s1(δ) by
sampling with probability|(Q1)s0

κs1
κ(δ)|/∑s1

κ|(Q1)s0
κs1

κ(δ)|. This in-
troduces the factor∑ s1

κ)0
3 |(Q1)s0

κs1
κ(δ)|/|(Q1)s0

κs1
κ(δ)|. (c) Once the

indexs1 is selected, the momentum jump (if any) specified by
M s0s1(δ) is applied to all functions and operators to its right so
that the new bath phase space point is (R′, Ph′), where the overline
denotes the momentum after the momentum-jump operation.
(d) The phase factorWs1 is computed and the evolution operator
eiLs1δ/2 is used to propagate the bath phase space coordinates
(R′, Ph ′) to time t1:e

iLs1δ/2(R′, Ph ′) ) (R′′, P′′). To continue the
propagation, the procedure is repeated starting from the index
j ) 2 in the product in eq 35 with the updated value of the bath
phase space point.

This algorithm has features in common with the sequential
short-time propagation (SSTP) algorithm introduced earlier.34,35

It differs in the following respects: the nonadiabatic propagator
exp(-J δ) described by the matrixM in eq 25 was derived
from a Trotter decomposition. In the SSTP algorithm, this
propagator was simply approximated by exp(-J δ) ≈ 1 - J δ.
The function (P/M)‚ds, which determines the probabilities with
which nonadiabatic transitions occur, appears as the argument
of trigonometric functions inM, while this quantity appears in
linear functions in the SSTP algorithm. More generally, the
unitary exponential character of the evolution operator in the
Trotter decomposition leads to an algorithm with a much firmer
basis.

In order to complete the specification of the simulation
scheme, we now describe another essential component of the
algorithm. Estimates of averages computed using the above steps
are dominated by large fluctuations which come from unusually
large values of the summand of eq 35. These fluctuations are
due to the factors in the integrand containing the matrixQ1.
These large factors exacerbate the sign problem that comes from
the phase factors in the evolution and make it difficult to obtain
accurate MC estimates of the observable. These fluctuations
can be eliminated in part by using a filter similar to that
described in ref 37 that eliminates improperly large biasing
fluctuations which should not contribute to the averaged
quantity. In its simplest form, the filter is implemented by putting
an upper bound on the magnitude of the factor in the square

B(t) ) ∑
s0

∫ dRdP BW
s0(R, P, t)FW

s′0(R, P) )

∑
s0

∫ dRdP FW
s′0(R, P) ×

∑
s1,‚‚‚,sN

[∏
j)1

N

Wsj-1
(tj-1, tj - δ/2) ×

eiLsj-1δ/2Msj-1sj
(δ)Wsj

(tj - δ/2, tj) eiLsjδ/2]BW
sN(R, P) (32)

O1f (x) ) æ1(x) f (o1(x)),

O2f (x) ) æ2(x) f (o2(x)),

O3f (x) ) æ3(x) f (o3(x)) (33)

O1O2O3f (x) )
æ1(x)æ2(o1(x))æ3(o2(o1(x))) f (o3(o2(o1(x)))) (34)

O1O2O3( f (x)) )
O1[O2O3f (x)] ) æ1(x)[O1O2f (x1)], x1 ) o1(x)

O2O3( f (x1)) ) O2[O3f (x1)] ) æ2(x1)[O3f (x2)], x2 ) o2(x1)

O3f (x2) ) æ(x2) f (x3),x3 ) o3(x2)

B(t) )
N 2

M
∑
κ)1

M FW
s0

′κ(Rκ, Pκ)

|FW
s0

′κ(Rκ, Pκ)|
×

[ ∏
j)1

t/δ (W sj-1
κ (tj-1, tj - δ/2) eiLs j-1

κ δ/2
∑sj

k|(Q1)sj-1
κ sj

κ(δ)|

|(Q1)sj-1
κ sj

κ(δ)|
×

Msj-1
κ sj

κ(δ)Wsj
κ(tj - δ/2, tj) eiLsj

κδ/2)
sj-1

κ sj
κ
]BW

sN
κ

(Rκ, Pκ) (35)
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brackets appearing in the summand in eq 35. When, at stagej
in the calculation of the product in the summand, the running
summand exceeds the bound, the factor in the updating of the
running product is put to unity and the indexsj is put tosj-1.

The value of the bound depends on the nonadiabaticity of
the system and the duration of the simulation. In addition, in
order to minimize the size of the ensemble required to estimate
expectation values of observables, it is necessary to choose the
largest possible size of the time intervalδ, consistent with a
negligible error in the Trotter approximation. The filter must
be used for medium and long time simulations.

The time stepδ and the filter parameters can be determined
by first simulating the dynamics for various value ofδ for a
short time without the filter and monitoring the convergence of
the results asδ is decreased. The largest value ofδ needed to
obtain converged results may be used in subsequent simulations.
Also, although the filter is not required for short times, a filter
may be employed, and the smallest value of the bound which
reproduces the previously obtained converged results may be
determined. If needed, for longer-time simulations, one may
increase the bound further until convergence is obtained.

4. Spin-Boson Model

The spin-boson model38,39 is one of the most popular testing
grounds for simulation schemes for many-body quantum
dynamics since numerically exact full quantum results are
available for this model.8,9,40-43 As such, it provides an important
test of the accuracy of our surface-hopping method for simulat-
ing quantum-classical dynamics. In addition, it captures the
essential elements of a variety of quantum rate phenomena in
open quantum systems and has been used to model many
physical and chemical systems.39

The spin-boson model describes a two-level system with
states|v〉 and |V〉 bilinearly coupled to a bath ofN harmonic
oscillators. For this model, quantum-classical Liouville dynamics
in eq 6 (or the corresponding equation of motion for the density
matrix) is exact24 so a full test of the simulation scheme can be
made without having to consider the validity of the assumptions
that underlie the application of this method to any particular
real system. The partially Wigner transformed spin-boson
Hamiltonian is

where the bath oscillators have massesMj and frequenciesωj

andσ̂x andσ̂z are Pauli spin matrices. We simulate a spin-boson
system with an Ohmic spectral density characterized by the
Kondo parameterê and frequencyωc. The values of the
parameters were taken from Makri and Thompson8 and are given

by cj ) (êpω0Mj)1/2ωj, ωj ) -ωc ln(1 - jω0/ωc) whereω0 )
ωc(1 - exp(-ωmax/ωc))/N andj ) 1, ...,N. The parameterωmax

) 3ωc is a cutoff frequency. Further details of the model, along
with the forms of the adiabatic states and non-adiabatic coupling
matrix elements, can be found in ref 24. Dimensionless variables
are used in reporting the numerical results, with the energy (pΩ)
and inverse temperaturesâ ) 1/kBT given in units ofpωc.

We consider the computation of the average value of the
population difference for which the observable in eq 4 is
B̂W(R, P) ) σ̂z,

In order to compare with previously obtained exact results,
the initial value of the density matrix is taken to be the product
of subsystem and bath density matrices,

The subsystem density matrix is|v〉 〈v| corresponding to the
subsystem in state|v〉. Two different forms of the bath density
have been employed in the literature to obtain the exact quantum
results with which we compare our simulation results. The bath
density matrix is either that for the quantum bath in internal
thermal equilibrium,

or the canonical density,FWn
(b) . The latter form may be obtained

from eq 39 by the replacementR′j f R′j - ci/ω i
2. Equation 39 is

expressed in the dimensionless variablesR′j ) (Mjωc/p)1/2Rj, P′j
) ( pMjωc)-1/2Pj.

Results

To investigate the validity and scope of the TBQC algorithm,
the time dependence of the average population difference for a
wide variety of system parameters (non-adiabatic coupling
strength, temperature, and quantum subsystem energies) was
simulated and compared with exact results. In all cases, error
bars were estimated. In the figures, the initial density matrix
corresponds toFWn

(b) with the exception of Figure 2 where it is
FWe

(b) . The number of time slices in each figure equals the
number of TBQC data points denoted by the0 symbol and the
Ohmic bath consisted of 200 oscillators. The MD integration
time step was 0.1 (in dimensionless units). In the figures
involving relatively long simulation times (Figures 1a and 3a),
105 trajectories were used to obtain converged results. The decay

Figure 1. Exact quantum results from ref 40 (b), TBQC algorithm (0) (a, left) â ) 12.5,ê ) 0.09, andΩ ) 0.4; (b, right)â ) 0.25,ê ) 0.09,
andΩ ) 0.4.

σz(t) ) Tr′ ∫ dRdP σ̂z(t)F̂(R, P) (37)

F̂W(R, P) ) |v〉 〈v|FW
(b)(R, P) (38)

FWe
(b)(R′, P′) )

∏
j)1

N tanh (âωj /2)

π
exp[-

2 tanh (âωj /2)

ωj
(P′j

2

2
+

ω j
2R′j

2

2
)] (39)

ĤW ) -pΩσ̂x + ∑
j)1

N ( Pj
2

2Mj

+
1

2
Mjωj

2Rj
2 - cjRjσ̂z) (36)
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rates in these cases can be estimated with only 104 trajectories.
All of the other simulations used 2× 104 trajectories. In all
cases, two nonadiabatic transitions were required to obtain
agreement with the exact results. Figure 1a shows the slow decay
of the oscillations in the population difference for weak
subsystem-bath couplingê ) 0.09 and a low temperatureâ )
12.5. The oscillations are highly damped in Figure 1b for a high
temperature,â ) 0.25. In both cases, the simulations agree well
with the exact quantum results, although in Figure 1a the phase
coherence is lost for long times as result of errors that arise
because of our sampling scheme. One may compare our results
with those of other simulation methods for these parameter
choices (cf. Figure 5 of ref 44 and Figure 2 of ref 14).
Comparable agreement is found, although the loss of phase
coherence sets in at different times depending on the precision
of the various simulation methods for the parameter set in Figure
1a.

Figure 2 presents a comparison of results for low (ê ) 0.1)
and high (ê ) 0.5) friction for â ) 3 andΩ ) 1/3. Our results
are in close agreement with the exact quantum results. For
comparison, see Figure 4 of ref 14. Finally, we consider systems
with a larger energy gaps,Ω ) 0.4 andΩ ) 1.2, in Figure 3.
Once again, our simulations are able to reproduce the exact
quantum results for this model. Comparison results may be
found in Figures 1 and 2 of ref 42, Figures 2b and 3a of ref 14,
and Figures 7a and 6b of ref 44.

These simulation results confirm that the TBQC algorithm
is able to accurately reproduce the exact quantum results for
the spin-boson model over a wide range of coupling strengths
and temperatures. The method is capable of following the
dynamics for times which are three to four times longer than is
possible using the SSTP algorithm. The ability of the Trotter
algorithm to simulate the dynamics for longer times than the
SSTP algorithm is especially evident for some parameter
regimes, especially for high values of the friction. For example,
the SSTP algorithm tends to fail forâ ) 3 andΩ ) 2/3 for

values of the frictionê > 0.1. The Trotter-based quantum-
classical algorithm described here will allow one to extend the
class of problems that can be studied using quantum-classical
Liouville dynamics.

5. Conclusion

The Trotter-based algorithm for simulating quantum-classical
Liouville dynamics is able to reproduce the numerically exact
full quantum results for the spin-boson model for longer times
and for a wider range of coupling strengths than the sequential
short time propagation algorithm. The results are of comparable
accuracy to those of many schemes for simulating quantum
dynamics for this system.14,42,44

A few aspects of our results merit further comment. As
discussed earlier, quantum-classical Liouville dynamics is exact
for the spin-boson model. Expectation values and correlation
functions are also exact provided the initial or equilibrium states
are sampled for the full quantum distributions. The simulation
algorithm employs the momentum-jump approximation in the
computation of the nonadiabatic propagator. The fact that our
simulation results are in accord with the exact quantum results
confirms the validity of this approximation for the spin-boson
model. The discrepancies at long times can be attributed to the
difficulties associated with Monte Carlo sampling discussed in
the text.

Although calculations cannot be extended to arbitrarily long
times due to these sampling problems, the combination of the
Trotter scheme for the nonadiabtic propagator and the imple-
mentation of filtering has allowed us to greatly extend the
accessible time and the range of coupling strengths and
temperatures that can be considered. Furthermore, the structure
of the nonadiabtic propagator leads to a surface-hopping
dynamics that exactly conserves energy when nonadiabatic
transitions take place, regardless of whether these transitions
are to pairs of different adiabatic states or pairs of the identical
adiabatic states.

Figure 2. Exact quantum results from ref 8 (b), TBQC algorithm (0) (a, left) â ) 3, ê ) 0.1, andΩ ) 1/3; (b, right)â ) 3, ê ) 0.5, andΩ )
1/3.

Figure 3. TBQC algorithm (0), (a, left) exact quantum results from refs 41 and 42 (b), â ) 1, ê ) 0.13, andΩ ) 0.4; (b, right) exact quantum
results from ref 43 (b), â ) 0.25,ê ) 2, andΩ ) 1.2.
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While this study has focused on the spin-boson model, the
algorithm presented here can be applied to any quantum
subsystem described by a small manifold of quantum states
coupled in any way to a bath described by any potential energy
function. For instance, quantum-classical Liouville dynamics
has been used to study condensed phase proton-transfer
processes,37,45,46and the TBQC algorithm can be used to study
complex systems of this type. Quantum bath nuclear dispersion
effects may also be taken into account by suitable sampling of
initial or equilibrium quantum distributions. In this case, only
the dynamics is approximated by the quantum-classical Liouville
equation. This feature, in combination with the simulation
algorithm discussed here, will greatly extend the domain of
applicability and utility of quantum-classical Liouville dynamics
and its simulation in terms of surface-hopping trajectories.
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Appendix

A: Diagonalization of J1 and J2. For a two state sub-system,
one can show thatJ1

can be written in the formJ1 ) V-1D1V with

whereV is the matrix of eigenvectors andV-1 is its inverse.
The diagonal matrix of eigenvalues isD1 whose diagonal
elements are{0, 0, -2ı P/M‚d, 2ı P/M‚d}. Similarly,

with pω10(R) ) E1(R) - E0(R) may be written asJ2 ) K-1D2K
with

whereK andK-1 are the matrix of eigenvectors and its inverse,
respectively. The diagonal matrix of eigenvaluesD2 has diagonal
elements{-pω10(R)d(R)‚∂/∂P, 0, 0, pω10(R)d(R)‚∂/∂P}.

B: Multi-State Subsystem.The quantum-classical dynamics
of an N-state quantum system can be computed using eqs 12
and 13 where the matrix propagators have dimensionN 2 ×
N 2. In this Appendix, we show how the nonadiabatic propagator
in this formula can be computed without resorting to numerical
diagonalization.

The nonadiabatic transition operatorJ is proportional to the
nonadiabatic coupling matrix elementsdR â which satisfy the
symmetry relationsdR â ) -dâR

/ . Thus, for anN-level system,
there areI ) 1/2 N(N - 1) distinct nonadiabatic coupling
matrix elements, and the nonadiabatic transition operatorJ can
be written as a sum onI terms, each of which is proportional
to a distinctdR â with R > â,

Using a Trotter factorization, the short time nonadiabatic
propagator can be written as

As for the two-level system, each of the nonadiabatic
transition operators can be written as the sum of two terms,
one of which is proportional toP and the other to∂/∂P, leading
to the additional Trotter factorization,

The problem of the calculation of theN-state nonadiabatic
propagator is now reduced to the calculation of the propagators
corresponding to transitions between pairs of states in the
N-level system.

For each pair of indices representing a pair of adiabatic states
(µ, γ), µ > γ, we have

and

It follows directly from eqs 47 and 48 that the vector space
corresponding to this representation consists of a four-
dimensional invariant space spanned by the set of states{(γγ),
(γµ), (µγ), (µµ)}, and 2(N - 2) two-dimensional vector
spaces spanned by{(γ, R′), (µR′)} for R′ * µ, γ, and

J1 ) - ( 0 1 1 0
-1 0 0 1
-1 0 0 1
0 -1 -1 0

) P
M

‚d(R) (40)

V ) (1 0 -1 -1
0 -1 -ı ı
0 1 -ı ı
1 0 1 1

), V-1 ) ( 1
2

0 0
1
2

0
-1
2

1
2

0

-1
4

ı
4

ı
4

1
4

-1
4

-ı
4

-ı
4

1
4

) (41)

J2 ) - (0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

) pω10(R)d(R)‚( ∂

∂P)
2

(42)

K ) (1 -1 0 1
1 0 -1 -1
1 0 1 -1
1 1 0 1

), K-1 ) ( 1
4

1
4

1
4

1
4

-1
2

0 0
1
2

0
-1
2

1
2

0

1
4

-1
4

-1
4

1
4

) (43)

J ) ∑
l)1

I

J (l) (44)

e-J δ ) e-∑l)1
I J (l)δ ≈ ∏

l)1

I

e-J (l)δ + O (δ2) (45)

e-J (l)δ ≈ e-J1
(l)δe-J2

(l)δ + O (δ2) (46)

J1RR′,ââ′
(l) ) -dµγ ‚ P

M
((δµRδγâ - δγRδµâ)δR′â′ +

(δµR′δγâ′ - δγR′δµâ′)δR â) (47)

J2RR′,ââ′
(l) ) - 1

2
pωµγdµγ ‚ ∂

∂P
((δµRδγâ + δγRδµâ)δR′â′ +

(δµR′δγâ′ + δγR′δµâ′)δR â) (48)
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{(Rγ), (Rµ)} R * µ, γ. The complement of these vector spaces
is an (N - 2)2-dimensional null space.

With a suitable permutation of the pairs of states, theJ (l)

matrices may be written in block diagonal forms consisting of
a single 4× 4 block, 2(N - 2) 2 × 2 blocks and a (N - 2)2 ×
(N - 2)2 block corresponding to a null space. The 4× 4 blocks
have structures identical to those for the two level system
discussed in the text. The 2× 2 blocks have a simple structure.
For instance, lettingJ 2×2

(l) be the 2× 2 matrix spanned by the
states{(γR′), (µR′)} with R′ * γ, µ, these blocks corresponding
to theJ 1

(l) andJ 2
(l) matrices have the explicit forms

which has eigenvalues(ı P/M‚dµγ(R), and

with eigenvalues(1/2 pωµγdµγ(R)‚∂/∂P ) (bµγ(R)‚∂/∂P. The
corresponding propagators have the form

with aµγ ) δ P/M‚dµφ(R), and

whereb̂µγ ) δ 1/2 pωµγdµγ(R)‚∇P. As for the two-level system,
we may write eq 52 as

Using the momentum-jump approximation as described in the
text for the two-level system, this expression may be written as

This analysis allows theN-state case to be treated in a manner
that is similar to that for a two-level system. Each of the
nonadiabatic propagators corresponding to theJ (l) nonadiabatic
transition operators is written in a representation{s(l)} of states
which makesJ (l) block diagonal. The states|s(l) 〉 are simply
permutations of the|s〉 states,|s(l)〉 ) P |s〉. These results allow
the nonadiabatic propagator for anN -level system to be
constructed analytically. The sequence of matrix nonadiabatic
propagators may then be sampled using the Monte Carlo method

discussed in the text to account for all possible transitions in
the manifold ofN states.

References and Notes
(1) Burghardt, I.; Cederbaum, L. S.; Hynes, J. T.Comput. Phys.

Commun.2005, 169, 95.
(2) Rey, R.; Moller, K. B.; Hynes, J. T.Chem. ReV. 2004, 104, 1915.
(3) Tully, J. C.J. Chem. Phys.1990, 93, 1061.
(4) Hammes-Schiffer, S.; Tully, J. C.J. Chem. Phys.1994, 101, 4657.
(5) Xiao, L.; Coker, D. F.J. Chem. Phys.1994, 100, 8646.
(6) Webster, F.; Wang, E. T.; Rossky, P. J.; Friesner, R. A.J. Chem.

Phys.1994, 100, 4835.
(7) Thoss, M.; Wang, H.; Miller, W. H.J. Chem. Phys.2001, 114,

9220.
(8) Thompson, K.; Makri, N.J. Chem. Phys.1999, 110, 1343.
(9) Makri, N. J. Phys. Chem. B1999, 103, 2823.

(10) Shi, Q.; Geva, E.J. Chem. Phys.2004, 121, 3393.
(11) Jasper, A. W.; Stechmann, S. N.; Truhlar, D. G.J. Chem. Phys.

2002, 116, 5424.
(12) Bittner, E.; Schwartz, B. J.; Rossky, P. J.J. Mol. Struct. THEOCHEM

1997, 389, 203.
(13) Thorndyke, B.; Micha, D. A.Chem. Phys. Lett.2005, 403, 280.
(14) Bonella, S.; Coker, D. F.J. Chem. Phys.2005, 122, 194102.
(15) Burghardt, I.J. Chem. Phys.2005, 122, 094103.
(16) Stock, G.; Thoss, M.AdV. Chem. Phys.2005, 131, 243.
(17) Kapral, R.; Ciccotti, G. A Statistical Mechanical Theory of Quantum

Dynamics in Classical Environments. InBridging Time Scales: Molecular
Simulations for the Next Decade; Nielaba, P., Mareschal, M., Ciccotti, G.,
Eds.; Springer: Berlin, 2002; p 445.

(18) Kapral, R.; Ciccotti, G.J. Chem. Phys.1999, 110, 8919.
(19) Wigner, E.Phys. ReV. 1932, 40, 749.
(20) Nielsen, S.; Kapral, R.; Ciccotti, GJ. Chem. Phys.2001, 114, 5805.
(21) Kim, H.; Kapral, R.J. Chem. Phys.2005, 122, 214105.
(22) Tully, J. C. Mixed quantum-classical dynamics: mean-field and

surface-hopping. InClassical and Quantum Dynamics in Condensed Phase
Simulations, Berne, B. J., Ciccotti, G., Coker, D. F., Eds.; World
Scientific: Singapore, 1998; Chapter 21.

(23) Kapral, R.Annu. ReV. Phys. Chem.2006, 57, 129.
(24) Mac Kernan, D.; Ciccotti, G.; Kapral, R.J. Chem. Phys.2002,

116, 2346.
(25) Aleksandrov, I. V.Z. Naturforsch. A1981, 36, 902.
(26) Gerasimenko, V. I.Theor. Math. Phys.1982, 50, 49.
(27) Boucher, W.J. Traschen Phys. ReV. D 1988, 37, 3522.
(28) Zhang, W. Y.; Balescu, R.J. Plasma Phys.1988, 40, 199.
(29) Donoso, A.; Martens, C. C.J. Phys. Chem.1998, 102, 4291.
(30) Horenko, I.; Salzmann, C.; Schmidt, B.; Schu¨tte, C.J. Chem. Phys.

2002, 117, 11075.
(31) Santer, M.; Manthe, U.; Stock, G.J. Chem. Phys.2001, 114, 2001.
(32) Wan, C.; Schofield, J.J. Chem. Phys.2000, 113, 7047.
(33) Nielsen, S.; Kapral, R.; Ciccotti, G.J. Chem. Phys.2000, 112, 6543.
(34) Mac Kernan, D.; Kapral, R.; Ciccotti, G.J. Phys.: Condens. Matter

2002, 14, 9069.
(35) Sergi, A.; Mac Kernan, D.; Ciccotti, G.; Kapral, R.Theor. Chem.

Acc.2003, 110, 49.
(36) In order to avoid a branching tree of trajectories, which would make

the algorithm intractable, the matrixQ2 in eq 17 must be expanded to second
order inδ. Consequently, a third order approximation to the nonadiabatic
propagator in eq 19 would not add precision to the algorithm.

(37) A variant of the filter was used in the calculation of proton transfer
rates using quantum-classical Liouville dynamics in Hanna, G.; Kapral, R.
J. Chem. Phys.2005, 122, 244505.

(38) Leggett, A. J.; Chakravarty, Dorsey, A. T.; Fisher, M. P. A.; Garg,
A.; Zwerger, M.ReV. Mod. Phys.1987, 59, 1.

(39) Weiss, U.Quantum DissipatiVe Systems; World Scientific: Sin-
gapore, 1999.

(40) Makarov, D. E.; Makri, N.Chem. Phys. Lett. 1994, 221, 482.
(41) Egger, R.; Mak, C. H.J. Phys. ReV. B 1994, 50, 15210.
(42) Golosov, A. A.; Reichman, D. R.J. Chem. Phys.2001, 114, 1065.
(43) Mak, C. H.; Chandler, D.Phys. ReV. A 1991, 44, 2352.
(44) Sun, X.; Wang, H.; Miller, W. H.J. Chem. Phys.1998, 109, 7064.
(45) Hanna, G.; Kapral, R.Acc. Chem. Res.2005, 39, 21.
(46) Kim, H.; Kapral, R.J. Chem. Phys.2006, 125, 234309.

J 1,2×2
(l) ) (0 -1

1 0 ) P
M

‚ dµγ(R) (49)

J 2,2×2
(l) ) - (0 1

1 0) 1
2

ωµγ(R)dµγ(R)‚ ∂

∂P
(50)

e-J1,2×2
(l)

δ ) ( cos(aµγ) sin(aµγ)
-sin(aµγ) cos(aµγ) ) (51)

e-J2,2×2
(l)

δ ) 1
2(eb̂µγ + e-b̂µγ eb̂µγ - e-b̂µγ

eb̂µγ - e-b̂µγ eb̂µγ + e-b̂µγ ) (52)

e-J2,2×2
(l)

δ ≈ 1 + (0 1
1 0) bµγ‚ ∂

∂P
+ O (δ2) (53)

e-(J1,2×2
(l) +J2,2×2

(l)
)δ ≈

( cos(aµγ) -sin(aµγ)ĵγµ

sin(aµγ)ĵµγ cos(aµγ) ) + O (δ2) (54)
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