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a b s t r a c t

We show that linearization methods, commonly used to approximate the evolution of the density oper-
ator in mixed quantum–classical systems, can be justified when a small parameter, the ratio of masses of
the quantum subsystem and bath, is introduced. The same parameter enters in the derivation of the
quantum–classical Liouville equation. Although its original derivation followed from a different formal-
ism, here we show that the basis-free form of the quantum–classical Liouville equation for the density
operator can also be obtained by linearization of the exact time evolution of this operator. These results
show the equivalence among various quantum–classical schemes.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Quantum–classical methods are currently the only viable com-
putational tool to study the dynamics of relatively large systems in
which the quantum properties of a subset of degrees of freedom
play an important role. These methods usually start from a full
quantum description of all the degrees of freedom and then parti-
tion them in two subsets (the quantum subsystem and the bath). A
partial classical limit for the evolution of the bath is then taken and
the way in which this is done distinguishes the various approaches
[1–4]. Some approaches are derived from well-defined approxima-
tions to the quantum dynamics of the entire system, while others
follow from physically motivated ansätze on the evolution equa-
tions. Since the various methods are based on rather different pre-
mises, even the relationships among those derived from well-
defined approximations to the quantum dynamics have not been
established. The analysis of these relationships is a worthwhile en-
deavor that can provide one with a better understanding of the rel-
ative merits of the approaches, help to clarify the different
approximations on which they rely, and can lead to better algo-
rithms for their simulation.

In the following we shall consider two such methods, the quan-
tum–classical Liouville (QCL) approach and the family of tech-
niques known as linearization methods (LM). Linearization
methods start from a path integral representation of the Heisen-
berg time evolution of an operator. The forward and backward
paths representing the propagators are expressed in terms of mean
and difference variables, and the evolution is approximated via an

expansion of the phase of the path integral to linear order in the
difference variables. This approximation reduces the evolution of
the path of the mean variables to a time stepping algorithm whose
complexity is similar to that of classical mechanics. The advantages
of this approach, which was originally devised for Born–Oppenhei-
mer dynamics [5–9] and then generalized to non-adiabatic prob-
lems [10–13], have been demonstrated, but the approximation
has been formally justified only for quantum systems bilinearly
coupled to a bath of harmonic oscillators [14]. In Section 2 we
show that the expansion in the difference variables is equivalent
to an expansion in the mass ratio l ¼ ðm=MÞ1=2 where m and M
are the characteristic masses of the quantum subsystem and bath
particles, respectively. This result is obtained without the introduc-
tion of a specific representation for the quantum subsystem and
establishes the formal equivalence of different forms of mixed
quantum–classical linearization methods that depend on a specific
choice of basis. This equivalence implies that the accuracy of the
calculations performed with these methods is the same, although
the numerical efficiency of the various algorithms can vary consid-
erably due to the choice of subsystem basis.

The control parameter l also plays a key role in the derivation
of the quantum–classical Liouville equation but the procedure to
obtain this equation is very different from linearization methods.
A partial Wigner transform of the density of the full system of
the bath degrees of freedom is first taken. The exact evolution
equation for this quantity is then expressed in terms of the quan-
tum Liouville operator and the QCL evolution obtained, in scaled
variables, via a first order expansion of this operator in the mass ra-
tio [15]. In Section 3 we provide an alternative derivation of QCL
that shows that it can be obtained from a linearization approxima-
tion. This is the main result of this work: the derivation unifies QCL
equation and linearization methods showing that they can be ob-
tained using the same framework. The link among LM and QCL
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approaches was investigated earlier by Shi and Geva [16] who
examined the connection between the QCL equation and lineariza-
tion within the influence functional formalism [17]. For two
choices of basis for the quantum subsystem (adiabatic and dia-
batic), they demonstrated that the QCL equation could be obtained
by linearizing the forward–backward action in the influence func-
tional. Our derivation confirms these results, but it is more general
since it is obtained in a basis-free form. This is an interesting tech-
nical point because, in general, after linearization it is not possible
to prove equivalence in different representations simply via a stan-
dard transformation of the basis. The approximation affects both
the dynamics and the representation of the system [18] and the
properties of a fully quantum basis transformation may not be pre-
served. Due to this, for example, in [16] two distinct proofs were
required depending on the representation of the electronic subsys-
tem. In [19] an examination of the relative numerical performances
of the QCL equation and the iterative linearized density matrix
(ILDM) propagation [20] was made by directly comparing efficien-
cies and accuracies of the two algorithms based on these methods.
The results showed the essential equivalence of the numerical per-
formances of the QCL and ILDM algorithms. This equivalence too is
explained by the connection among the methods described in this
Letter.

2. Linearized approximations as mass ratio expansions

Consider a system described by the Hamiltonian,
Ĥ ¼ P̂2

2M þ ĥqðp̂; r̂; R̂Þ. In this expression, capital letters indicate the
operators of the bath, while lower case letters are used for the
quantum subsystem. The kinetic energy operator of the bath,
P̂2=2M, has been isolated, while ĥqðp̂; r̂; R̂Þ contains the kinetic en-
ergy of the quantum subsystem and all interaction terms, includ-
ing, if present, external potentials. Below we choose a coordinate
representation for the bath while the quantum subsystem is de-
scribed by abstract operators. All dynamical properties of the sys-
tem can be calculated in terms of the density operator, q̂. In the
Heisenberg representation, the time evolution of this operator
from time 0 to time t is given by

q̂ðtÞ ¼ e�
i
�hĤtq̂ð0Þe i

�hĤt : ð1Þ

A convenient expression for the matrix element of the density in
bath space can be obtained by inserting resolutions of the identity
in the bath coordinate states; thus,

hRjq̂ðtÞjeRi ¼ Z dR0 deR0hRje�
i
�hĤtjR0ihR0jq̂ð0ÞjeR0iheR0je

i
�hĤtjeRi; ð2Þ

which is still an operator in the quantum subsystem space. Repre-
senting the propagators as path integrals in the bath’s coordinates
and momenta [21], the matrix element above can be written as

hRjq̂ðtÞjeRi � Z dR0 . . . dRN�1
dP1

2p�h
. . .

dPN

2p�h

Z
deR0 . . . deRN�1

� deP1

2p�h
. . .

dePN

2p�h
� e�

is
�h

PN

k¼1

P2
k

2Me
i
�h

PN

k¼1
PkðRk�Rk�1Þe�

i
�hsĥqðRN Þ . . . e�

i
�hsĥqðR1Þ

� hR0jq̂ð0ÞjeR0i � e
is
�h

PN

k¼1

eP 2
k

2Me�
i
�h

PN

k¼1
eP kðeRk�eRk�1Þe

i
�hsĥqðeR1Þ . . . e

i
�hsĥqðeRN Þ;

ð3Þ

The above expression (which employs a Trotter factorization of the
Hamiltonian) becomes exact for s! 0 (with s ¼ t=N). This is the
limit we shall consider here, though the symbol will be omitted
from the equations. In the expression, we introduced the short hand
notation ĥqðRkÞ ¼ ĥqðp̂; r̂;RkÞ and RN ¼ R, eRN ¼ eR. Note that the order
of the exponentials of the quantum subsystem Hamiltonian must be
preserved as these operators do not commute when evaluated at
different bath positions. We now introduce mean, Rk ¼

ðRk þ eRkÞ=2, and difference, DRk ¼ Rk � eRk variables (with similar
expressions for the bath momenta). In these variables, the matrix
element of the density operator is given by

RN þ
DRN

2
jq̂ðtÞjRN �

DRN

2

� �
¼
Z

dR0dDR0

Z YN�1

k¼1

dRk
dPk

2p�h
dPN

2p�h

�
Z YN�1

k¼1

dDRk
dDPk

2p�h
dDPN

2p�h
e

i
�hPNDRN e�

i
�hP1DR0 e

i
�h

PN�1

k¼1

ðPkþ1�PkÞDRk

� e
� i

�h

PN
k¼1

sPk
M�ðRk�Rk�1Þ

h i
DPk

e�
i
�hsĥq RNþ

DRN
2

� �
. . . e�

i
�hsĥq R1þ

DR1
2

� �
� R0 þ

DR0

2
jq̂ð0ÞjR0 �

DR0

2

� �
e

i
�hsĥq R1�

DR1
2

� �
. . . e

i
�hsĥq RN�

DRN
2

� �
: ð4Þ

The integrals over the variables DPk are representations of d func-
tions so they can be performed analytically and introduce a factorQN

k¼1d s Pk
M � ðRk � Rk�1Þ

h i
in the integrand. The integral over DR0 is,

by definition [22], the partial Wigner transform with respect to
the bath variables of the density at t ¼ 0,

q̂WðR0; P1Þ ¼
Z

dDR0e�
i
�hP1DR0 R0 þ

DR0

2
jq̂ð0ÞjR0 �

DR0

2

� �
: ð5Þ

Using these observations, Eq. (4) can be written as

RN þ
DRN

2
jq̂ðtÞjRN �

DRN

2

� �
¼
Z

dR0

Z YN�1

k¼1

dRk
dPk

2p�h
dPN

2p�h

�
YN

k¼1

d s Pk

M
� ðRk � Rk�1Þ

" #Z YN�1

k¼1

dDRke
i
�hPNDRN

� e�
i
�hsĥqðRNþ

DRN
2 Þ . . . e�

i
�hsĥqðR1þ

DR1
2 Þq̂WðR0; P1Þ

� e
i
�hsĥqðR1þ

DR1
2 Þ . . . e

i
�hsĥqðRN�

DRN
2 Þ: ð6Þ

This result is exact. Note that if the path for the mean momenta is
known, the presence of the delta function reduces the generation of
the path for the mean coordinates to a sequence of classical-like
steps. Unfortunately, the mean momentum path can only be calcu-
lated once the integral over the DRk has been performed and, in gen-
eral, this is impossible due to the implicit dependence of the
quantum subsystem Hamiltonian on these variables. In lineariza-
tion methods this difficulty is addressed in two steps. First, a basis
is introduced for the quantum subsystem to resolve the operators
still present in the path integral and turn ĥq into a function, hq, of
the forward and backward path of the quantum subsystem and
the mean and difference bath coordinates. Second, hq is expanded
to first order in the bath difference variables, at each point along
the quantum forward and backward paths. This is the core of the
linearized approximation. When the expansion is substituted in
the path integral expression of the density matrix, the terms in
the integrand that depend on DRk can be combined to obtain a
new set of delta functions that reduce also the succession of Pk to
a classical-like evolution. The precise sequence of manipulations
that produce the time-stepping prescription for generating the
momentum path is different in the various LM and can produce
algorithms with very different characteristics; however, the struc-
ture of the result and the two steps to linearization are common
to all such methods. As an example, in the Appendix we summarize
how these steps are realized in the linearized non-adiabatic dynam-
ics method known as LAND-Map.

The truncation of the Taylor series expansion of hq to linear or-
der in the difference variable is usually justified in LM methods
(see, for example, Refs. [10,11]) on the basis of arguments that in-
volve the interference among the forward and backward paths in
the Feynman representation of the time-evolved density. The idea
is that, if the two paths are very different (i.e. for large values of the
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difference variables), the phase factors in the path integral oscillate
wildly and interfere destructively. The most relevant contributions
to the evolution of the density must then come from neighboring
paths for which DR remains small and the approximation is accu-
rate. More quantitative statements have been made only for very
specific systems (in particular for a bath of harmonic oscillators
bilinearly coupled to the quantum subsystem [14]). In contrast to
these qualitative arguments, we now show that the expansion in
DR is equivalent to an expansion of the quantum subsystem Ham-
iltonian to first order in the parameter l ¼ ðm=MÞ1=2 and can there-
fore be justified on the basis of the relative magnitudes of the
characteristic masses M and m. To this end, we consider again
Eq. (6) and, in analogy with [15], introduce the energy �0, time
t0 ¼ �h=�0, and length km ¼ ð�h2=m�0Þ1=2 scales. We may then define
the following set of dimensionless variables and operators:
r̂0 ¼ r̂=km, R0 ¼ R=km, p̂0 ¼ p̂=pm and P0 ¼ P=PM , together with the
scaled time t0 ¼ t=t0 and the scaled quantum subsystem Hamilto-
nian ĥ0qðr̂0; p̂0;R

0Þ ¼ ĥqðr̂; p̂;RÞ=�0. Here pm ¼ ðmkm=t0Þ ¼ ðm�0Þ1=2

and PM ¼ ðM�0Þ1=2. This scaling makes the momenta of all degrees
of freedom in the system have the same order of magnitude. In the
new variables, the time-evolved matrix element of the density
operator (see Eq. (6)) is given by

R0N þ
DR0N

2
jq̂0ðt0ÞjR0N �

DR0N
2

� �
¼
Z

dR00

Z YN�1

k¼1

dR0kdP0kdP0N

�
YN
k¼1

d s0 �hP0kffiffiffiffiffiffiffiffiffi
�0M
p � �hðR0k � R0k�1Þffiffiffiffiffiffiffiffiffi

�0m
p

� � Z YN�1

k¼1

dDR0ke
i
lP0NDR0N

� e
i
l

PN�1

k¼1

ðP0kþ1�P0kÞDR0k
e
�is0 ĥ0q R0Nþ

DR0
N

2

	 

. . . e

�is0 ĥ0q R01þ
DR0

1
2

	 


� q̂0WðR
0
0; P

0
1Þe

is0 ĥ0q R01�
DR0

1
2

	 

. . . e

is0 ĥ0q R0N�
DR0

N
2

	 

: ð7Þ

The mass ratio appears only in the phase factors in the second line
of this equation. In the limit l! 0 (i.e., when we expect the quan-
tum–classical evolution equations to become accurate) this phase
factor will oscillate very rapidly and complicate the evaluation of
the integral. The effect of these oscillations can however be ana-
lyzed by performing (for k ¼ 1; . . . ;N � 1) the change of variables
Dk ¼ DR0k=l to obtain

R0N þ l
DN

2
jq̂0ðt0ÞjR0N � l

DN

2

� �
¼ lN�1

Z
dR00

Z YN�1

k¼1

dR0kdP0kdP0N

�
YN
k¼1

d s0 �hP0kffiffiffiffiffiffiffiffiffi
�0M
p � �hðR0k � R0k�1Þffiffiffiffiffiffiffiffiffi

�0m
p

� � Z YN�1

k¼1

dDkeiP0NDN

� e�is0 ĥ0q R0Nþl
DN
2

� �
. . . e�is0 ĥ0q R01þlD1

2

� �
� q̂0WðR

0
0; P

0
1Þe

is0 ĥ0q R01�lD1
2

� �
. . . eis0 ĥ0q R0N�l

DN
2

� �
: ð8Þ

The l! 0 limit can now be used to justify truncation to first order
in this parameter of the Taylor series expansion of the quantum
subsystem Hamiltonian in the last line of the equation above

R0N þ lDN

2
jq̂0ðt0ÞjR0N � lDN

2

� �
¼ lN�1

Z
dR00

Z YN�1

k¼1

dR0kdP0kdP0N

�
YN
k¼1

d s0 �hP0kffiffiffiffiffiffiffiffiffi
�0M
p � �hðR0k � R0k�1Þffiffiffiffiffiffiffiffiffi

�0m
p

� � Z YN�1

k¼1

dDkeiP0NDN

� e
i
PN�1

k¼1

ðP0kþ1�P0kÞDk

e�is0 ĥ0qðR
0
N Þþrĥ0qðR

0
NÞl

DN
2

� �
. . . e�is0 ĥ0qðR

0
1Þþrĥ0qðR

0
1Þl

D1
2

� �
� q̂0WðR

0
0; P

0
1Þe

is0 ĥ0qðR
0
1Þ�rĥ0qðR

0
1Þl

D1
2

� �
. . . eis0 ĥ0qðR

0
NÞ�rĥ0qðR

0
NÞl

DN
2

� �
: ð9Þ

Returning to unscaled variables, this result can be written as

RN þ
DRN

2
jq̂ðtÞjRN �

DRN

2

� �
¼
Z

dR0

Z YN�1

k¼1

dRk
dPk

2p�h
dPN

2p�h

�
YN
k¼1

d s
Pk

M
� ðRk � Rk�1Þ

" #Z YN�1

k¼1

dDRke
i
�hPNDRN

� e
i
�h

PN�1

k¼1

ðPkþ1�PkÞDRk

� e�
i
�hs½ĥqðR1ÞþrĥqðR1Þ

DR1
2 � . . . e�

i
�hs ĥqðRN ÞþrĥqðRNÞ

DRN
2

� �
� q̂WðR0; P1Þe

i
�hs ĥqðR1Þ�rĥqðR1Þ

DR1
2

� �
. . . e

i
�hs ĥqðRNÞ�rĥqðRN Þ

DRN
2

� �
: ð10Þ

Direct comparison of the equation above with (6) shows that
the expansion of the quantum subsystem Hamiltonian in the (un-
scaled) difference variables is formally equivalent to an expansion
in the parameter l of the density matrix element in scaled vari-
ables. Since it holds for an abstract representation of the quantum
subsystem, this result is independent of the specific choice of basis
and, therefore, it can be used to justify any LM.

Finally, if we perform the change of variables Yk ¼ DRk=�h, Eq. (6)
can also be written as

RN þ
�hYN

2
jq̂ðtÞjRN �

�hYN

2

� �
¼
Z

dR0

Z YN�1

k¼1

dRk
dPk

2p
dPN

2p�h

�
YN
k¼1

d s Pk

M
� ðRk � Rk�1Þ

" #Z YN�1

k¼1

dYkeiPN YN

� e
i
PN�1

k¼1

ðPkþ1�PkÞYk

� e�
i
�hsĥqðRNþ

�hYN
2 Þ . . . e�

i
�hsĥqðR1þ

�hY1
2 Þ

� q̂WðR0; P1Þe
i
�hsĥqðR1�

�hDY1
2 Þ . . . e

i
�hsĥq RN�

�hYN
2

� �
: ð11Þ

In these variables then, linearization is equivalent to a first order
Taylor series expansion of ĥq in �h. The mass scaling argument pro-
vides a more precise physical argument for the nature of the
approximation, but the �h expansion can be used to support linear-
ization also for propagation of the bath variables in the absence of
a quantum subsystem and/or to show how the full classical limit
emerges from the linearization.

3. Quantum–classical Liouville equation from linearization

The scaling of variables and operators introduced in the previ-
ous section was used first in the derivation of the quantum–classi-
cal Liouville equation. The standard derivation of the QCL equation
[15] follows from a partial Wigner representation of the density in
the bath degrees of freedom and a first order expansion in the
parameter l of the quantum Liouville operator for the full system,
when expressed in scaled variables/operators. In the following we
show that the QCL equation can also be considered to be a linear-
ized approximation to full quantum mechanics. To this end, we be-
gin by casting the quantum time evolution equation for the density
(the result can immediately be extended to generic operators) into
an integro-differential form which is a convenient starting point
for approximations. We then show that the QCL equation can be
obtained from a linearization approximation to this equation.

Let us consider the time evolution of the density operator from
time t to time t þ sðs is now an arbitrary infinitesimal time interval)

q̂ðt þ sÞ ¼ e�
i
�hĤsq̂ðtÞe i

�hĤs: ð12Þ

In the limit s! 0 we can apply a Trotter factorization of the prop-
agators in the equation above, e�

i
�hĤs � e�

i
�hs

P̂2
2Me�

i
�hsĥqðp̂;r̂;R̂Þ, insert resolu-

tions of the identity in the bath coordinates (to evaluate the
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contribution of the quantum subsystem Hamiltonian operator) and
momentum states (to evaluate the contribution of the kinetic en-
ergy operator), and rewrite the density matrix element as

hRjq̂ðt þ sÞjeRi ¼ Z dR0 dP0 deR0 deP0e
i
�hP0ðR�R0Þe�

i
�hs

P2
0

2Me�
i
�hsĥqðp̂;r̂;R0Þ

� hR0jq̂ðtÞjeR0ie�
i
�h
eP0ðeR�eR0Þe

i
�hs
eP2

0
2Me

i
�hsĥqðp̂;r̂;eR0Þ: ð13Þ

We now perform the change of variables R0 ¼ R0þeR0
2 , DR0 ¼ R0 � eR0,

along with similar variable changes for R; eR; P0; eP0. In the new vari-
ables, the density matrix element is

Rþ DR
2
jq̂ðt þ sÞjR� DR

2

� �
¼
Z

dR0 dP0 dDR0 dDP0e
i
�hP0ðDR�DR0Þ

� e
i
�hDP0ðR�R0Þ � e�

i
�hs

P0
M DP0 e�

i
�hsĥq p̂;r̂;R0þ

DR0
2

� �
� hR0 þ

DR0

2
jq̂ðtÞjR0 �

DR0

2
ie i

�hsĥq p̂;r̂;R0�
DR0

2

� �
:

ð14Þ

This expression can be used to obtain the evolution equation for the
density matrix elements. We expand the exponentials that depend

on s to first order in this parameter, e.g. e�
i
�hs

P0
M DP0 � 1� i

�h s
P0
M DP0. As a

result of these expansions, the integral can be expressed (to first or-
der in s) as the sum of four contributions: hRþ DR

2 jq̂ðt þ sÞjR� DR
2 i ¼

Aþ Bþ C0 þ C1, where

A ¼
Z

dR0 dP0 dDR0 dDP0e
i
�hP0ðDR�DR0Þe

i
�hDP0ðR�R0Þ

� R0 þ
DR0

2
jq̂ðtÞjR0 �

DR0

2

� �
; ð15Þ

B ¼ � i
�h
s
Z

dR0 dP0 dDR0 dDP0e
i
�hP0ðDR�DR0Þe

i
�hDP0ðR�R0Þ P0

M

� DP0 R0 þ
DR0

2
jq̂ðtÞjR0 �

DR0

2

� �
;

C0 ¼ �
i
�h
s
Z

dR0 dP0 dDR0 dDP0e
i
�hP0ðDR�DR0Þe

i
�hDP0ðR�R0Þ

� ĥq p̂; r̂;R0 þ
DR0

2


 �
R0 þ

DR0

2
jq̂ðtÞjR0 �

DR0

2

� �
;

C1 ¼
i
�h
s
Z

dR0 dP0 dDR0 dDP0e
i
�hP0ðDR�DR0Þe

i
�hDP0ðR�R0Þ

� R0 þ
DR0

2
jq̂ðtÞjR0 �

DR0

2

� �
ĥq p̂; r̂;R0 �

DR0

2


 �
:

All integrals in A can be performed analytically: the integrals over P0

and DP are representations of d functions in the arguments
ðDR� DR0Þ and ðR� R0Þ, respectively; these delta functions, in turn,
allow one to perform the integrals over R0 and DR0 to obtain

A ¼ Rþ DR
2
jq̂ðtÞjR� DR

2

� �
: ð16Þ

The same manipulations on C0 and C1 make it possible to write
these terms as

C0 ¼ ĥq p̂; r̂;Rþ DR
2


 �
Rþ DR

2
jq̂ðtÞjR� DR

2

� �
; ð17Þ

and

C1 ¼ Rþ DR
2
jq̂ðtÞjR� DR

2

� �
ĥq p̂; r̂;R� DR

2


 �
: ð18Þ

In term B in Eq. (15), note that the factor DP0 appearing in the inte-
gral is proportional to the derivative of the integral with respect to
R; thus, taking into account the factor of proportionality, we have

B ¼ �srR

Z
dR0 dP0 dDR0 dDP0e

i
�hP0ðDR�DR0Þe

i
�hDP0ðR�R0Þ

� P0

M
R0 þ

DR0

2
jq̂ðtÞjR0 �

DR0

2

� �
: ð19Þ

The integrals over DP0 and R0 can again be performed, while the
integral over DR0 is the partial Wigner transform of the density
operator in the bath variables so that

B ¼ �s
Z

dP0e
i
�hP0DR P0

M
rRq̂WðR; P0Þ: ð20Þ

The partial Wigner transform of the density appears naturally as a
consequence of the choice of the mean and difference variables.

The intermediate results obtained in Eqs. (16), (20), (17) and
(18) can now be assembled to obtain the following expression
for the finite difference approximation to the time derivative of
the matrix element of the density:

1
s

Rþ DR
2
jq̂ðt þ sÞjR� DR

2

� �
� Rþ DR

2
jq̂ðtÞjR� DR

2

� �� �
¼ �

Z
dP0e

i
�hP0DR P0

M
rRq̂WðR; P0Þ þ

i
�h

ĥq p̂; r̂;Rþ DR
2


 �
� Rþ DR

2
jq̂ðtÞjR� DR

2

� �
� i

�h
Rþ DR

2
jq̂ðtÞjR� DR

2

� �
� ĥq p̂; r̂;R� DR

2


 �
: ð21Þ

Taking the limit s! 0, multiplying both sides of the equation above
by e�

i
�hPDR, and integrating the result over DR gives

@q̂W ðR; PÞ
@t

¼ � P
M
rRq̂W ðR; PÞ þ

i
�h

Z
dDRe�

i
�hPDRĥq p̂; r̂;Rþ DR

2


 �
� Rþ DR

2
jq̂ðtÞjR� DR

2

� �
� i

�h

Z
dDRe�

i
�hPDR

� Rþ DR
2
jq̂ðtÞjR� DR

2

� �
ĥq p̂; r̂;R� DR

2


 �
: ð22Þ

This integro-differential equation describes the full quantum evolu-
tion of the density matrix element. The main difficulty in solving Eq.
(22) stems from the dependence of ĥq p̂; r̂;R� DR

2

� �
on the difference

variable DR. The same scaling argument used to justify LM can be
applied here to obtain a convenient approximation for the equation
above. For example, linearizing the Hamiltonian ĥq in the first inte-
gral one obtains,

i
�h

Z
dDRe�

i
�hPDR ĥqðp̂; r̂;RÞ þ

DR
2
rRĥqðp̂; r̂;RÞ

� �
Rþ DR

2
jq̂ðtÞjR� DR

2

� �
:

ð23Þ

Substituting this expansion, and its analog for the last term in the
right hand side of Eq. (22), results in four contributions to the evo-
lution equation. The two zero order terms in DR can be trivially ex-
pressed as � i

�h ½ĥqðp̂; r̂;RÞ; q̂WðR; PÞ�, where ½:; :� is the quantum
commutator. The contribution of the first order terms can be com-
puted, for example, as follows:

i
�h

Z
dDRe�

i
�hPDRrRĥqðp̂; r̂;RÞ

DR
2

Rþ DR
2
jq̂ðtÞjR� DR

2

� �
¼ 1

2
rRĥqðp̂; r̂;RÞrP

Z
dDRe�

i
�hPDR Rþ DR

2
jq̂ðtÞjR� DR

2

� �
¼ 1

2
rRĥqðp̂; r̂;RÞrPq̂WðR; PÞ: ð24Þ

A similar treatment for the other first order term gives
1=2rPq̂WðR; PÞrRĥqðp̂; r̂;RÞ. Inserting the results above into Eq.
(22), defining ĤWðR; PÞ ¼ P2=2M þ ĥqðr̂; p̂;RÞ and noticing that
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P
M
rRq̂WðR; PÞ ¼

1
2
rPĤW ðR; PÞrRq̂WðR; PÞ

þ 1
2
rRq̂WðR; PÞrPĤWðR; PÞ; ð25Þ

the terms in the equation can be appropriately rearranged to give

@q̂WðR; PÞ
@t

¼ � i
�h

ĤWðp̂; r̂;RÞ; q̂W ðR; PÞ
h i

þ 1
2

ĤWðR; PÞ; q̂W ðR; PÞ
n o

� q̂WðR; PÞ; ĤWðR; PÞ
n o	 


ð26Þ

where f: ; :g is the classical Poisson bracket. This is the basis-inde-
pendent mixed quantum–classical Liouville evolution equation for
the partial Wigner transform of the density matrix as presented in
[15].

4. Conclusions

In this Letter, a general connection between linearization and
mass expansions was derived. This connection makes it possible
to unify and establish the equivalence of mixed quantum–classical
approaches based on these apparently different approximation
schemes. In particular, we have shown that quantum–classical lin-
earization methods can be derived from first order expansions of
the quantum subsystem Hamiltonian in the mass ratio l (or in
�h) and that the quantum–classical Liouville equation can also be
derived from a linearization of the propagator. The derivation of
a linearized method is illustrated in the Appendix by considering
the case of the LAND-Map algorithm. However, since our result
does not rely on the specific choice of the quantum subsystem ba-
sis, similar proofs can be constructed for any linearized scheme as
long as a coordinate-momentum representation of the bath is used.
This includes, in particular, the linearization of the influence func-
tional presented in [16]. In that work, in fact, a partial Wigner
transform with respect to the bath degrees of freedom was em-
ployed to effectively introduce a momentum-coordinate represen-
tation of the initial density of the bath so the procedure is of the
type indicated above. In more general terms, the analysis pre-
sented in this work implies that linearization schemes that differ
only in the representation of the quantum subsystem are equiva-
lent among themselves and to QCL. The result presented here also
implies that, although the efficiency can vary, the accuracy of any
algorithm based on linearization or quantum–classical Liouville
methods is the same.
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Appendix A

To provide an example of the approximation described after Eq.
(6), in this appendix we show how the linearization of the fully
quantum evolution is performed in the specific case of LAND-
Map, a recently developed linearized mixed quantum–classical
method for simulating non-adiabatic dynamics. Here, we summa-
rize only the parts of the derivation that are relevant to highlight
the two steps for linearization described in the main text. A de-
tailed description of the approach can be found in [12,13]. In
LAND-Map, the classical bath is usually a set of nuclear coordi-
nates, while the quantum subsystem is a set of discrete electronic

states. These states are described at first in the diabatic basis, and
then (without introducing approximations) in terms of a system of
auxiliary harmonic oscillator states via the mapping Hamiltonian
approach [23–26]. With this approach, the matrix element of the
density operator for the full system at time t is written as

RN þ
DRN

2
; bjq̂ðtÞjRN �

DRN

2
;b0

� �
¼
X
a;a0

Z
dR0

Z YN�1

k¼1

dRk
dPk

2p�h
dPN

2p�h

�
YN
k¼1

d s Pk

M
� ðRk � Rk�1Þ

" #Z YN�1

k¼1

dDRke
i
�hPNDRN e

i
�h

PN�1

k¼1

ðPkþ1�PkÞDRk

� b e�
i
�hsĥmq RNþ

DRN
2

� �
. . . e�

i
�hsĥmq R1þ

DR1
2

� ����� ����a� �
a q̂wðR0; P1Þ
�� ��a0� �

� a0 e
i
�hsĥmq R1�

DR1
2

� �
. . . e�

i
�hsĥmq RN�

DRN
2

� ����� ����b0� �
: ð27Þ

where we indicate the mapping states with Greek letters. ĥmqðRÞ is
the mapping Hamiltonian

ĥmqðRÞ ¼
1
2

X
a

ha;aðRÞðq̂2
a þ p̂2

a � �hÞ þ
1
2

X
a;b

ha;bðRÞðq̂aq̂b þ p̂ap̂bÞ:

ð28Þ

where ha;bðRÞ are the matrix elements of the quantum subsystem
Hamiltonian in the diabatic basis computed at bath position R,
and q̂a (p̂a) are the position (momentum) operators of the mapping
oscillators. Thanks to the fact that the mapping Hamiltonian is qua-
dratic in the position and momentum mapping operators, the for-
ward and backward transition amplitudes between quantum
states a and b and a0 and b0 in Eq. (27) can be evaluated exactly
via a path integral expression in the coherent state basis [27]. The
steps involved in this evaluation are non-trivial (see Ref. [12]) but
they provide the following explicit expression for the density ma-
trix element

RN þ
DRN

2
; bjq̂ðtÞjRN �

DRN

2
;b0

� �
¼
X
a;a0

Z
dR0

Z YN�1

k¼1

dRk
dPk

2p�h
dPN

2p�h

�
YN
k¼1

d s Pk

M
� ðRk � Rk�1Þ

" #Z YN�1

k¼1

dDRke
i
�hPNDRN e

i
�h

PN�1

k¼1

ðPkþ1�PkÞDRk

�
Z

dq0dp0e
i
�hH0a G0r0ae�

i
�hHtb Rkþ

DRk
2

� �� �
rtb Rk þ

DRk

2

� �
 �
� hajq̂wðR0; P1Þja0i

�
Z

dq00dp00e�
i
�hH
0
0a0G00r00a0e

i
�hH
0
tb0 Rk�

DRk
2

� �� �
r0tb0 Rk �

DRk

2

� �
 �
: ð29Þ

In the above equation, the integrals over the initial coordinates and
momenta of the mapping states (e.g. q0 ¼ fq0kg and p0 ¼ fp0kg
where k goes from 1 to the number of electronic states) result from
the coherent state path integral for the transition amplitudes. The
functions required to compute the transition amplitudes (we focus
on the forward transition amplitude as definitions for the backward
transition amplitude are analogous) are:

1. the coherent state representation of the initial mapping state a,
defined as the product e

i
�hH0a G0r0a in the integrand, with

G0 ¼ e�1=2
P

k
ðq2

0k
þp2

0k
Þ;

r0;a ¼ ðq2
0;a þ p2

0;aÞ
1=2
;

H0a ¼ tan�1 p0;a

q0;a
;
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2. the population of the final mapping state b, defined as

rtb Rkþ
DRk

2

� �
 �
¼ q2

t;b Rkþ
DRk

2

� �
 �
þp2

t;b Rkþ
DRk

2

� �
 �
 �1=2

ð30Þ

if fqt; ptg are the coordinate and momenta of the mapping states
obtained by solving the classical evolution determined by the
classical analog of the mapping Hamiltonian, Eq. (28);

3. the phase factor e�
i
�hHtb Rkþ

DRk
2

� �� �
, where

Ht;b Rkþ
DRk

2

� �
 �
¼ tan�1 p0;b

q0;b

 !
þs
XN

k¼1

hb;b Rkþ
DRk

2


 �

þs
XN

k¼1

X
k–b

hb;k Rkþ
DRk

2


 �ðpkbpkkþqkbqkkÞ
ðp2

kbþq2
kbÞ

" #

¼ tan�1 p0;b

q0;b

 !
þs
XN

k¼1

hb Rkþ
DRk

2


 �
: ð31Þ

the last line in the equation above defines the function hb.

All quantities in Eq. (29) are functions, no longer operators, that
depend on the forward and backward paths for the full system.
This is the first step in the linearization method as described in
the text. The phase factor in Eq. (31) contains, via the functions
hb;kðRk þ DRk

2 Þ, the implicit dependence of the matrix elements of
the quantum subsystem Hamiltonian on the difference variables
DRk. The second step in the linearization approximation corre-
sponds to the expansion of the H functions to linear order in the
difference variables. Grouping terms of the same order in DRk in
the overall phase results in the following (linearized) expression
for the matrix element of the density

RN þ
DRN

2
;bjq̂ðtÞjRN �

DRN

2
; b0

� �
¼
X
a;a0

Z
dR0

Z YN�1

k¼1

dRk
dPk

2p�h
dPN

2p�h

�
YN
k¼1

d s Pk

M
� ðRk � Rk�1Þ

" #Z
dq0dp0

Z
dq00dp00

Z YN�1

k¼1

dDRke
i
�hPNDRN

� e
i
�h

PN�1

k¼1

ðPkþ1�PkÞ�s
rhbðRk Þþrhb0 ðRk Þ

2

h i
DRk

� e
i
�hH0aG0r0a e

i
�hs
PN
k¼1

ðhbðRkÞ�hb0 ðRkÞÞrtb Rkþ
DRk

2

� �� �
� hajq̂wðR0; P1Þja0ie

� i
�hH
0
0a0G

0
0r0

0a0 r
0
tb0

Rk�
DRk

2

� �� �
: ð32Þ

Assuming that the functions rtb and r0tb0 vary slowly with the differ-

ence variables compared to the phase factor e
i
�hs
PN

k¼1
ðhtbðRkÞ�htb0 ðRkÞÞ and

can therefore be evaluated as functions of the path of mean vari-
ables only, the integrals over the difference variables DRk can now
be performed. These integrals are in fact representations of delta
functions and the equation above can also be written as

RN þ
DRN

2
;bjq̂ðtÞjRN �

DRN

2
; b0

� �
¼
X
a;a0

Z
dR0

Z YN�1

k¼1

dRk
dPk

2p�h
dPN

2p�h

�
YN
k¼1

d s Pk

M
� ðRk � Rk�1Þ

" #Z
dq0dp0

Z
dq00dp00e

i
�hPNDRN

�
YN�1

k¼1

d½Pkþ1 � Pk � sFðRk; b;b
0Þ�ei

�hH0a G0r0ae
i
�hs
PN
k¼1

ðhbðRkÞ�hb0 ðRkÞÞ

� rtbðfRkgÞhajq̂wðR0; P1Þja0ie�
i
�hH
0
0a0G00 r

0
0a0r

0
tb0 ðfRkgÞ: ð33Þ

The argument of the delta functions in the expression above deter-
mines a propagation scheme for the path of mean variables: the
mean coordinates are advanced from step k� 1 to step k based on
the usual ‘Newtonian’ prescription Rk�1 ¼ Rk þ s Pk

M , while the mean
momenta are advanced from step k to step kþ 1 as Pkþ1 ¼
Pk þ sFðRk;b;b

0Þ. Note that, although this expression may also
appear of classical form, the ‘force’ FðRk;b;b

0Þ, is, in general, non-
Hamiltonian and given by

FðRk;b;b
0Þ ¼ �1

2
frRk

hb;bðRkÞ þ rRk
hb0 ;b0 ðRkÞg

� 1
2

X
k–b

rRk
hb;kðRkÞ

ðpbkpkk þ qbkqkkÞ
ðp2

bk þ q2
bkÞ

( )

� 1
2

X
k–b0
rRk

hb0 ;kðRkÞ
ðp0b0kp0kk þ q0b0kq0kkÞ
ðp02b0k þ q02b0kÞ

( )
: ð34Þ

This expression for the force accounts for the effect of non-adiabatic
transitions among the electronic states on the nuclear dynamics
and it is typical of the LAND-Map method. In spite of this unusual
force term, however, the linearization approximation reduces, via
the presence of the delta functions, all propagations necessary to
compute the matrix element of the density operator to a time-step-
ping prescription whose numerical complexity is similar to that of
classical mechanics as stated in 2.
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