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Abstract

Quantum chemical reactions, where the reaction coordinate is coupled to a bath or environment comprising other degrees of freedom
of the system, are investigated. We approximate the quantum time evolution by quantum–classical Liouville surface-hopping dynamics.
Within this framework, we explore the effect on the reaction rate of sampling the reaction coordinate and bath initial conditions from
quantum and classical distributions. We find that the rate constant determined from quantum bath sampling is lower than that obtained
from classical bath sampling. This is also shown to be the case for a simple analytically solvable two-dimensional reaction model.
� 2006 Elsevier B.V. All rights reserved.
1. Introduction

Quantum rate processes occurring in condensed phase
or other complex systems are influenced by coupling to
the environment in which the reactions take place. Such
coupling can lead to nonadiabatic effects where various
excited state surfaces participate in the reaction dynamics.
Reaction rate constants may be expressed in terms of reac-
tive-flux correlation expressions whose computation entails
carrying out quantum evolution of operators and sampling
from quantum equilibrium distributions [1]. Since the sim-
ulation of fully quantum dynamics for systems with a large
number of degrees of freedom is difficult, quantum–classi-
cal dynamical schemes have been constructed to describe
the evolution in systems where quantum dynamics of a sub-
set of degrees of freedom is coupled to classical evolution
of the environment [2,3]. We consider quantum–classical
Liouville dynamics [4–7] which is accurate in many
circumstances; for example, it is exact for a quantum
system bilinearly coupled to a harmonic bath. In this quan-
tum–classical Liouville context, we consider the effects on
the reaction rate of also approximating the equilibrium
structure of the environment by classical mechanics.
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The effects of quantum and classical treatments of the
bath on vibrational relaxation have been studied earlier
[8,9] where it was shown that care had to be exercised when
mixing quantum and classical levels of description of the
vibrational and bath dynamics and structure. Quantum
bath equilibrium structure is also incorporated in many
studies of quantum reaction rates, especially for harmonic
bath models [10–14].

For the case where the reaction coordinate depends on
environmental variables, we contrast the quantum and
classical treatments of the reaction coordinate with similar
treatments of the bath variables. We also investigate a sim-
ple analytically solvable two-variable system whose solu-
tion provides additional insight into the effects of
quantum and classical bath sampling on the reaction rate.
The main results of these computations are that, compared
to a classical description, a quantum treatment of the equi-
librium structure of the reaction coordinate increases the
reaction rate constant while a quantum treatment of the
bath lowers the rate constant.

2. Quantum rate and system specification

The systems in which we are interested may be usefully
partitioned into a quantum subsystem S and a quantum
environment E. The Hamiltonian for the system can be
written as Ĥ ¼ P̂ 2=2M þ ĥðRÞ, the sum of the kinetic
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energy of the bath particles and the Hamiltonian for the
quantum subsystem in the field of the fixed bath particles,
respectively. The adiabatic states are the eigenfunctions of
the eigenvalue problem, ĥðRÞ ja; Ri ¼ EaðRÞ ja; Ri and
Ea(R) are the corresponding adiabatic energies. In such a
system, consider a chemical reaction A � B between
metastable A and B species. Suppose these species are char-
acterized by operators N̂ A and N̂B, respectively. The time
dependent rate coefficient for this reaction, whose plateau
value gives the rate constant, was derived earlier [15,16]
and can be written as

kABðtÞ ¼
1

neq
A

X
a

X
a0Pa

ð2� da0aÞ

�
Z

dX Re N aa0

B ðX ; tÞW a0a
A X ;

i�hb
2

� �� �
. ð1Þ

Here X = (R,P) denotes the set of phase space variables of
E in the Wigner representation and W a0a

A is the spectral den-
sity function that contains all information on the quantum
equilibrium structure of the entire system. The time evolu-
tion of the species variable N aa0

B ðX ; tÞ is given by quantum–
classical Liouville dynamics [6].

We consider the evaluation of this rate expression for a
model reactive system that captures many of the generic
features of quantum reactions in the condensed phase.
The quantum subsystem S is a two-level system with Ham-
iltonian Ĥ s. This two-level system is coupled directly to a
quartic oscillator with Hamiltonian Ĥn which is, in turn,
coupled to a bath (B) of harmonic oscillators with Hamil-
tonian Ĥ b. The quartic oscillator and bath constitute the
environment E of the two-level quantum subsystem. The
Hamiltonian operator in the diabatic basis of the two-level
system can be written as [17]

H ¼
V nðR0Þ þ �hcðR0Þ ��hX

��hX V nðR0Þ � �hcðR0Þ

� �
þ P 2

0

2M0

þ
Xm�1

j¼1

P 2
j

2Mj
þ V bðnÞðRb; R0Þ

 !
I. ð2Þ

Here, the quartic potential V nðR0Þ ¼ �M0x2
0R2

0=2þ AR4
0=4

and the harmonic bath potential, including coupling to
the quartic oscillator, is V bðnÞðRb; R0Þ ¼ 1

2

Pm�1
j¼1Mjx2

j Rj�
�

cjx�2
j M�1

j R0Þ2, where Mj and xj are the mass and frequency
for the jth oscillator. We choose c(R0) = c0R0 with the
parameter c0 specifying the strength of the bilinear cou-
pling between the two-level system and the quartic oscilla-
tor. Half the energy gap is denoted by �hX. The total
number of degrees of freedom is m. Including the coupling
terms, the Hamiltonian may be written as Ĥ ¼ Ĥ sn þ ĤbðnÞ,
where Ĥ sn is the Hamiltonian for the coupled two-level sys-
tem and quartic oscillator and ĤbðnÞ is the bath Hamilto-
nian including coupling to the quartic oscillator.

The adiabatic states ja;R0æ and the corresponding adia-
batic energies Ea(R) (a = 1, 2) are obtained by diagonaliz-
ing this Hamiltonian [16]. The adiabatic energies are not
symmetric in R0 because of coupling of R0 to the bath.
Asymmetries arising from Vn(R0) or the coupling of R0

to the quantum subsystem are easily treated using the
quantum–classical formalism [18].

3. Quantum bath effects

To compute the reaction rate we choose the species
operators to be N̂ A ¼ hð�R0Þ and N̂B ¼ hðR0Þ, where h is
the Heaviside step function, and take the dividing surface
that separates the domains that contain the A and B meta-
stable states to lie at Rz0 ¼ 0. Then, assuming expð�bĤÞ �
expðbĤ snÞ expð�bĤbðnÞÞ, singling out the barrier region and
separating Vn into harmonic and remainder terms, we have
shown that Eq. (1) can be written more explicitly as [16]

kABðtÞ ¼
1

neq
A

X
a

Z
dXN aa

B ðX ; tÞqaa
sn ðX 0ÞqbðX b; R0Þ; ð3Þ

where

qaa
sn ðX 0Þ ¼

1

Zsn

x0

2p sin 2u0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2M0u00
pb�h2

s
bP 0

M0u00

� exp �b AR4
0=4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ c2

0R2
0

q� ��
� 2M0u00

b�h2
R2

0 �
b

2M0u00
P 2

0

	
; ð4Þ

and

qbðX b; R0Þ ¼
1

Zb

Y
j

bxj

2pu00j
e
� b

u00
j

1
2Mj

P 2
jþV bðnÞðRj;R0Þ


 �
; ð5Þ

with u0i � ui cot ui, u00i ¼ ui coth ui, and ui = b�hxi/2 and the
sign is minus for the ground state (a = 1) and plus for
the excited state (a = 2). In this approximation, the parti-
tion function may be factorized as ZQ = ZsnZb. There are
also off-diagonal contributions to the rate. These off-diag-
onal terms scale as the product of the nonadiabatic cou-
pling matrix element and the de Broglie wavelength of
the reaction coordinate. These terms are negligible for
our parameter values but may be nonnegligible for stronger
nonadiabatic coupling [19].

The classical limits of the quantum equilibrium structure
can be obtained by taking the high temperature limits of
these expressions. Using the relations limb!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a=ðpbÞ

p
e�ða=bÞR

2
0 ¼ dðR0Þ and limb!0u00 ¼ limb!0u00j ¼ 1, we can eas-

ily obtain classical-limit expressions as

qaa;cl
sn ðX 0Þ ¼

1

Zcl
sn

1

2p�h
dðR0Þ

P 0

M0

e
� b

2M0
P 2

0
�bX

; ð6Þ

and

qcl
b ðX b; 0Þ ¼ 1

Zcl
b

Y
j

bxj

2p
e
�b 1

2Mj
P 2

jþ
1
2Mjx2

j R2
j


 �
; ð7Þ

which agree with the results obtained earlier [17].
Eq. (3), along with the expressions in Eqs. (4)–(7), forms

the basis of the calculations carried out in this Letter. We
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label the results from quantum and classical treatments of
the reaction coordinate as QR and CR, respectively. Simi-
larly, we use the labels of QB and CB for quantum and
classical treatments of the bath.

The numerical results were obtained using an Ohmic
spectral density as JðxÞ ¼ p

P
c2

j=ð2MjxjÞdðx� xjÞ,
where cj = (n�hDxMj)

1/2xj, xj = �xcln (1 � jDx/xc) and
Dx ¼ xc

m�1
1� e�xmax=xc
� �

with xc the cutoff frequency [20].
Dimensionless units are used with coordinates scaled byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mxc=�h
p

and momenta by
ffiffiffiffiffiffiffiffiffiffiffiffi
�hMxc

p
[17]. In these units

the mass dependence enters through the scaled coupling
constants as cj  cj=ðMjx2

j Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mj=M0

p
or, equivalently,

the Kondo parameter n. The number of bath harmonic
oscillators is Nb = 100 so that m = 101. We have chosen
A = 0.05 and x0 = 1 so that the bare barrier height is 5
in dimensionless units. The coupling constants are
X = 0.1 and c0 = 0.1. For these parameters, the ground
and excited potential surfaces are similar to each other
and the reactant partition function can be approximated
as ðneq

A ZQÞ�1 � ebV r sinh ur

Q
j2 sinh uj with xr the well fre-

quency and Vr the bare potential at the bottom of the well.
The transmission coefficient is defined as jABðtÞ ¼ kABðtÞ=
kTST

AB , where the transition state value is given by

kTST
AB � ð4pÞ�1xre

bV rðe�b�hX þ eb�hXÞ.
We refer to Refs. [21,22] for the details of the nonadia-

batic quantum–classical evolution. Only the sampling of
initial conditions differs from that in earlier studies of
quantum–classical reaction rates. The initial distribution
of X is sampled from distributions proportional to Eqs.
(4) and (5) or Eqs. (6) and (7).

In Fig. 1, we plot the transmission coefficients jQRQB
AB ,

jQRCB
AB ; jCRCB

AB , and jCRQB
AB , for various values of Kondo

parameter n. The change in the rate constant arising from
quantum and classical treatments of the reaction coordi-
nate is much greater than the corresponding change for
quantum and classical treatments of the bath equilibrium
structure. The incorporation of quantum effects on the
reaction coordinate is known to increase the rate due to
quantum tunneling and our results confirm such an
increase in the rate. Quantum bath effects, on the other
0
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Fig. 1. Transmission coefficient vs. n for b = 2. The solid and dashed lines
denote quantum (QR) and classical (CR) treatments of the reaction
coordinate, respectively, while filled and open circles denote quantum
(QB) and classical (CB) treatments of the bath, respectively.
hand, decrease the rate by roughly 5–10% for our model
system. This is consistent with earlier numerical studies
[23], where a small difference was found between the results
obtained by quantizing the entire system and quantizing
only the subsystem. Therefore, jQRCB

AB for a quantum treat-
ment of the reaction coordinate and a classical treatment of
the bath gives the largest rate and jCRQB

AB gives the smallest
rate. All approximations to the rate show similar turnover
behavior for small n.

Comparing Eq. (5) with Eq. (7), we can relate these two
expressions by the following convolution equation [24]:

qbðX bÞ ¼
Z

dX 0b gðX 0b � X bÞqcl
b ðX 0bÞ; ð8Þ

where

gðX bÞ ¼
Zcl

b

Zb

Y
j

bxj

2pðu00j � 1Þ e
� b

u00
j
�1

1
2Mj

P 2
jþ

1
2Mjx2

j R2
j


 �
. ð9Þ

so that the classical distribution is broadened by the quan-
tum dispersion function g to yield the quantum distribu-
tion. We define the average value of N aa

B ðX ; tÞ over the
quantum dispersion of the bath as N aa

B ðX 0; tÞ
 �g

b
ðX ; tÞ ¼R

dX 0bgðX 0b � X bÞN aa
B ðX 0; tÞ, where the Gaussian function

gðX 0b � X bÞ is centered at the phase point Xb sampled from
the classical bath distribution. Then, with help of Eq. (8),
the reaction rate equation (3) for the quantum bath sam-
pling can also be written as

kQB
ABðtÞ ¼

1

neq
A

X
a

Z
dX N aa

B ðX 0; tÞ
 �g

b
ðX ; tÞqaa

sn ðX 0Þqcl
b ðX b; R0Þ.

ð10Þ
This equation has the same form as that for classical

bath sampling, which is

kCB
ABðtÞ ¼

1

neq
A

X
a

Z
dXN aa

B ðX ; tÞqaa
sn ðX 0Þqcl

b ðX b; R0Þ; ð11Þ

except that N aa
B ðX ; tÞ is replaced by its average over the

quantum dispersion.
Our numerical results show that kQB

ABðtÞ 6 kCB
ABðtÞ so that

the additional average over the quantum dispersion of the
bath position and momentum variables leads to more rapid
decay of the species variable and a reduction of the rate.

For the model parameters used in this study, quantum
bath effects tend to be larger for smaller values of n corre-
sponding to weaker coupling to the bath modes. This trend
is also consistent with the fact that coupling between the
reaction coordinate and the bath results in a reduction in
the quantum character of the reaction coordinate [25,26].
This effect becomes more pronounced for stronger cou-
pling. The emergence of a quantum–classical description
was shown to be a consequence of decoherence arising
from coupling to bath degrees of freedom [27].

In Fig. 2, we show how the various approximations to
the rate constant depend on b for a small value of the
Kondo parameter, n = 0.1, for which quantum bath effects
are discernible in the data. The differences between the
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Fig. 2. Transmission coefficient vs. b for n = 0.1. The symbols are the
same as in Fig. 1.
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various approximations to the transmission coefficients
increase as the temperature decreases. The rate constant
results obtained using a quantum treatment of the reaction
coordinate increase strongly with b. This is expected since
quantum effects will play a larger role at low temperatures.
Indeed, quantum bath effects which reduce the rate also
become significant at low temperatures.

4. Two-dimensional system

In the study in the previous section, the differences aris-
ing from quantum and classical treatments of the bath and
reaction coordinate equilibrium structure were deduced
from an analysis of the numerical data. Here we consider
a very simple reaction model where these effects can be
studied analytically.

The model consists of a reaction coordinate R0 governed
by harmonic potentials in the barrier and well regions,

V nðR0Þ � V 0 �
1

2
M0x

2
0R2

0 ðbarrierÞ ð12Þ

� 1

2
M0x

2
r R2

0 ðwellÞ ð13Þ

coupled to a single bath oscillator. This is a simplified ver-
sion of a model investigated in detail previously
[10,11,28,29]. Absorbing boundaries are imposed outside
the barrier region to give a well-defined reaction rate. We
can write the Hamiltonian in separable form as two inde-
pendent harmonic oscillators by making a normal mode
transformation [11,28,29]. We can diagonalize the force
constant matrix to obtain the eigenvalues or renormalized
frequencies ~x2

0 and ~x2
1 as

~x2
0;1 ¼ �

1

2
x2

0 �
c2

1

x2
1M0M1

� x2
1

� �
þ 1

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
0 �

c2
1

x2
1M0M1

� �2

þ 4c2
1

M0M1

s
; ð14Þ

where c1 is the coupling constant in Section 3. We are inter-
ested in the unstable mode, so we assume x2

0 > c2
1=ðx2

1M0M1Þ
to make ~x2

0 positive. Since c2
1 P 0, we obtain the inequality

x2
0 � c2

1=ðx2
1M0M1Þ 6 ~x2

0 6 x2
0, where the equal sign corre-
sponds to the case c1 = 0. The renormalized phase space vari-
ables eX are obtained by a linear transformation matrix L aseRj ¼

P
iLjiM

1=2
i Ri and eP j ¼

P
iLjiM

�1=2
i P i. The transforma-

tion matrix is given by [30]

L ¼
cos / � sin /

sin / cos /

� �
; ð15Þ

with cos2 /¼ x2
1þ ~x2

0

� �
=ð�x2

0þ c2
1=ðx2

1M0M1Þþx2
1þ 2~x2

0Þ.
In terms of renormalized phase space coordinates, the

time dependent rate takes the form,

kABðtÞ ¼
1

neq
A

Z
deX hfR0ðtÞgW A

eX ; i�hb
2

� �
; ð16Þ

where, by direct calculation, the spectral density function is
found to be

W A
eX ; i�hb

2

� �eZ 0ebV 0 ¼ 1

2p�h

� �2 1

cos ~u0 cosh ~u1�h

�

ffiffiffiffiffiffiffiffiffiffiffi
2~u00~u

00
1

pbC

s
cos /
cos ~u0

eP 0 þ
sin /

cosh ~u1

eP 1

� �

� e
� b

2~u0
0

eP 2
0
� b

2~u00
1

eP 2
1 � exp � 2

b�h2C

�
� C~u00 �

sin /
sin ~u0

~u0

� �2
 !eR2

0

(

þ C~u001 �
cos /
sin ~u1

~u1

� �2
 !eR2

1

þ sin 2/
~u0~u1

sin ~u0 sinh ~u1

eR0
eR1

	�
; ð17Þ

where C ¼ ~u00 sin2 /þ ~u001 cos2 / with ~ui ¼ b�h~xi=2 and eZ 0 is
the partition function for the renormalized reaction coordi-
nate. Since eR0ðtÞ ¼ eR0 cosh ~x0t þ ðeP 0=~x0Þ sinh ~x0t, the
Heaviside function in the long time limit can be easily ob-
tained as [31] hfR0ð1Þg ¼ hðeR0 þ eP 0=~x0Þ.

The rate constant can be calculated from Eq. (16) by
inserting the expression for W A

eX ; i�hb
2


 �
given in Eq. (17)

and preforming the integrals to obtain

kAB ¼
1

neq
A
eZ 0

~x0

4p sin ~u0

e�bV 0 . ð18Þ

This exact result is the same as that for a system with a
renormalized coordinate eX 0 and a single parabolic barrier
with frequency ~x0. Therefore, if we choose the reaction
coordinate to be eR0 instead of R0 and use the expression
for WA for a simple parabolic system, we also obtain Eq.
(18) even though WA and the transient rate kAB(t) are
different.

For this two-dimensional system, we can analyze the
quantum bath effects by using the same approximations
for the spectral density function discussed earlier for the
two-level reaction model. The WA function may be rear-
ranged to give

W A X ;
i�hb
2

� �
Z0ebV 0 ¼ x0

2p sin 2u0

qnðX 0ÞqbðX 1; R0Þ; ð19Þ
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and the quantum or classical equilibrium forms of qn and
qb analogous to those in Eqs. (4)–(7) can be inserted to
yield the results.

If we treat the reaction coordinate quantum mechani-
cally, the following rate constants are obtained with the
quantum or classical equilibrium structure of the bath

kQRQB
AB ¼ 1

neq
A Z0

~x0

4p sin u0

e�bV 0

� 1� ðx
2
0 � ~x2

0Þð4~u2
0 þ u020 � u00u001Þ cos2 u0

x2
0u020

� ��1
2

;

ð20Þ

kQRCB
AB ¼ 1

neq
A Z0

~x0

4p sin u0

e�bV 0

� 1� ðx
2
0 � ~x2

0Þð4~u2
0 þ u020 � u00Þ cos2 u0

x2
0u020

� ��1
2

. ð21Þ

Since x2
0 P ~x2

0 and u001 > 1, kQRCB
AB is always larger than

kQRQB
AB , which implies that incorporation of quantum bath

effects always reduce the reaction rate. (We restrict our-
selves to the case of u00 > 0.) We note that kQRQB

AB and kAB

in Eq. (18) become identical in the small b limit and which
of kQRQB

AB and kAB is larger depends on the sign of the term
4~u2

0 þ u020 � u00u001. The rate constant kQRCB
AB is always larger

than kAB.
We plot the ratio kQRCB

AB =kQRQB
AB as a function of c1 for

two values of temperature in Fig. 3. The ratio is larger
for the lower temperature as expected. A maximum in
the quantum bath effect is seen in the curve for b = 2. This
arises from the fact that, in the small c1 limit, the value of
kQRCB

AB is similar to that of kQRQB
AB since very weak coupling

between two oscillators hardly affects the dynamics. Quan-
tum bath effects in the reaction coordinate come into play
as the coupling increases but very strong coupling reduces
the quantum character of the reaction coordinate in the
large c1 limit. Similar results can be observed in Fig. 1.
For b = 1, there is no maximum since the quantum effects
are less pronounced at high temperatures.

If we treat the reaction coordinate classically, the rate
constants for quantum and classical treatments of the bath,
respectively, are given by
 1

 1.1

 1.2

 1.3

 0  5  10  15  20

kQ
R

C
B
/k

Q
R

Q
B

c1

β = 2
β = 1

Fig. 3. Ratio of kQRCB
AB =kQRQB

AB vs. c1 for b = 1 and 2. Parameter values:
x0 = 1, x1 = 2, and M0 = M1 = 1.
kCRQB
AB ¼ 1

neq
A Zcl

0

~x0

4pu0

e�bV 0 1þ ðu
00
1 � 1Þðx2

0 � ~x2
0Þ

x2
0

� ��1
2

; ð22Þ

kCRCB
AB ¼ 1

neq
A Zcl

0

~x0

4pu0

e�bV 0 . ð23Þ

From these results one can easily confirm that the inequal-
ity, kCRCB

AB > kCRQB
AB , always holds. This inequality is the

same as that inferred from the numerical data on the more
complex reaction model where a two-level system was cou-
pled directly to a reaction coordinate which was in turn
coupled to a many-body harmonic oscillator bath. Conse-
quently, our results provide some insight into how quan-
tum and classical treatments of the bath equilibrium
structure influence chemical reaction rates.
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