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Quantum rate processes in condensed phase systems are often computed by combining quantum and classical
descriptions of the dynamics. An algorithm for simulating the quantum-classical Liouville equation, which
describes the dynamics of a quantum subsystem coupled to a classical bath, is presented in this paper. The
algorithm is based on a Trotter decomposition of the quantum-classical propagator, in conjunction with Monte
Carlo sampling of quantum transitions, to yield a surface-hopping representation of the dynamics. An expression
for the nonadiabatic propagator that is responsible for quantum transitions and associated bath momentum
changes is derived in a form that is convenient for Monte Carlo sampling and exactly conserves the total
energy of the system in individual trajectories. The expectation values of operators or quantum correlation
functions can be evaluated by initial sampling of quantum states and use of quantum-classical Liouville
dynamics for the time evolution. The algorithm is tested by calculations on the spin-boson model, for which
exact quantum results are available, and is shown to reproduce the exact results for stronger nonadiabatic
coupling and much longer times using fewer trajectories than other schemes for simulating quantum-classical
Liouville dynamics.
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An understanding of the dynamical properties of condensed
phase quantum systems underlies the description of a variety\,\,hereﬁ,eq = e PH/Tr e is the canonical equilibrium density
of quantum phenomena in chemical and biological systems. matrix. The computation of either of these expressions involves
These phenomena include, among others, nonadiabatic chemicahyerages over initial quantum distributions and time evolution
rate processes involving electronic, vibrational, or other degreesyt 5 quantum operator.
of freedom, decoherence in open quantum systems, and quantum |, many applications, it is useful to partition the system into
transport processes. Quantum effects underlie the study ofy gpsystem and a bath. A phase space description of the bath
ultrafast rate processes in solutibh.The development of o pe obtained by taking a partial Wigner transform over the
schemes for the efficient and accurate simulation of the quantumpaih coordinatg Q} representation of the full quantum sys-
dynamics of such systems is an active area of research ingem1718The partial Wigner transform of an operaiis defined
chemical physics'® and is essential if problems of chemical 549
interest involving complex molecular species in the condensed
phase are considered. This article is concerned with the

A iP-zh Z| A Z
development of such a simulation method. BMR P) = [ dze"” @Q - E‘B‘R"' ED 3)
In investigations of the dynamical properties of quantum

statistical mechanical systems, one is often interested in theith an analogous definition for the partial Wigner transform

average value of some operator when the system evolves fromof the density matrix. Thufuw(R, P) is an abstract operator in

a given initially prepared distribution described by the density the vector space of the subsystem and depends on the

matrix p(0). In suchAc_ase_s, the quantum mechanical averagéphase space variable®R, (P) of the bath. In this partial

value of an operatoB is given by Wigner representation, the expectation valud(j takes the
form

B(t) = TrBa(t) = TrB(t)p(0) (1)

) B(t) = Tr [ dRdP B(R P, )5,(R P) (4)
In the last equalitys(t) evolves in time through the Heisenberg
equation of motion, B(t)/dt = (i/A)[H,B(t)], whereH is the  where the prime on the trace indicates a trace over the subsystem
Hamiltonian operator. Alternatively, one may be interested in degrees of freedom arig(R, P) = pw(R, P, 0). All information
the calculation of a transport propettywhich may generally  on the quantum initial distribution is contained (R, P, 0).
be written as a time integral of a quantum mechanical correlation Similarly, in the partial Wigner representation, a transport
function of two operator& andB, property takes the for##20:21

T Part of the “James T. (Casey) Hynes Festschrift”. 00 , ~ AL
* Corresponding author. A~ f(‘) dtTr f dRdP BW(R, P, t)(APec)w(R, P) (5)
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where initial quantum correlations are described by and the subsystem Hamiltonian in the field of the fixed bath
(Apegw(R, P). In both cases, the quantum evolution of the particles,hy(R). The total Hamiltonian is given byiw =
dynamical variable must be computed to obtain the expectationP?2M + hw(R). The adiabatic eigenfunctiongx; RO are
value or transport property. These quantum statistical mechanicafthe solutions of the eigenvalue problerhw(R)|o;; RO =
expressions are exact. In this partial Wigner representation, Eo(R)|o; RUIn this basis, the quantum-classical Liouville super-
the computation of the full quantum evolution Bf(R, P, t) operator has matrix elements (see ref 18 for derivations and
for a large many-body system is still an intractable problem. full definitions),

Because of the difficulty of simulating the quantum dynamics

of large many-body systems, most quantum dynamics methods, oo pp = (104q T 1Loo)00s00 s — Toer pp
for example, surface-hopping schen@¥ consider the com-
bined evolution of quantum and classical degrees of freedom. = i]&%,éaﬁaa,ﬁ, ~ Tt @

Given this perspective, we consider systems whose dynamics
may be accurately approximated by quantum-classical Liouville fere )0, (R) = (Eo(R) — Eo(R))/h andiLq is the Liouville

equation.”?* This is the case, for instance, if the subsystem gperator that describes the classical evolution determined by

and bath consist of particles with masseandM, respectively, the mean of the HellmarrFeynman forces corresponding to
andm < M.*8 Furthermore, if the bath is harmonic and bilinearly  5giapatic states. and o,

coupled to the subsystem, then quantum-classical Liouville

dynamics entails no approximation and is equivalent to a full ) P 9 1,4 an 0

guantum description of the dynamics of the entire syst€fine ILoo = M 9R + 5 (Fw+Fw) - P 8)
quantum-classical Liouville equation for an observablé is

whereFy, = —[d; RI(3Hw(d, R))/oR|c; ROis the Hellmana-

dBw() _i [Ay, BuO] — 1 Ay, By} — Feynman force for state. The operatotZ.q, gp iS responsible
dt At W 2 VY X . for nonadiabatic transitions and associated changes in the bath
{Bu), Hp}) =i By(t) (6) momentum and can be written as the sum of two terms,
where the last line defineg’, the quantum-classical Liouville Jaa pp = Naw.pp T J2aw, s )

operatort8.25-30.10 While the formal solution of this equation
of motion is easily written aBu(t) = exp(./t)Bw(0), the where
construction of effective simulation algorithms for realistic b
many-body systems is not a simple task, and a number of — * P
diffe?/ent n')llethyods have been propg§%d‘.4 Jnoat (dogusp + dayOag) M (10)

In this paper, we describe a Trotter-based scheme for _
simulating quantum-classical Liouville dynamics in terms of 2&&',,8/3'1_
an ensemble of surface-hopping trajectories. The method can * 0
be used to compute the dyr?gmi?:s f(ir longer times with fewer 2 ((Bo = Bp)dupOup + (B = Bg)dugOog) - P (11)
trajectories than the sequential short-time propagation (SSTP)
algorithm, which is also based on surface-hopping trajecto- and desg(R) = [6; R|9/dR|3; RUis the nonadiabatic coupling
ries3435Section 2 formulates the problem in an adiabatic basis matrix element. The matrix elements of the quantum-classical
that is convenient for a description of the dynamics in terms of propagator in the adiabatic basis are (@)« ss. The
surface-hopping trajectories. The Trotter decomposition of the superoperator notation involving pairs of quantum states can
quantum-classical propagator in a form that conserves energybe eliminated by associating an index= o™+ o' with the
in nonadiabatic transitions is presented in this section for a two- pair (@o'), where 0= a,0’ < ./’for an i-state quantum
level system coupled to an arbitrary bath. On the basis of this subsysteni! The quantum-classical propagator then takes the
formulation, the Trotter-based quantum-classical (TBQC) al- form (exp{./t))ss Wherei /s¢ = ifféss — Jss.
gorithm that is used to simulate the dynamics is described in  The starting point of the analysis is similar to that for the
section 3. The efficacy of the simulation method is illustrated SSTP algorithr#f where the propagator is written as a product
in section 4 where results for the spin-boson model are of short-time segments. Since the Liouville operator is time
presented. Since quantum-classical Liouville dynamics is equiva- independent and commutes with itself we may write the
lent to full quantum mechanics for this model, comparisons with propagator exactly as the productMfshort time propagators
exact quantum results may be made. Appendices A and B giveas
additional details and sketch the generalization to the multi-

state case. Although the focus of this paper is on simulation o N | A—t0

schemes and their application to the standard spin-boson test (€ )ss, = Z €7 ") s (12)

case, the methods developed here should provide a means to S1%2" "S- =

simulate more effectively the quantum dynamics of realistic

models of systems of chemical interest. wheret; = jo andt = No. Moreover, now the propagator for
each of the small time intervats — tj—1 = J is computed by

2. Trotter Factorization of Quantum-Classical Propagator using a Trotter factorization as

The evolution of quantum-classical dynamics described by
the Liouville operator/” may be formulated in terms of an
ensemble of surface-hopping trajectories. For this purpose, it
is convenient to work in a basis of adiabatic eigenfunctions. where we have used the fact that is diagonal in the adiabatic
The partially Wigner transformed Hamiltonian is the sum of basis. The propagatofe™i—t-2 can be written as the product
the kinetic energy of the bath particles with mads P%2M, of a phase factor and a classical evolution operatst as

(e| ,‘/’(tl—tj,l))ﬁﬂ% ~ ¢ ,/;{1 16/2(67 75 eu,,/'ﬁoalz + 0( 53) (13)

)57151
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g Gt-0 —
gl drodRd gmh) — g 1) €T (14)

whereRs, denotes the value @ at timer obtained by classical
evolution under the HellmarfFeynman force with quantum
state indexs. The propagator (& %)s is responsible for quantum

transitions and bath momentum changes and, henceforth, we|

refer to it as the nonadiabatic propagator. If the nonadiabatic

propagator is set to unity, quantum-classical dynamics reduces

to adiabatic dynamics. In order to proceed, we must be able to

compute the action of the nonadiabatic propagator on partially |~

Wigner transformed operators.
Nonadiabatic Propagator for a Two-Level System.The
structure of7 in eq 9 as the sum of two terms, one of which
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Q=3
1+e6+26 ef’fze*f’ eﬁfze*F’ 1_'_ef’-l—_ze*fJ
eB—Ze*B 1_i_ef’+2e*b _1+e5+2e*5 eB—ze*5
eB _26—5 1+et3+ze—6 l+e6+2e—6 eB _Ze—ﬁ
l_I_e[’-l-ze*fJ e —Ze*6 ¢ —2e*6 1+e'3+2e*6
(19)

where the differential operatds = Aw1o(R)dio(R)0+0/0P =

is a differential operator in the bath momenta, suggests that theb+d/dP. Sincee*P are momentum translation operators, we see

evaluation of this propagator can be carried out by a further
Trotter decomposition. Here, we show how this term can be
evaluated for a two-level system using the momentum-jump
approximatio#”18which is valid to @ (6?). A discussion of the
general multi-level case is given in Appendix B.

For a two-level system with states= 0, 1, the indexs takes
the values from the set'= {0, 1, 2, 3 corresponding to the
pairs of state indices (00), (01), (10), and (11), respectively.
The matrix operatory = J; + J, with elementsZs¢ = Jis¢ +
Jose IS @ 4 x 4 matrix. The J; matrix has the explicit
antisymmetric form,

dio(R) (15)

Orro
O r r o
Z|v

1 1
0 O
0 O
1-1

where we have used the fact thigt = —d; for a real adiabatic
basis. This matrix may be diagonalized by a maw/jixJ;V =
VD, whereD; is the diagonal matrix of zero or purely imaginary
eigenvalues{0, 0, 2 P/M-dis, —21 P/M-dig}. Similarly, the
symmetric matrixJ, has the form,

3= (16)

1
0 1 9
0 ho1RA(R) - 75
1

O rFrPFrOo
= OOoOPR
(& e )

It may be diagonalized by a matri«, J,K = KD,, whereD; is

a diagonal matrix with eigenvalugs-hw10(R)d1o(R)+9/0P, 0,

0, hw1o(R)dio(R)*8/0P}. (The matricesv and K are given in
Appendix A.) In order to obtain a form of the short time
propagator, we employ a second-order Trotter decomposition
of this operatct and write

e /0 =g 0 ((52) =Q0Q,+ 0 (62) 17)

Here,Q; = e 10 = V e PV with

Q.=

cosz(a) —cos@) sin@ —cosg) sin(@) sinz(a)
sin@) cos@)  cog(a) —sirf(a)  —sin(@) cos@)
sin@) cos@)  —sin’(a) cod(@  —sin(@) cos@)

sif(@  sin@) cos@)  sin@) cosg) cod(a)

(18)

wherea = P/M-d;o(R)d. Also, Q, = €792 = K e P20 K~lwith

that the elements of this matrix operator produce small positive
and negative momentum shifts scaled by the time &tefnen

they act on any function of the bath momenta. Thus, the action
of this contribution to the nonadiabatic propagator on phase
space functions produces a branching tree of classical trajec-
tories, which leads to an exponential growth in the number of
trajectories that must be followed. However, for smallQ,

may be evaluated to linear order ito yield the simpler
expression,

Q,~ 1+ b- +()(a)_

NI
OkFrkFrOo
R OOoOR
= OOoOR
oLk O

L0 g2
1+ Ab- 5+ 0(8) (20)

which is correct to the same order as the Trotter approximation
used to evaluate the propagator. Using these expressions, we
may write

=Q,+ QlAb + 0% (21)

This expression is still not in a form that is suitable for
computation since it involves the differential operatéP
which continuously produces small momentum changes in the
bath as the system evolves nonadiabatically. However, as in
earlier studied/18 we may make the momentum-jump ap-
proximation that replaces the small continuous momentum
changes with momentum jumps that accompany each quantum
transition. To make the momentum-jump approximation, we
work with each matrix element in eq 21, since each matrix
element corresponds to a distinct possible quantum transition
(or no transition). We may write the matrix elements of eq 21
in the form,

(€7 e = Qs + (A - + 00 =
(Ql )ss a
S T Qs 9P| ¢ )=
0

(Qss| 1+ Cs - 55| + 0009 (22)

where we have used the fact th@uA)ssb/(Q1)se = Cse + @ (6?9
with the matrixC given by



Trotter-Based Simulation

0 S S 2%
So 0 0
So 0 0 S
2510 S0 S0 0

where S1 = Awo10o1/(2(P/M)-dp;) and Sip = —Sp1. The terms
involving S; in this matrix correspond to transitions (06)
(01), (00)— (10), (01)— (11), or (10)— (112), that is, upward
transitions to or from diagonal density element to the off-
diagonal density elements (01) or (10). Also, the terms involving
Sip correspond to transitions (16} (00), (01)— (00), (11)—
(20), or (11) — (01); that is, a similar set of downward
transitions. The terms involvingS; and %5, correspond to
transitions (00y= (11); that is, transitions between the ground
and the excited states.

The momentum jump approximation to this propagator entails
the approximation of the sum (t Cs¢+9/0P) by an exponential
to give

cC= (23)

(€7 )55 ~ (Qu)ss €77 + 0(67) = Mg(0) + (%) (24)
The last line defines the matrix/ whose explicit form is
M(0) =
cod(a  —cos@)sin@jy —cos@)sin@iy  sink(a),.,
sin@) cos@)jyo cog(a) —sirf(a) —sin@) cos@)jo,
sin(a) cos@)f o —sir’(a) cog(a) —sin(a) cos@)jo;
sirf@f,.,  Sin@) cos@);, sin(@) cos@);, cog(a)
(25)

In this equations is defined agos = exp&s-Ve). Since
Sp= hwuﬁMduﬂ/(ZP dyp) is a function ofP, the action of the
operator in this form on any function of the momeRtaannot
be represented as a simple momentum translation. Iél@,fés
the unit vector alongl,s. However, it is easy to demonstrate
that it is a momentum translation operator d&,( P)2 in the
following way!” We may write Sys:0/0P = hwqsM:
8/3(duﬂ P)2 In any functionf(P), P may be decomposed into
its components along and normald&)ﬁ asP=(1- daﬁdaﬁ)
P+ daﬂ(daﬂ P) = PD + daﬁ(daﬂ P) = PD + duﬂ sgn@uﬂ P)

«/(daﬁ P)2 Using these results, we have
105f(P) = X7 "°f(P)

= &M IANP, +d, , sgnfl, Py (A, P))
=f(P+ AP, ) (26)

In writing the last line of this equation, we used the fact that
exp thwagMald(dy s+ P)?) is a translation operator ortlys- P)2

and we definedAPq s = daﬂ (sgnﬁaﬁ P)«/(daﬂ P) +hw

~ (dupP)).

Similarly, the double jump operators that produce transitions
between the ground and excited states are givefi,by =

exp(Xy4°Vp), and their action orf(P) is
T gf(P) = MMM PH(P) = (P + AP,_y) (27)

With APy—p = dyp x

(59Nl P)y (A P +2h0, M — (8uP)).
We may verify that the energy of the system is conserved
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ze 50(3/2 // eI /Sll)/ZH
S

H

. (28)

First, note that the vectdds, whose elements arélf(R, P) =

PZ2M + Eo(R), Hi(R, P) = Hy(R, P) = 0, andHs(R, P) =
PZ2M + Ei(R)), is invariant under adiabatic dynamics
e/ %2H (R P) = Hg(R P). Adiabatic dynamics is the
classical evolution of the bath in the HellmanReynman field

of an adiabatic state and thus conserves energy. So we need
only show thatys, .ZssHs (R, P) = Hg(R, P), which results
from the direct multiplication of the matrix/ with the vector

H and use of the relations

= 11-o(P12M + E((R)) =
(P + APy_,)%I2M + E(R)) = H,

]\lﬁOHO

JAo~1H3 = JAo~1(P2/ 2M + E4(R)) =
(P + AP,_)/2M + EL(R)) = H, (29)

and

J10Ho = PP12M + (Ey(R) + E,(R))/2

JoiHs = P?I2M + (E4(R) + E,(R))/2 (30)

In eq 29, the third equality follows by direct substitution of the
explicit expression foAPg-;.

Resulting Form of Surface-Hopping Representationin-
serting the previous results in the original Trotter expansion
(eq 13), we have

| (G—t-1)
CRERS N

(//%71(1:]'_1, tj -

Ne (5/2 // ﬁ(a) |/ 6/2
512) éL%flA/z“’%fﬁ(é) (///% (tj —5/2,t) glbsor2
(31)

Thus, we see that the short-time propagator represents, reading
from left to right, (1) classical propagation on tge; surface
through a time intervad/2. This evolution will involve a phase
factor if thes—1 index corresponds to a pair of different adiabatic
states; (2) a transitiog-; — 5 determined by the elements of
. Momentum changes in the bath are accounted for by the
momentum jump operators in this matrix; (3) classical propaga-
tion on thes surface for a time interval/2. The full evolution
is determined from the concatenation of evolutions over these
short time segments. These three steps constitute the surface-
hopping representation of the quantum-classical propagator. In
the next section, we describe how this propagator can be
simulated on the basis of the above formulation of the problem.

3. Simulation Algorithm

The method used to simulate the dynamics and compute the
expectation value of an observaldg(R, P, t) in eq 4 is based

under quantum-classical dynamics by showing that the matrix on the development of the quantum-classical propagator as a
elements of the total Hamiltonian in the adiabatic basis, product of short time segments leading to eq 12. Using eq 31,
H«(R, P), are invariant under the time propagation, we may write the expression f@{(t) more explicitly as
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B(t) = z J dRdP BY(R, P, )oy(R P) =
Zdede °(R, P) x

> [l" 7 (b0, = 012) x
a5a | =

é%ﬁ/{@lﬁ((&)wﬁ(t 0/2,t) €-°?[BN(R, P) (32)

where s, = (04, ao) is obtained fromsy = (aw, ap) by the

interchangeny = ay. The summations in the indices and the elementary eventR:, P¥, , si, -,
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L \2 M P (RS, PY)
B(t) = — Z —
M & | pSé‘(R” P
t/o z 3}" (Ql)splsf(é) |
— X

|_| C///s'gl(tjfj_, t— 0/2) gdksi-10/2
O Qs ()

Ve 5O 7t — 012,1) € b4 BIMR, PY) (35)

SJK 1Sf

where the index refers to the Monte Carlo sampling of the
sy) and the elements of

phase space integral can be performed through Monte Carlothe .7/ matrix are defined in eq 25. Thé™ factor comes from
sampling, but there remains the question of how to evaluate the uniform sampling for the sum on the initial statgs
the sequences of propagators that appear in the integrand aPhase space is importance sampled accordin|@§§((R, P,

successive time slices where the short time propagator itself iswhich

leaves in the sum the phase factoy, =

complicated. Such calculations are easy to compute only p% (R, P)/|o% (R, P)|. To continue the procedure, we need to

proceeding from left to right as we now discuss.

mix Monte Carlo sampling and propagation. The first step

Consider a sequence of evolution operators acting on a(j = 1) includes (a) classical propagation of phase space point

function f(x), for example 0,0,0f(x) where

O,f(x) = ¢109f(0:(3)),

O,f(x) = (X f(0,(9),

O5f(X) = 5(0)(05(x) (33)

The ¢1(X), g2(X), andgs(x) denote multiplicative functions and

01(X), 02(X), andoz(x) denote functions representing the effect

of the operator on the argument bfMathematically,

0,0,05f(x) =
@10 @2(0,(X)93(0,(0,(X))) f(05(0,(04(X)))) (34)

Such sequences of operations are easy to compute recursively
going from left to right (the opposite order from right to left is

not recursive and is difficult to perform), since

0,0,04(f(x) =

0,[0,05F(X)] = ¢1()[0,0,f (x))], X, = 0,(X)

0,05(f(Xp)) = O,[O5f ()] = @(x)[O5F (%)], X, = 0,(X;)
O3 (%) = @) (%), X5 = 05(X;)

This is also true ifO1, O,, and O3z are matrices of evolution

(R P) to "R P) = (R,P") and updating of the phase
factor W, and all of the matrix elements and operators, including
the observable, at the value of this evolved phase point; (b)
choice of the value of the indes; in the matrix. /g (0) by
sampling with probablllty|(Ql) (é)|/z |(Q1) (6)| This in-
troduces the facto[Sl 0|(Ql)%gi(é)|/|(Q1)%g{(c3)| (c) Once the

index s, is selected, the momentum jump (if any) specified by
Mes(0) is applied to all functions and operators to its right so
that the new bath phase space poinRsk'), where the overline
denotes the momentum after the momentum-jump operation.
(d) The phase factor/¢, is computed and the evolution operator
2" is used to propagate the bath phase space coordinates
(R, P) to time tpe"”*(R, P') = (R’, P"). To continue the
propagation, the procedure is repeated starting from the index
j = 2in the product in eq 35 with the updated value of the bath
phase space point.

This algorithm has features in common with the sequential
short-time propagation (SSTP) algorithm introduced eatfiér.

It differs in the following respects: the nonadiabatic propagator
exp(_70) described by the matrix/ in eq 25 was derived
from a Trotter decomposition. In the SSTP algorithm, this
propagator was simply approximated by exp(d) ~ 1 —_70.
The function P/M)-ds, which determines the probabilities with
which nonadiabatic transitions occur, appears as the argument
of trigonometric functions in/7; while this quantity appears in
linear functions in the SSTP algorithm. More generally, the
unitary exponential character of the evolution operator in the
Trotter decomposition leads to an algorithm with a much firmer
basis.
In order to complete the specification of the simulation

scheme, we now describe another essential component of the
algorithm. Estimates of averages computed using the above steps

operators, since their product can be reduced to sums of productsre dominated by large fluctuations which come from unusually
of the above type. Hence, if we combine Monte Carlo sampling large values of the summand of eq 35. These fluctuations are

of indices and phase space points (where the roleadfove is

due to the factors in the integrand containing the mafJix

played by the initial point in phase space of a trajectory) with These large factors exacerbate the sign problem that comes from
recursive propagation, we observe that the full guantum-classicalthe phase factors in the evolution and make it difficult to obtain
propagator can be calculated in terms of surface-hopping accurate MC estimates of the observable. These fluctuations
trajectories. The simulation algorithm consists then of three stepscan be eliminated in part by using a filter similar to that
based on the structure of eq 32. For simplicity, we divide the described in ref 37 that eliminates improperly large biasing

total time of the simulation int¢/é short time segments. Using

fluctuations which should not contribute to the averaged

the form of the short time propagator in eq 31, we can rearrange quantity. In its simplest form, the filter is implemented by putting

eq 32 into the Monte Carlo form

an upper bound on the magnitude of the factor in the square
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Figure 1. Exact quantum results from ref 4®), TBQC algorithm Q) (a, left) 5 = 12.5,& = 0.09, andQ = 0.4; (b, right)s = 0.25,& = 0.09,
andQ = 0.4.

brackets appearing in the summand in eq 35. When, at gtage by ¢, = (EhwoM;)Y 2w, w; = —w¢ In(1 — jodwc) wherewo =
in the calculation of the product in the summand, the running wc(1 — exp(—wmadwc))/N andj = 1, ...,N. The parametemmax
summand exceeds the bound, the factor in the updating of the= 3w is a cutoff frequency. Further details of the model, along
running product is put to unity and the indgxis put tos-1. with the forms of the adiabatic states and non-adiabatic coupling
The value of the bound depends on the nonadiabaticity of matrix elements, can be found in ref 24. Dimensionless variables
the system and the duration of the simulation. In addition, in are used in reporting the numerical results, with the endtp) (
order to minimize the size of the ensemble required to estimateand inverse temperaturgs= 1/kgT given in units ofhwe.
expectation values of observables, it is necessary to choose the We consider the computation of the average value of the
largest possible size of the time intervil consistent with a population difference for which the observable in eq 4 is
negligible error in the Trotter approximation. The filter must Bw(R, P) = 45,
be used for medium and long time simulations. o
The time step) and the filter parameters can be determined oty =Tr f dRdP 6,(t)p(R, P) (37)
by first simulating the dynamics for various value dffor a
short time without the filter and monitoring the convergence of  In order to compare with previously obtained exact results,
the results a® is decreased. The largest valuedofieeded to the initial value of the density matrix is taken to be the product
obtain converged results may be used in subsequent simulationsof subsystem and bath density matrices,
Also, although the filter is not required for short times, a filter
may be employed, and the smallest value of the bound which (R P) = |T|:|lfﬁ|p§,k\),)(R, P) (38)
reproduces the previously obtained converged results may be
determined. If needed, for longer-time simulations, one may The subsystem density matrix [T corresponding to the

increase the bound further until convergence is obtained. subsystem in statdl]l Two different forms of the bath density
have been employed in the literature to obtain the exact quantum
4. Spin-Boson Model results with which we compare our simulation results. The bath

density matrix is either that for the quantum bath in internal

The spin-boson mod&32is one of the most popular testin o
P Pop g thermal equilibrium,

grounds for simulation schemes for many-body quantum
dynamics since numerically exact full quantum results are R P)=
available for this mode}?40-43 As such, it provides an important wdR, P) =

test of the accuracy of our surface-hopping method for simulat- N tanh Bw,/2) 2 tanh Bu;/2) P,-'2 w]?qz
ing quantum-classical dynamics. In addition, it captures the I‘l— exd —————+——|| (39)
essential elements of a variety of quantum rate phenomena in = T w; 2

open guantum systems and has been used to model many

physical and chemical syster#fs. or the canonical densitp,s,?,)n. The latter form may be obtained
The spin-boson model describes a two-level system with from eq 39 by the replacemeRt— R — clw?. Equation 39 is

states|t0and |{Obilinearly coupled to a bath dfl harmonic expressed in the dimensionless variali¥es (Mjwd B)VR;, P

oscillators. For this model, quantum-classical Liouville dynamics = ( AM;wc)~Y2P;.

in eq 6 (or the corresponding equation of motion for the density

matrix) is exact* so a full test of the simulation scheme can be Results

m:?irﬂ?rﬂzt t?:’gg tlci)c(;('zigsr‘lldc(:}r ttr:]ii ﬁg?r']tg doiéhgr?ssiﬂ%ﬁ;f To investigate the validity and scope of the TBQC algorithm,

real system. The ps)artially Wigner transformed ysgin-boson th_e time qlependence of the average populatio_n diff_erence f_or a

Hamiltonian .is wide variety of system parameters (non-adiabatic cquplmg

strength, temperature, and quantum subsystem energies) was
simulated and compared with exact results. In all cases, error

N [P? 1 . . L . .
~ . j R
A, = —hQa, + Z Ly MijZRjZ ~¢R&,| (36) bars were estm:g\teq. In the flgurgs, the !n|t|al density mqtnx
= 2M,~ 2 corresponds t@,,;,, with the exception of Figure 2 where it is
p® The number of time slices in each figure equals the
where the bath oscillators have massgsand frequencies; number of TBQC data points denoted by thesymbol and the

andoy ando; are Pauli spin matrices. We simulate a spin-boson Ohmic bath consisted of 200 oscillators. The MD integration
system with an Ohmic spectral density characterized by the time step was 0.1 (in dimensionless units). In the figures
Kondo parametef and frequencyw.. The values of the involving relatively long simulation times (Figures 1a and 3a),
parameters were taken from Makri and ThomSsomd are given 1P trajectories were used to obtain converged results. The decay
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Figure 2. Exact quantum results from ref @), TBQC algorithm Q) (a, left) 8 = 3, £ = 0.1, andQ = 1/3; (b, right) = 3, £ = 0.5, andQ =
1/3.
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Figure 3. TBQC algorithm [0), (a, left) exact quantum results from refs 41 and @2, 3 = 1, £ = 0.13, and® = 0.4, (b, right) exact quantum
results from ref 43@), § = 0.25,£ = 2, andQ = 1.2.

rates in these cases can be estimated with orflyrafectories. values of the friction§ > 0.1. The Trotter-based quantum-
All of the other simulations used £ 10* trajectories. In all classical algorithm described here will allow one to extend the
cases, two nonadiabatic transitions were required to obtainclass of problems that can be studied using quantum-classical
agreement with the exact results. Figure 1a shows the slow decayiouville dynamics.
of the oscillations in the population difference for weak
subsystem-bath couplingj= 0.09 and a low temperatufe=
12.5. The oscillations are highly damped in Figure 1b for a high ~ The Trotter-based algorithm for simulating quantum-classical
temperaturey = 0.25. In both cases, the simulations agree well Liouville dynamics is able to reproduce the numerically exact
with the exact quantum results, although in Figure 1a the phasefull quantum results for the spin-boson model for longer times
coherence is lost for long times as result of errors that arise and for a wider range of coupling strengths than the sequential
because of our sampling scheme. One may compare our resultshort time propagation algorithm. The results are of comparable
with those of other simulation methods for these parameter accuracy to those of many schemes for simulating quantum
choices (cf. Figure 5 of ref 44 and Figure 2 of ref 14). dynamics for this systerf:4244
Comparable agreement is found, although the loss of phase A few aspects of our results merit further comment. As
coherence sets in at different times depending on the precisiondiscussed earlier, quantum-classical Liouville dynamics is exact
of the various simulation methods for the parameter set in Figure for the spin-boson model. Expectation values and correlation
la. functions are also exact provided the initial or equilibrium states
Figure 2 presents a comparison of results for Igw=0.1) are sampled for the full quantum distributions. The simulation
and high € = 0.5) friction for 8 = 3 andQ2 = 1/3. Our results algorithm employs the momentum-jump approximation in the
are in close agreement with the exact quantum results. Forcomputation of the nonadiabatic propagator. The fact that our
comparison, see Figure 4 of ref 14. Finally, we consider systemssimulation results are in accord with the exact quantum results
with a larger energy gap§2 = 0.4 andQ = 1.2, in Figure 3. confirms the validity of this approximation for the spin-boson
Once again, our simulations are able to reproduce the exactmodel. The discrepancies at long times can be attributed to the
guantum results for this model. Comparison results may be difficulties associated with Monte Carlo sampling discussed in
found in Figures 1 and 2 of ref 42, Figures 2b and 3a of ref 14, the text.
and Figures 7a and 6b of ref 44. Although calculations cannot be extended to arbitrarily long
These simulation results confirm that the TBQC algorithm times due to these sampling problems, the combination of the
is able to accurately reproduce the exact quantum results forTrotter scheme for the nonadiabtic propagator and the imple-
the spin-boson model over a wide range of coupling strengths mentation of filtering has allowed us to greatly extend the
and temperatures. The method is capable of following the accessible time and the range of coupling strengths and
dynamics for times which are three to four times longer than is temperatures that can be considered. Furthermore, the structure
possible using the SSTP algorithm. The ability of the Trotter of the nonadiabtic propagator leads to a surface-hopping
algorithm to simulate the dynamics for longer times than the dynamics that exactly conserves energy when nonadiabatic
SSTP algorithm is especially evident for some parameter transitions take place, regardless of whether these transitions
regimes, especially for high values of the friction. For example, are to pairs of different adiabatic states or pairs of the identical
the SSTP algorithm tends to fail fgf = 3 andQ = 2/3 for adiabatic states.

5. Conclusion



Trotter-Based Simulation

While this study has focused on the spin-boson model, the
algorithm presented here can be applied to any quantum
subsystem described by a small manifold of quantum states
coupled in any way to a bath described by any potential energy
function. For instance, quantum-classical Liouville dynamics

has been used to study condensed phase proton-transfer

processed’*546and the TBQC algorithm can be used to study
complex systems of this type. Quantum bath nuclear dispersion
effects may also be taken into account by suitable sampling of
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initial or equilibrium quantum distributions. In this case, only whereK andK~! are the matrix of eigenvectors and its inverse,

the dynamics is approximated by the quantum-classical Liouville
equation. This feature, in combination with the simulation
algorithm discussed here, will greatly extend the domain of
applicability and utility of quantum-classical Liouville dynamics
and its simulation in terms of surface-hopping trajectories.
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Appendix

A: Diagonalization of J; and J,. For a two state sub-system,
one can show thal

0O 1 1 0
_ |1 0 0 1|P.
h= -1 0 0 1M d®) (40)
0O -1-10
can be written in the fornd; = V1DV with
1 1
1 0 1 -1 2 o 2
-1 - -1 1
0O — =0
{0 =1 —1 1 2 2
V_Ol—ll'\r___ll 11(41)
1 0 1 1 4 4 4 4
1ol
4 4 4 4

whereV is the matrix of eigenvectors and is its inverse.
The diagonal matrix of eigenvalues B; whose diagonal
elements ar¢0, 0, —21 P/M-d, 21 P/M-d}. Similarly,

hoRIAR) (5

5 (42)

OkFrkFrOo
O~ O

1
0
0
1

= OOk

with Aw1o(R) = E1(R) — Eo(R) may be written ad, = K™1DK
with

nonadiabatic coupling matrix elemerdgg which satisfy the
symmetry relationsl, g = —d;;u. Thus, for an/i<level system,

there are = 1/2 /(/"— 1) distinct nonadiabatic coupling

matrix elements, and the nonadiabatic transition operatan
be written as a sum am'terms, each of which is proportional
to a distinctd, s with o > S,

N
J= le*” (44)

Using a Trotter factorization, the short time nonadiabatic
propagator can be written as

e—.75 — e—Zill,Y(')é ~ ”e_,yr(l)é + 62(62) (45)

As for the two-level system, each of the nonadiabatic
transition operators can be written as the sum of two terms,
one of which is proportional t& and the other t@/0oP, leading
to the additional Trotter factorization,

—9,06 3,06

_ )
e/~ g g

+ 069 (46)
The problem of the calculation of the-state nonadiabatic
propagator is now reduced to the calculation of the propagators

corresponding to transitions between pairs of states in the

Nlevel system.

For each pair of indices representing a pair of adiabatic states
(u, v), u > y, we have

P
‘Jg()xa’,ﬁ[f' = _dm/ ) M ((duaéyﬁ - 6yaé;4/f)éa'ﬁ’ +
(6/4(1’6«/ﬁ’ - 6;/0.’6”[?’)6(1/%) (47)

1 0
) hwwdﬂy T (000 T 0,00,p)0ucp +

2
(é,ua’éyﬂ’ + éya’éuﬁ’)éaﬂ) (48)

It follows directly from eqs 47 and 48 that the vector space
corresponding to this representation consists of a four-
dimensional invariant space spanned by the set of stétes,
(yw), (uy), (uu)}, and 2(/"— 2) two-dimensional vector
spaces spanned b{(y, o), (ua')} for o' = u, y, and
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{(ay), (ou)} o = u, y. The complement of these vector spaces
is an (V"— 2)2-dimensional null space.

With a suitable permutation of the pairs of states, thé
matrices may be written in block diagonal forms consisting of
a single 4x 4 block, 2(1™— 2) 2 x 2 blocks and a {(*— 2)? x
(N — 2)? block corresponding to a null space. The 4 blocks
have structures identical to those for the two level system
discussed in the text. Thex2 2 blocks have a simple structure.
For instance, letting7$), be the 2x 2 matrix spanned by the
stateq (ya), (ua')} with o = y, u, these blocks corresponding
to the 7 and_ 7% matrices have the explicit forms

g0 (0 -1\P,
(/l,2><2_ (1 0 )M d,uy(R) (49)
which has eigenvaluesi P/M-d,,(R), and
A —_(01)1 L9
(5/2,2><2_ (1 0) 2w‘uy(R)dluy(R) oP (50)

with eigenvaluest1/2hw,,d.,(R)-8/dP = +b,,(R)-8/aP. The
corresponding propagators have the form

—00 _ ( COS@W/) Sin(aw) )
e ¥ = . 51
—sin(a,,) cosg,,) (51)
with a,, = 0 PIM-d,4(R), and
o Ydret det)
2 eb/t)f — e_bw ebw/ + e_bw

whereb,, = 6 1/2hw,,d,,(R)-Ve. As for the two-level system,
we may write eq 52 as

—3%d 01 0
e ~1+ (1 0 b

2
R Ch)

(53)
Using the momentum-jump approximation as described in the
text for the two-level system, this expression may be written as

_ 10 [0)
e (12x7t322:20

cos@,) —sin@,)N,.| , .
S i RICRED

This analysis allows the-state case to be treated in a manner
that is similar to that for a two-level system. Each of the
nonadiabatic propagators corresponding toffénonadiabatic
transition operators is written in a representaigf} of states
which makes7 () block diagonal. The statgs® Oare simply
permutations of th¢gsCstates)s= ¢?|sl] These results allow
the nonadiabatic propagator for am-level system to be
constructed analytically. The sequence of matrix nonadiabatic

Mac Kernan et al.

discussed in the text to account for all possible transitions in
the manifold of |"states.
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