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Fewest-switches surface hopping is studied in the context of quantum–classical Liouville dynamics. Both
approaches are mixed quantum–classical theories that provide a way to describe and simulate the nona-
diabatic quantum dynamics of many-body systems. Starting from a surface-hopping solution of the quan-
tum–classical Liouville equation, it is shown how fewest-switches dynamics can be obtained by dropping
terms that are responsible for decoherence and restricting the nuclear momentum changes that accom-
pany electronic transitions to those events that occur between population states. The analysis provides
information on some of the elements that are essential for the construction of accurate and computation-
ally tractable algorithms for nonadiabatic processes.
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1. Introduction

The Born–Oppenheimer approximation [1] figures prominently
in studies of quantum structure and dynamics. It relies on a scale
separation that is controlled by a small parameter gauged by the
ratio m=M of the light m to heavy M masses of different con-
stituents of the system. This approximation forms the basis for
most of electronic structure theory and is also used in adiabatic
quantum dynamics where nuclei move on single Born–Oppen-
heimer surfaces. Although the Born–Oppenheimer approximation
has wide utility, it does break down and this breakdown signals
the fact that quantum nuclear motion can no longer be described
as motion on a single electronic state. Nonadiabatic dynamics is
important for the description of many excited-state physical pro-
cesses. Quantum dynamical methods that account for the break-
down of the Born–Oppenheimer approximation must then be
used to follow the time evolution of the system [2]. Fewest-
switches surface hopping [3] is one of the most widely used
schemes for this purpose. More generally, the basic elements of
the fewest-switches algorithm often enter into molecular dynam-
ics methods that involve quantum transitions [4].

In fewest-switches surface hopping the nuclei are assumed fol-
low stochastic trajectories Xt ¼ ðRt ; PtÞ, with R ¼ ðR1;R2; . . . ;RNÞ and
P ¼ ðP1; P2; . . . ; PNÞ denoting the N nuclear positions and momenta,
respectively [5]. Trajectory evolution takes place on single adia-
batic surfaces with stochastic ‘‘hops” to other surfaces that occur
with probabilities that are constructed to lead to the fewest num-
ber of hops consistent with the electronic populations. While this
method has known shortcomings it is simple to use and often
yields reasonable results.

More specifically, the equations for the electronic density
matrix elements governing the dynamics are as follows: The diag-
onal density matrix elements satisfy

d
dt
qmmðXt ; tÞ ¼ �2R

Pt

M
� dma0 ðRtÞq�ma0ðXt ; tÞ

� �
; ð1Þ

while the off-diagonal elements evolve by

d
dt
qma0 ðXt; tÞ ¼ �ixma0ðRtÞqma0 ðXt ; tÞ � Pt

M
� dmbðRtÞqba0 ðXt ; tÞ

� Pt

M
� d�

a0bðRtÞqmbðXt; tÞ: ð2Þ

In this equation dabðRÞ is the nonadiabatic coupling matrix element,
dabðRÞ ¼ ha;RjrRjb;Ri and ja;Ri, denotes the a adiabatic eigenstate.
The summation convention was used above and will be used
throughout the paper except where summations are written in full
for clarity.

Transitions between adiabatic states occur probabilistically
with a transition rate selected so that the fraction of trajectories
in a given adiabatic state corresponds to the electronic population
of that state. Energy is conserved along the stochastic trajectories
and to ensure that this is the case whenever a nonadiabatic transi-
tion causes the system to change its state the nuclear momenta are
adjusted to compensate for the energy change in the quantum
transition. For example, if a transition from state a to state b occurs
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the momenta of the nuclei along the direction of the nonadiabatic
coupling vector are adjusted by P ! P þ DPFS

ab, with

DPFS
ab ¼ d̂ab sgnðP � d̂abÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � d̂abÞ

2 þ 2DEabM
q

� d̂abðP � d̂abÞ; ð3Þ
to conserve energy. Here the energy gap is DEab ¼ Ea � Eb. For
upward transitions it may happen that there is insufficient energy
in the nuclear degrees of freedom to insure energy conservation.
In this case the transition rule needs to be modified, usually by set-
ting the transition probability to zero.

This algorithm captures many of the important physical fea-
tures of nonadiabatic dynamics and is easy to implement in com-
putations, thus justifying its widespread use. It is not without
defects. Since there is no mechanism for the decay of the off-diag-
onal density matrix elements, it cannot describe the effects of
decoherence on nonadiabatic processes. A considerable amount
of effort has been devoted to modification of fewest-switches sur-
face hopping to introduce decoherence into the scheme [6–15].

The aim of this article is to determine the conditions under
which quantum–classical Liouville dynamics [16] can be reduced
to fewest-switches surface hopping. The quantum–classical Liou-
ville equation provides a basis for the derivation of various quan-
tum–classical methods [17]. While solutions to this equation can
be obtained by a variety of methods, solutions may also be
obtained by a surface-hopping algorithm [18–20], and it is in the
context of the approximations to this surface-hopping dynamics
that we shall consider fewest-switches surface hopping. In partic-
ular, it will be shown that by dropping terms that account for the
effects of decoherence and modifying how nonadiabatic transitions
and the nuclear momentum changes that accompany them are
treated, one can arrive fewest-switches surface hopping.

The main text begins in Section 2 with a brief outline and crit-
ical discussion of the features of the quantum–classical Liouville
equation in the adiabatic basis and its solution by a surface-hop-
ping algorithm. This sets the stage for the analysis in Section 3 that
allows one to see in some detail the approximations to the dynamics
that lead to fewest-switches surface hopping. The last section of the
paper discusses how the results of this study may provide ingredi-
ents for the construction of new surface-hopping algorithms.

2. Quantum–classical Liouville dynamics in the adiabatic basis

Since surface-hopping methods are often formulated in the adi-
abatic basis, it is instructive to discuss the dynamical picture that
emerges when the quantum–classical Liouville equation (QCLE) is
expressed in this basis. The partially Wigner transformed Hamilto-

nian, ĤW , for the system can be written as the sum of the nuclear
kinetic energy, P2=2M, and the remainder of the electronic, nuclear
and coupling terms contained in the operator

ĥðRÞ : bHW ¼ P2=2M þ ĥðRÞ. The adiabatic energies, EaðRÞ, and the
adiabatic states, ja;Ri are determined from the solution of the

eigenvalue problem, ĥðRÞja;Ri ¼ EaðRÞja;Ri, and depend paramet-
rically on the coordinates of the nuclei. Adopting an Eulerian
description where the dynamics is viewed at a fixed nuclear phase
space point X ¼ ðR; PÞ, the QCLE for the density matrix elements,
ha;Rjq̂W ðX; tÞja0;Ri ¼ qaa0

W ðX; tÞ in the adiabatic basis is [21]

@

@t
qaa0

W ðX; tÞ ¼ �ðixaa0 þ iLaa0 Þqaa0
W ðX; tÞ þ J aa0 ;bb0q

bb0
W ðX; tÞ

� �iLaa0 ;bb0q
bb0
W ðX; tÞ: ð4Þ

The frequency is xaa0 ðRÞ ¼ ðEa � Ea0 Þ=�h � DEaa0 ðRÞ=�h and the classi-
cal Liouville operator iLaa0 is defined by

iLaa0 ¼ P
M

� @

@R
þ 1
2

Fa þ Fa0ð Þ � @

@P
; ð5Þ
where the Hellmann–Feynman forces are FaðRÞ ¼ �@EaðRÞ=@R. The
operator,

J aa0 ;bb0 ¼ �dab � P
M

þ 1
2
DEab

@

@P

� �
da0b0 � d�

a0b0 �
P
M

þ 1
2
DEa0b0

@

@P

� �
dab;

ð6Þ

couples the dynamics on the individual and mean adiabatic sur-
faces. The last line of Eq. (4) defines the QCL operator, iLaa0 ;bb0 .

A few features of this equation are worth noting. The classical
evolution operators iLaa0 describe adiabatic evolution on either sin-
gle (a ¼ a0) surfaces or on the mean of two surfaces when a – a0.
No approximation is made to obtain such evolution on the mean
of two surfaces for off-diagonal elements; it follows naturally from
the representation of the QCLE in the adiabatic basis. The coupling
term J aa0 ;bb0 not only involves nonadiabatic coupling matrix ele-
ments, dabðRÞ, but also derivatives with respect to the nuclear
momenta. This term accounts for part of the influence of the nona-
diabatic quantum electronic dynamics on the nuclei. This impor-
tant coupling adds complexity to the equation of motion and its
exact treatment precludes a simple description of the nuclear
evolution.

One may attempt to solve this equation by any convenient
method and considerable effort and schemes have been devised
with the aim of obtaining accurate yet computationally tractable
solutions. [22–33] Since the goal of this paper is to explore connec-
tions to fewest-switches surface hopping (FSSH), we consider
approximate solutions that are based on surface-hopping trajecto-
ries. It is useful to observe that while the QCLE conserves energy,
nothing is implied about conservation of energy in any single tra-
jectory that might be used in solutions to this equation.

2.1. Surface-hopping solution of the QCLE

The basis for the surface-hopping solution was described some
time ago [21] and the details of the algorithms and their applica-
tions to various problems have been discussed previously
[18–20]. Nevertheless, it is useful to present a brief account of this
solution scheme in order to contrast it with FSSH in the next
section, and to point to some of its features that are often
overlooked. In general terms the surface-hopping method is a
stochastic algorithm for the solution of the QCLE that relies on
Monte Carlo sampling of diagonal and off-diagonal electronic
states and accounts for nuclear momentum changes when transi-
tions occur. In its usual implementation only one basic approxima-
tion is made: the momentum-jump approximation [21,34,16,17].
This approximation, outlined below, replaces the infinitesimal
nuclear momentum changes contained in the J aa0 ;bb0 coupling term
by finite momentum changes. The approximation both makes the
dynamics much more tractable computationally and provides a
link to other surface-hopping schemes. For example, if instead of
using the momentum-jump approximation momentum deriva-
tives are approximated by finite differences, an exponentially
increasing branching tree of trajectories results that quickly makes
computation intractable [35]. Other simulation schemes cited
above that are not based on surface hopping do not make the
momentum-jump approximation.

The momentum-jump approximation begins by rewriting the
operators that appear in J as

dab � P
M

þ 1
2
Eab

@

@P

� �
¼ P

M
� dab 1þMDEab

@

@Yab

� �
; ð7Þ

where Yab ¼ ðP � d̂abÞ
2
. This form shows that the momentum

changes can be expressed in terms of an R-dependent prefactor
(DEabðRÞ) multiplying a derivative with respect to the square of



Fig. 1. Stochastic trajectories that contribute to the diagonal density matrix
qaa

W ðX; tÞ. The density is computed at a fixed phase space point X in this Eulerian
representation. The different trajectories indicate possible sequences of transitions
that may occur. In this short set of segments a variety of density matrix elements at
different phase points all contribute to the aa density at phase point X at time t. The
solid lines denote propagation on single adiabatic surfaces while the dashed lines
signify propagation on the mean of two adiabatic surfaces; a phase factor is
attached to these segments. The vertical dotted lines indicate nonadiabatic surface-
hopping transitions accompanied by momentum shifts. In the stochastic algorithm
described in the text each trajectory also carries a Monte Carlo weight.
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the momentum along d̂ab. The momentum-jump approximation
replaces the factor in parentheses on the right side by an exponen-
tial operator with the same leading terms,

1þMDEab
@

@Yab

� �
� e

MDEab @
@Yab � ĵab: ð8Þ

When the momentum-jump operator ĵab acts on any function f ðPÞ it
yields ĵabf ðPÞ ¼ f ðP þ DPabÞ where

DPab ¼ d̂ab sgnðP � d̂abÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � d̂abÞ

2 þ DEabM
q

� d̂abðP � d̂abÞ: ð9Þ
Apart from a factor of two multiplying DEab, this expression for the
momentum adjustment is identical to that in Eq. (3) for the FSSH
algorithm. This factor-of-two difference has its origin in the transi-
tions to off-diagonal states (coherences) that take place in QCL
dynamics. These results can then be used to write the momen-
tum-jump approximation to J :

J aa0 ;bb0 ðXÞ � � P
M

� dabðRÞ̂jabðXÞda0b0 �
P
M

� d�
a0b0 ðRÞ̂ja0b0 ðXÞdab: ð10Þ

This formwill be used henceforth in the surface-hopping solution of
the QCLE.

The surface-hopping solution proceeds as follows: Since the
QCL operator commutes with itself the solution of the QCLE can
be written exactly as

qaa0
W ðX; tÞ ¼

YN
j¼1

e�iLDtj� �
aj�1a0j�1

;aja0j
qaNa0N

W ðX;0Þ; ð11Þ

where the time interval t was divided into N segments of lengths
Dtj ¼ tj � tj�1 ¼ Dt and a0 ¼ a and a0

0 ¼ a0. If Dt is chosen to be suf-
ficiently small, In each short time segment we may write

e�iLDt� �
aj�1a0j�1

;aja0j
� Waj�1a0j�1

ðDtÞe�iLaj�1a
0
j�1

Dt

� daj�1ajda0j�1
a0
j
þ DtJ aj�1a0j�1

;aja0j
;

� �
: ð12Þ

where the phase factor Wab is defined as

Wabðt1; t2Þ ¼ e
�i
R t2
t1

ds xabðRabs Þ ð13Þ
and the superscript ab on Rs indicates that it is propagated classi-
cally on the mean of the a and b surfaces.

The solution for the density matrix then follows from substitu-
tion of these short time propagators into Eq. (11). In principle one
just has to carry out the matrix multiplications and actions of the
classical evolution and jump operators to find the solution. A better
and more computationally tractable way to do this is to sample the
electronic states in the matrix multiplications and the actions of
the nonadiabatic transitions by a Monte Carlo procedure. In the
simplest Monte Carlo scheme the quantum states are uniformly
sampled from the allowed set of states and the actions of the nona-
diabatic coupling operators are sampled based on a weight func-
tion that reflects the magnitude of the nonadiabatic coupling. A
simple choice to determine if a transition occurs is

p ¼ P
M

� dab
				

				Dt



1þ P
M

� dab
				

				Dt
� �

; ð14Þ

but other probability factors have been suggested [36,37]. If no
transition occurs, then a weight 1=ð1� pÞ is included to account
for this failure. If a transition does occur, a weight 1=p is applied
and the nuclear momenta are adjusted by the momentum-jump
operator so that energy is conserved. Note that because of the use
of the momentum-jump approximation it may happen that nuclear
degrees of freedom do not have sufficient energy for this process to
take place. Then the argument of the square root in the expression
for DPab will be negative and the expression cannot be used. In this
circumstance the transition is not allowed and the evolution contin-
ues on the current adiabatic surface.

From this description one sees that the surface-hopping trajec-
tories are a consequence of the momentum-jump approximation
and the Monte Carlo sampling method used to construct the solu-
tion. The scheme does not make any anzatz on the nature of the
stochastic trajectories that underlie the dynamics nor is any special
physical significance attached to the probabilities with which the
stochastic hops are carried out. Fig. 1 shows an example of some
of the trajectories that contribute to the diagonal (aa) density
matrix element at phase point X at time t.

In practice computations of populations or coherences are car-
ried out somewhat differently by making use of the expression
for the average value of an operator, ÔðXÞ, given in the adiabatic
basis by

OðtÞ ¼
X
aa0

Z
dX Oaa0 ðXÞqa0a

W ðX; tÞ

¼
X
aa0

Z
dX Oaa0 ðX; tÞqa0a

W ðX;0Þ: ð15Þ

The second line of this equation expresses the expectation value in a
computationally more convenient form that involves sampling over
the initial density matrix. The time evolution of the operator also
satisfies a QCLE but with forward time propagation [21]. For exam-
ple, to compute the population in state m; qm

s ðtÞ, select
Om

aa0 ðXÞ ¼ damda0m so that

qm
s ðtÞ ¼

Z
dX qmm

WðX; tÞ ¼
X
aa0

Z
dX damda0mqa0a

W ðX; tÞ

¼
X
aa0

Z
dX qaa0

W ðX;0Þ eiLt
� �

a0a;mm: ð16Þ

From this expression one can see that the time evolved operator
will contain all of the reweighting factors needed to obtain the cor-
rect population from the average over the ensemble of stochastic
trajectories. The population is not obtained by simply determining
the fraction of trajectories in state m at time t. Instead, each trajec-
tory carries a set of weights that give the correct weighting of that
trajectory to its contribution in the ensemble. In this way all the
correlations in the ensemble are taken into account. This feature
is both its most important attribute and the source of its primary
difficulty: Monte Carlo weights can accumulate over long trajecto-
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ries leading to instabilities requiring increasing numbers of trajec-
tories to obtain converged results. The difficulties can partially
eliminated by filtering, and filtering methods have been suggested
and used in calculations [38,20,36]. The method has been shown to
give accurate solutions, although the number of trajectories
required to obtain the results is considerably larger than for FSSH.

3. Approximations to yield fewest-switches surface hopping

Fewest-switches surface hopping assumes that between nona-
diabatic hops the nuclear degrees of freedom evolve classically
on single adiabatic surfaces governed by Hellmann–Feynman
forces. Consequently, it is convenient to view QCL dynamics in a
Lagrangian frame of reference that moves with the nuclear phase
space flow along a single adiabatic surface. Letting m be the label
of the chosen adiabatic surface, the evolution of the nuclear phase
space coordinates is given by Xm

t ¼ expðiLmtÞX, and they satisfy the
usual equations of motion,

_Rmt ¼
Pmt
M

; _Pmt ¼ � @

@Rmt
EmðRmt Þ: ð17Þ

Since we can write qaa0
W ðXm

t ; tÞ ¼ expðiLmtÞqaa0
W ðX; tÞ, the QCLE in this

frame of reference takes the form

d
dt
qaa0

W ðXm
t ; tÞ ¼ �iLðmÞ

aa0 ;bb0 ðXm
t Þqbb0

W ðXm
t ; tÞ; ð18Þ

where the material derivative specifies the rate of change in this
frame and the evolution operator is given by

iLðmÞ
aa0 ;bb0 ðXÞ ¼ ixaa0 ðRÞdabda0b0 þ

1
2
ðDFamðRÞ þ DFa0mðRÞÞ

� @

@P
dabda0b0 � J aa0 ;bb0 ðXÞ: ð19Þ

In order to appreciate the content of Eq. (18) it is convenient to
define formally ‘‘decoherence” factors as

cðmÞaa0 ðXÞ ¼
1
2
ðDFamðRÞ þ DFa0mðRÞÞ � 1

qaa0
W ðXÞ

@qaa0
W ðXÞ
@P

: ð20Þ

Using this definition the equation of motion takes the form,

d
dt
qaa0

W ðXm
t ; tÞ ¼ �ixaa0 ðRmt Þ � cðmÞaa0 ðXm

t Þ
� �

qaa0
W ðXm

t ; tÞ

þ J aa0 ;bb0 ðXm
t Þqbb0

W ðXm
t ; tÞ: ð21Þ

The appearance of the decoherence factor in this equation is a con-
sequence of viewing the dynamics on single adiabatic surfaces. It
appears in both the equations for the off-diagonal (a– a0) and diag-
onal (a ¼ a0 with a– m) density matrix elements. Note also that if
a0 – a ¼ m the decoherence factor takes the simpler form,

cðmÞma0 ðXÞ ¼
1
2
DFa0mðRÞ � 1

qma0
W ðXÞ

@qma0
W ðXÞ
@P

: ð22Þ

This decoherence factor appeared earlier in a study of surface hop-
ping in the context of the QCLE by Subotnik et al. [13]. While for-
mally exact it is not easily computed but its approximate
evaluation has been discussed in this paper. It can form the basis
for approximate methods for incorporating decoherence effects in
simple surface-hopping schemes.

Writing these equations more explicitly, the equation of motion
for the diagonal element of the density matrix for state m is,

d
dt
qmm

WðXm
t ; tÞ ¼ �2R

Pmt
M

� dma0 ðRmt Þ̂jma0q�ma0
W ðXm

t ; tÞ
� �

; ð23Þ

while the equation for the off-diagonal elements is
d
dt
qma0

W ðXm
t ; tÞ ¼ �ixma0 ðRmt Þ � cðmÞma0 ðXm

t Þ
� �

qma0
W ðXm

t ; tÞ �
Pmt
M

� dmbðRmt Þ̂jmbqba0
W

ðXm
t ; tÞ �

Pmt
M

� da0bðRmt Þ̂ja0bqmb
W ðXm

t ; tÞ: ð24Þ

These equations are equivalent to the original QCLE (with the
momentum-jump approximation), but simply viewed in a different
frame. The decoherence term has the form of a classical operator
that acts on the nuclear momenta and depends on the difference
between two Hellmann–Feynman forces corresponding to two dif-
ferent adiabatic surfaces. As discussed earlier, coherence is created
in the QCLE by transition events that take the system to off-diago-
nal density matrix elements, and coherence is destroyed when the
system returns to a diagonal population state. The decoherence
factors that appear in the above equations are another representa-
tion of these processes.
3.1. Approximations to these equations

In FSSH the classical dynamics follows stochastic trajectories
comprising evolution on single adiabatic surfaces interrupted by
transitions to other adiabatic surfaces. These transitions are
accompanied by momentum adjustments to conserve energy.
There are no transitions to off-diagonal density matrix elements.
Consequently, to make connection to FSSH, nonadiabatic transi-
tions must be restricted to those events that connect diagonal den-
sity matrix elements.

We are now in a position to make approximations to the evolu-
tion Eqs. (23) and (24) that will bring us close to the equations that
underlie FSSH. In particular, two approximations connected with
decoherence and momentum adjustments need to be made con-
currently, and a third approximation concerns the probabilities
with which nonadiabatic transitions occur.

(1) Since decoherence is not taken into account in FSSH, we

drop the decoherence factors, cðmÞaa0 in Eq. (24) to get, for all
a and a0,
d
dt
qaa0

W ðXm
t ; tÞ ¼ �ixaa0 ðRmt Þqaa0

W ðXm
t ; tÞ

þ J aa0 ;bb0 ðXm
t Þqbb0

W ðXm
t ; tÞ; ð25Þ

where J is evaluated in the momentum-jump approxima-
tion. We can write this equation more compactly by defining
Nm
aa0 ;bb0 ðtÞ ¼ �ixaa0 ðRmt Þdabda0b0 þ J aa0 ;bb0 ðXm

t Þ:

d
dt
qaa0

W ðXm
t ; tÞ ¼ Nm

aa0 ;bb0 ðtÞqbb0
W ðXm

t ; tÞ: ð26Þ

Now, between nonadiabatic transition events, the evolution
of the nuclear degrees of freedom is governed by motion on
the currently active single adiabatic surface (the adiabatic
state on which propagation is currently taking place –
denoted by m here).
(2) In FSSH transitions occur between the active population
state and other adiabatic population states. No hops to off-
diagonal states, along with their associated momentum
jumps, take place. In the context of the QCLE, this means that
all momentum-jump operators should be associated solely
with transitions involving population states. Jump operators
should not be allowed to act when coherences or inactive
population states are being propagated.
To see how to implement and appreciate the nature of this
approximation it is convenient to rewrite Eq. (26) as a gen-
eralized master equation for the diagonal density matrix ele-
ments since this makes the coupling between population
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states evident. Adopting the procedure used to derive a gen-
eralized master equation from the QCLE [39], we denote the
diagonal and off-diagonal density matrix elements by
qdðXm

t ; tÞ and qoðXm
t ; tÞ, respectively, and block Nm into diago-

nal, off-diagonal, and coupling components, Nmd; Nmo; Nmdo

and Nmod, respectively. Then, formally solving for the off-
diagonal density matrix elements and substituting the result
into the equation for the diagonal element of the active sur-
face yields [40],
Fig. 2. Fewest-switches-like stochastic trajectories corresponding to Eqs. (38) and
(39). The trajectory starts on the active m surface (solid heavy line). In the course of
the evolution, as a result of nonadiabatic coupling contributions from other
electronic density matrix elements arise (light doted lines) although no nonadia-
batic transitions have taken place and the system continues to evolve on the m
active surface. Later in the trajectory a nonadiabatic transition to the b population
state occurs as indicated by the heavy downward arrow. Subsequently the b state
becomes the active surface and it is indicated by a solid heavy line. The trajectories
are sketched assuming that the system is updated at times Dt but this time interval
may be taken to be infinitesimal.
d
dt
qmm

W ðXm
t ; tÞ ¼

Z t

0
dt0 Mm

mbðt; t0Þqbb
W ðXm

t0 ; t
0Þ; ð27Þ

where

Mm
mbðt; t0Þ ¼ J do

m;l1l0
1
ðXm

t ÞUmo
l1l0

1 ;l2l0
2
ðt; t0ÞJ od

l2l0
2 ;b
ðXm

t0 Þ ð28Þ

and the simpler notation J mm;ll0 ¼ J do
m;ll0 , etc. was used. The

propagator for off-diagonal elements is Umoðt; t0Þ and it takes
the form of a time-ordered exponential whose power series is

Umo
l1l0

1
;l2l0

2
ðt; t0Þ ¼ dl1l2

dl0
1l

0
2
þ
Z t

t0
dt1 N

m
l1l0

1
;l2l0

2
ðt1Þ

þ
Z t

t0
dt1 N

m
l1l0

1 ;l3l0
3
ðt1Þ

�
Z t1

t0
dt2 N

m
l3l0

3 ;l2l0
2
ðt2Þ þ � � � ð29Þ

From the definition of Nm one can see that Umoðt; t0Þ contains
the adiabatic frequencies, nonadiabatic coupling matrix ele-
ments and jump operators [41].
Considering the structure of Eq. (28), we see that momentum
jump operators at different times appear in the left-most and
right-most J operators, as well as in the off-diagonal propa-
gator. They act on all quantities to their right. Since transi-
tions are only allowed between population states in FSSH
we make the approximation that all momentum jump oper-
ators are moved through the intervening functions and oper-
ators in Mm and are taken to act only on the diagonal density
matrix elements qbb

W ðXm
t0 ; t

0Þ at time t0 in Eq. (27). This process
will lead to a product of momentum jump operators acting
on the populations and this product of operators must be
concatenated to obtain the net momentum change.
We compute a few representative terms to show the result of
such a concatenation process. Consider the identity operator
in the first term in Eq. (29). The resulting contribution to the
memory kernel is

Mmð1Þ
mb ðt; t0Þ ¼ 2R

Pmt
M

� dml1
ðRmt Þ

Pmt0
M

� dl1mðRmt0 Þ
� �

dmb ĵml1
ĵl1m

þ 2R
Pmt
M

� dmbðRmt Þ
Pmt0
M

� d�
mbðRmt0 Þ

� �
ĵmb ĵmb: ð30Þ

The action of two consecutive QCL momentum shifts on some
function f ðPÞ can be computed as follows:

ĵmbðPÞ̂jmbðPÞf ðPÞ ¼ ĵmbðP þ DPmbðPÞÞf ðP þ DPmbðPÞÞ
¼ f ðP þ DPmbðPÞ þ DPmbðP þ DPmbðPÞÞÞ: ð31Þ

After some algebra one may show that

DPmbðP þ DPmbðPÞÞ ¼ �ðP þ DPmbðPÞÞ � d̂mbd̂mb
þ d̂mb sgnðP � d̂mbÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP � d̂mbÞ

2 þ 2DEmbM
q

: ð32Þ
Thus, using this result we find that
DPmbðPÞ þ DPmbðP þ DPmbðPÞÞ ¼ DPFS
mbðPÞ ð33Þ

and we can write,

ĵmbðPÞ̂jmbðPÞf ðPÞ ¼ ĵFSmbðPÞf ðPÞ ¼ f ðP þ DPFS
mbðPÞÞ: ð34Þ

We have used the fewest-switches (FS) superscript on this
jump operator to indicate that it produces the same momen-
tum shift as that in FSSH given in Eq. (3). Following the same
procedure we find that

ĵml1
ðPÞ̂jl1mðPÞf ðPÞ ¼ ĵFSmmðPÞf ðPÞ ¼ f ðPÞ ð35Þ

and there is no momentum jump. An analogous procedure
can be used to evaluate the higher order terms. For example,
use of the second term in Eq. (29) in the memory kernel will
yield contributions with products of three momentum jump
operators. Typical contributions may be evaluated to give

ĵml1
ðPÞ̂jl1l2

ðPÞ̂jl2mðPÞf ðPÞ ¼ ĵFSmmðPÞf ðPÞ;
ĵmbðPÞ̂jml1

ðPÞ̂jl1bðPÞf ðPÞ ¼ ĵFSmbðPÞf ðPÞ: ð36Þ
Using these results the generalized master equation becomes

d
dt
qmm

W ðXm
t ; tÞ ¼

Z t

0
dt0 �Mm

mbðt; t0 Þ̂jFSmbðXm
t0 Þqbb

W ðXm
t0 ; t

0Þ; ð37Þ

where the bar on �Mm is used to denote the fact that it no
longer contains momentum jump operators. Having made
these approximations we can return to the set of coupled
equation that are equivalent to the generalized master
equations,

d
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and
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In writing Eq. (39), in the last line we have explicitly dis-
played the terms that couple the off-diagonal density matrix
elements to diagonal elements to show where the fewest-

switches momentum jump factors, ĵFSma0 ðXm
t Þ, appear. With the

exception of the momentum-jump operator in this equation,
the pair of equations (Eqs. (38) and (39)) is identical to those
that appear in FSSH (cf. Eqs. (1) and (2)). The trajectories that
underlie these equations are indicated schematically in Fig. 2.
(3) To finish the story we must specify how these equations are
to be solved by a stochastic algorithm. While the starting
QCL equation treats all density matrix elements on an equal
footing, the first two approximations leading to Eqs. (38) and
(39) served to give state m a privileged status. This is the
active surface on which the nuclear coordinates currently
evolve. In addition to neglecting the decoherence terms,
the approximations that specify the manner in which the
momentum-jump operators act were made with the aim of
considering transitions only between population states, so
the stochastic algorithm should incorporate this feature. If
the system is currently in state m, in the course of evolution
on the m surface the population can change at a rate given by
Eq. (38). Since other states are not currently active it seems
appropriate to suppose that population changes involving
this state arise solely from transitions out of the state. Tran-
sitions into state m from other states would not be treated
accurately since the nuclear evolution of those states is con-
trolled by the active m surface. In this context it seems rea-
sonable to complete the final link to FSSH by choosing the
transition rate in time interval dt to be given by
pm!b ¼
2R P

M � dmbq�mb
W

� �
dt

qmm
W

H 2R
P
M

� dmbq�mb
W

� �� �
; ð40Þ

where HðxÞ is a Heaviside function. While reasonable, there
are aspects of this expression worth noting. The net rate in
Eq. (38) can take either sign and the Heaviside function in
Eq. (40) restricts pm!b to be positive. In contrast to the sur-
face-hopping solution of the QCLE where reweighting factors
enter the algorithm and the coupling terms can have either
sign, this fewest-switches choice of transition rate is reason-
able on physical grounds, given the form of the approximate
equations of motion, and no reweighting of trajectories
accompanies the nonadiabatic transitions. From these con-
siderations, it is not obvious that modifications of the few-
est-switches transition probability will improve the FSSH
algorithm.
4. Discussion

This is not the first time that connections between the QCLE and
FSSH have been considered. As mentioned in the text, Subotnik
et al. [13], in an investigation with similar aims, constructed a
nuclear-electronic density matrix starting with FSSH. In the course
of the derivation a number of approximations and conditions had
to be satisfied in order to obtain an evolution equation that was
similar to but not exactly the same as the QCLE. Their derivation
led to several ingredients that both justified some of the assump-
tions in FSSH and revealed some of its deficiencies. One of these
major deficiencies was the lack a proper account of decoherence
in the theory. The main decoherence factors they needed to append
to the equations of motion are the same as those that enter in the
treatment in this paper. In addition they showed how these deco-
herence factors could be approximated to yield tractable forms and
how they are related to earlier suggestions for the treatment of
decoherence.
The problem was approached from the opposite perspective
in this study: the starting point was the QCLE and its solution
by a surface-hopping algorithm. The QCLE was then trans-
formed to a Lagrangian frame that moved with the dynamics
on a specific adiabatic surface, and in this frame one could
see what parts of the evolution operator needed to be modified
to obtain FSSH. The resulting analysis does not constitute a
derivation of FSSH since the result is obtained by discarding
and approximating portions of the QCL operator, but it does
provide considerable insight into the features that distinguish
the quantum–classical Liouville and fewest-switches surface-
hopping algorithms.

Several observations can be gleaned from the analysis
presented in this paper. It is well known that the lack of a proper
treatment of decoherence is one of the major shortcomings of
FSSH and, as described in the text, various suggestions for how
to incorporate decoherence in the surface-hopping framework
have been proposed. Decoherence is taken into account in QCL
dynamics and we have seen that the decoherence factor takes a
suggestive form when this dynamics is viewed in a frame of
reference that moves with the dynamics on a single active m
adiabatic surface. In the QCL dynamics the decoherence effects
arise from transitions to and from the coherent evolution
segments where the nuclear propagation occurs on the mean of
two adiabatic surfaces and carries a phase. While the construction
of decoherence factors in surface-hopping schemes often involves
approximations whose validity is not fully determined, it is, in
fact, very easy to simulate the evolution on the mean of two
surfaces that describe the coherent (off-diagonal) evolution
segments of the dynamics. So, to account for decoherence in
surface hopping, rather than forcing the dynamics to evolve on
single adiabatic surfaces, it is likely to be better to allow the
system to jump to and propagate on both population and off-
diagonal states.

As discussed earlier, this is the case for the QCL surface-hopping
scheme where the evolution segments involve both diagonal and
off-diagonal dynamics with transitions between them. This is also
the case for a recently-proposed surface-hopping scheme in Liou-
ville space [42]. That scheme incorporates transitions from diago-
nal to off-diagonal coherent evolution segments as in the
surface-hopping solution of the QCLE, but the transition rates are
approximated by forms analogous to those in FSSH. No reweight-
ing is carried out and a prescription is given to obtain populations
from the ensemble of trajectories.

Surface-hopping methods have considerable appeal when con-
sidering nonadiabatic dynamics since they provide a conceptually
appealing way to view the dynamics. However, when one
attempts to probe more deeply into their basis, the usual com-
plexity of quantum mechanics, or even mixed quantum–classical
mechanics, comes into play. The trajectories that comprise the
ensemble that is used to compute observables are not indepen-
dent and schemes must be devised to account for the correlations.
This feature is manifest in the weights that the trajectories carry
in the surface-hopping solution of the QCLE, as well as in other
representation of this equation [29], and in a recent coherent state
hopping method for nonadiabatic dynamics [43]. Other research
in this area has as its goal placing surface hopping on a more
rigorous mathematical foundation [44,45]. It seems that surface-
hopping methods will continue to occupy our attention for some
time.
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