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Quantum time correlation functions obtained from the
linear response theory are defined in terms of a scalar prod-
uct involving the Kubo transform.1 This form of the scalar
product also insures that the nonequilibrium average of the
random force fluctuations corresponding to an observable
vanish so that the macroscopic law is obtained on long dis-
tance and time scales and the Onsager regression hypothesis
is satisfied. For example, consider a reaction A�B where
species A and B are defined microscopically by operators

N̂A,B, respectively. The time dependent quantum forward re-
action rate is given by the Kubo-transformed reactive flux

correlation function,2 k�t�nA
eq=−�N̂˙ A ; N̂B�t��, where nA

eq is the
equilibrium density of species A. The rate constant is given
by k=limt→�k�t�. Introducing Wigner transforms, we can
write an alternative but equivalent form of k�t� as

k�t�nA
eq =� dXNB�X,t�W̄A�X,0� , �1�

where X= �R ,P� denotes phase space variables and NB�X , t�
is the Wigner transform of N̂B�t�. The spectral density func-

tion W̄A�X ,0� describes the quantum equilibrium structure

and it is defined by W̄A�X ,0�=�−1�0
�d�WA�X , i���, where

WA�X,t� =� dX��− N̂
˙
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with �=1 /kBT, � is the coordinate space dimension of the
system, and ZQ is the partition function. One of the difficul-
ties in computing the reaction rate arises from the form of

W̄A�X ,0�. Since WA�X , i��� is already a very complicated

function, the integration required to compute W̄A�X ,0� adds
considerably to the computational effort. Even for a single

harmonic oscillator, W̄A�X ,0� cannot be obtained in a closed

analytic form. We have previously shown3 that W̄A may be

approximated by W̄A�X ,0�=WA�X , i�� /2�+O��2�.
If one is simply interested in the rate constant, and not

the time evolution of the correlation function, then we may
make use of the fact that the rate constant can also be ex-
pressed as k=limt→�k*�t� where k*�t� is defined without the

Kubo transform as k*�t�nA
eq=−�N̂˙ AN̂B�t��. This result follows

from the relation between the Fourier transforms of the
Kubo-transformed correlation function and the quantum ca-
nonical average in the zero frequency limit.1 The analog of
Eq. �1� for k*�t� is k*�t�nA

eq=�dXNB�X , t�WA�X ,0�. Since this
expression only requires a knowledge of WA�X ,0�, instead of

the more complex expression W̄A�X ,0� or its approximate
form WA�X , i�� /2�, it is far easier to compute.

Before considering a more general system-bath problem,

it is instructive to compare W̄A�x ,0�, WA�x , i�� /2�, and
WA�x ,0� for a simple parabolic barrier crossing model with
phase space coordinates x= �r , p� and barrier frequency �.
For this system we can obtain the analytic form of WA�x , t�
from Eq. �2� as follows:

WA�x,t�ZQ = � m�
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3/2 1
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where u���� /2, c1=cot u, c2�t�=c1 cosh �t− i sinh �t,
and c3�t�=c1 sinh �t− i cosh �t. Since we cannot integrate

WA�x , i��� analytically to obtain W̄A�x ,0�, the exact spectral
density function and time-dependent rate k�t� can be ob-
tained only numerically. From Eq. �3�, both WA�x , i�� /2�
and WA�x ,0� are easily determined and can be used to
compute k�t�. Substituting WA�x , i�� /2� into Eq. �1�, we can
obtain Eq. �3.6� of Ref. 4 and using WA�x ,0� we
obtain Re�k�t�ZR�= �� /4� sin u���f1

�f3+ f2+�f3− f2� /
2f3

�f1�, where f1�t�=cot u tanh �t, f2�t�=cot 2u tanh �t,
f3

2�t�= f2
2�t�+1, and ZR�nA

eqZQ. Since WA�x ,0� is complex,
Im�k�t�ZR� is not zero at finite t but it vanishes in the t→�
limit.

In Fig. 1, one can see that the shape of WA�x , i�� /2� is
Gaussian and is most convenient for the sampling of the
initial values of r and p, while ReWA�x ,0� has the most
complicated structure making sampling more difficult. This
figure also shows the time-dependent rate coefficient k�t�ZR

calculated using these three spectral density functions. De-
spite different time dependence of these estimates, all three
predict the same rate constant, kZR. The time dependent rate
coefficient computed using ReWA�x ,0� converges to kZR rap-
idly, although it does not start at zero.

These considerations can be extended to more general
situations and we next consider the calculation of the reac-
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tion rate when the dynamics can be approximated by
quantum-classical dynamics. The nonadiabatic quantum-
classical version of Eq. �1� is given by3 k�t�nA

eq

=�		��dXNB
	�	�X , t�W̄		��X ,0�, where the nonadiabatic time

evolution of NB
	�	�X , t� is given by quantum-classical Liou-

ville dynamics.5 As a specific example, we consider a two-
level system coupled to a quartic oscillator, which is in turn
bilinearly coupled to a bath of harmonic oscillators. The de-
tails of the model were described in Ref. 6.

Writing W		� as the product of two factors, one involv-
ing the two-level system and quartic oscillator and the other
the bath density conditional on the oscillator coordinate R0,

we have W		��X�=
sn
		��X0�
b�Xb ;R0�. The exact expression

for 
b�Xb� is known for the bath of harmonic oscillators.7,8

For this system, W̄A�X ,0� cannot be obtained easily and
WA�X , i�� /2� provides an attractive alternative for the rate
computation. From the quantum-classical version of Eq. �2�
and the separation of Ĥsn into harmonic and remaining parts,

we previously found an expression for 
sn
		��X0 , i�� /2�. �See

Eq. �4� in Ref. 6.�
Here, we report another useful expression
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where A2�Z0�= �
	� ;R0
	1 ;R0+Z0 /2��
	1 ;−R0+Z0 /2
	 ;R0�
exp�−� /2��	1

�R0+Z0 /2�+�	1
�−R0+Z0 /2���. The definitions

of ui and �	�R0� are the same as those in Ref. 6. One clear
advantage of Eq. �4� is that it is a closed form solution and
numerical integration is not needed to obtain the result; how-
ever, initial condition sampling requires more care.

Figure 2 clearly demonstrates that both of the quantum
expressions using WA�X , i�� /2� and ReWA�X ,0� yield the
same quantum rate coefficient. They serve as alternatives to

the use of W̄A�X ,0� for the rate calculation, although they
predict different transient behavior. Since the value of
ReWA�X ,0� is larger for larger P0 values, an upper bound

was placed on the value of Re
sn
	�	�0� to obtain more stable

statistics. Since, for the system under consideration, the nu-
merical integration involved in the computation of
WA�X , i�� /2� can be performed relatively easily and tabu-
lated for future use, WA�X , i�� /2� is the better choice for the
rate calculation. However, for more general reaction coordi-
nates such as the solvent polarization for proton transfer
reactions,9,10 the multidimensional integrals needed to evalu-
ate WA�X , i�� /2� make the computation more difficult and
the simplicity of ReWA�X ,0� may provide a more useful ex-
pression for the rate calculation.

To summarize, since computation of the exact Kubo-

transformed quantum spectral density function W̄A�X ,0� is
difficult for most systems, we have obtained two useful al-
ternative expressions which yield the rate constant. The real
and symmetric density function WA�X , i�� /2� may be more
suitable for simple model systems, while the simpler density
function ReWA�X ,0� may be more useful for complicated
systems involving reaction coordinates that depend on many
degrees of freedom.
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FIG. 1. Three-dimensional plots of the spectral density functions, W̄A�x ,0�,
WA�x , i�� /2�, and ReWA�X ,0� in phase space. The last figure shows plots of
the time dependent reaction rate coefficient k�t�ZR using each of three spec-
tral density functions. The exact rate is obtained by numerical integration of
Eq. �3�. Dimensionless units are used with ���=1.

FIG. 2. Comparison of time-dependent adiabatic ground-state contributions
to the transmission coefficient �11�t�=k�t� /kTST, where kTST is the classical
transition state rate constant, using three different expressions of WA. We
choose �R0�=0R0 and the barrier frequencies �	=�−B−b	0

2 /�. Dimen-
sionless parameter values: A=0.5, B=1, 0=0.1, �=0.5, �=1, and �K=3.
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