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Abstract
Often quantum systems are not isolated and interactions with their environments must be taken
into account. In such open quantum systems these environmental interactions can lead to
decoherence and dissipation, which have a marked influence on the properties of the quantum
system. In many instances the environment is well-approximated by classical mechanics, so
that one is led to consider the dynamics of open quantum-classical systems. Since a full
quantum dynamical description of large many-body systems is not currently feasible, mixed
quantum-classical methods can provide accurate and computationally tractable ways to follow
the dynamics of both the system and its environment. This review focuses on
quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and
discusses the problems that arise when one attempts to combine quantum and classical
mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics,
surface-hopping and mean-field theories and their relation to quantum-classical Liouville
dynamics, as well as methods for simulating the dynamics.

Keywords: quantum dynamics, quantum-classical dynamics, open quantum systems,
nonadiabatic dynamics, surface hopping

(Some figures may appear in colour only in the online journal)

1. Introduction

It is difficult to follow the dynamics of quantum processes that
occur in large and complex systems. Yet, often the quantum
phenomena we wish to understand and study take place
in such systems. Both naturally-occurring and man-made
systems provide examples: excitation energy transfer from
light harvesting antenna molecules to the reaction center in
photosynthetic bacteria and plants, electronic energy transfer
processes in the semiconductor materials used in solar cells,
proton transfer processes in some molecular machines that
operate in the cell and the interactions of the qbits in quantum
computers with their environment. Although the systems in
which these processes take place are complicated and large, it
is often the properties that pertain to only a small part of the
entire system that are of interest; for example, the electrons or

protons that are transferred in a biomolecule. This subsystem
of the entire system can then be viewed as an open quantum
system that interacts with its environment. In open quantum
systems the dynamics of the environment can influence the
behavior of the quantum subsystem in significant ways. In
particular, it can lead to decoherence and dissipation which
can play central roles in the rates and mechanisms of physical
processes. This partition of the entire system into two parts
has motivated the standard system-bath picture where one
of these subsystems (henceforth called the subsystem) is of
primary interest while the remainder of the degrees of freedom
constitute the environment or bath.

Most system-bath descriptions focus on the dynamics of
the subsystem density matrix, which is obtained by tracing over
the bath degrees of freedom: ρ̂s = Trbρ̂. If such a program
were carried out fully an exact equation of motion for ρ̂s could
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Figure 1. Schematic representation showing the local solvent
structure around the phenol-triethylamine complex. The covalent
form PhO-H · · · NR3 of the phenol-amine complex (left) is
unfavorably solvated by the polar solvent molecules. This induces a
proton transfer giving rise to the ionic form PhO− · · · H-NR+

3 (right).
Subsequent solvent dynamics can lead to solvent polarization that
favors the covalent form and the reverse proton transfer.

be derived and no information about the bath would be lost in
this process. Of course, for problems of most interest where
the bath is very large with complicated interactions this is not
feasible and would defeat the motivation behind the system-
bath partition. Consequently, the influence of the bath on the
dynamics of the subsystem is embodied in dissipative and other
coupling terms in the subsystem evolution equation.

There are many instances where more detailed information
about the bath dynamics and its coupling to the subsystem
is important. Examples are provided by proton and electron
transfer processes in condensed phases or biological systems.
As a specific example, consider the proton transfer reaction
in a phenol-amine complex, PhO-H · · · NR3 � PhO− · · · H-
NR+

3, when the complex is solvated by polar molecules (see
figure 1). The proton transfer events are strongly correlated
with local solvent collective polarization changes. Subtle
changes in the orientations of neighboring solvent molecules
can induce proton transfers within the complex, which, in turn,
influence the polarization of the solvent. The treatment of the
dynamics in such cases requires detailed information about the
dynamics of the environment and its coupling to the quantum
process. It is difficult to capture such subtle effects without
fully accounting for dynamics of individual solvent molecules
in the bath.

When investigating the dynamics of a quantum system
it is often useful and appropriate to take into account
the characteristics of the different degrees of freedom that
comprise the system. The fact that electronic and nuclear
motions occur on very different time scales, as a result of
the disparity in their masses, forms the basis for the Born–
Oppenheimer approximation where the nuclear-configuration-
dependent electronic energy is used as the potential energy
for the evolution of the nuclear degrees of freedom. This
distinction between electronic and nuclear degrees of freedom
is an example of the more general partition of a quantum system
into subsystems with different characteristics.

Since the scale separation in the Born–Oppenheimer
approximation is approximate, it can break down and
its breakdown leads to coupling among many electronic
energy surfaces. When this occurs, the evolution is
no longer described by adiabatic dynamics on a single
potential energy surface and nonadiabatic effects become
important. Nonadiabatic dynamics plays an essential role

in the description of many physical phenomena, such as
photochemical processes where transitions among various
electronic states occur as a result of avoided crossings of
adiabatic states or conical intersections between potential
energy surfaces.

In the examples presented above the molecules comprising
the bath are often much more massive than those in the
subsystem (M � m). This fact motivates the construction of
a quantum-classical description where the bath, in the absence
of interactions with the quantum subsystem, is described
by classical mechanics. Mixed quantum-classical methods
provide a means to investigate quantum dynamics in large
complex systems, since fully quantum treatments of the
dynamics of such systems are not feasible. The study of
such open quantum-classical systems is the main topic of this
review. Since quantum and classical mechanics do not easily
mix, one must consider the properties of schemes that combine
these two types of mechanics. One such scheme, quantum-
classical Liouville dynamics, will be discussed in detail and
its features will be compared to other quantum-classical and
full quantum methods.

2. Open quantum systems

Since the quantum systems we study are rarely isolated and
interact with the environments within which they reside, the
investigation of the dynamics of such open quantum systems is
a worthy endeavor. The full description of the time evolution
of a composite quantum system comprising a subsystem and
bath is given by the quantum Liouville equation,

∂

∂t
ρ̂(t) = − i

h̄
[Ĥ , ρ̂(t)], (1)

where ρ̂(t) is the density matrix at time t , Ĥ is the total
Hamiltonian and the square brackets denote the commutator.

Introducing some of the notation that will be used in this
paper, we denote by q̂ = {q̂i}, i = 1, ..., n the coordinate
operators for the n subsystem degrees of freedom with mass
m, while the remaining N bath degrees of freedom with mass
M have coordinate operators Q̂ = {Q̂i}, i = 1, ..., N . (The
formalism is easily generalized to situations where the masses
m and M depend on the particle index.) The total Hamiltonian
takes the form

Ĥ = P̂ 2

2M
+

p̂2

2m
+ V̂ (q̂, Q̂), (2)

where the momentum operators for the subsystem and bath are
p̂ and P̂ , respectively. It is convenient to write the potential
energy operator, V̂ (q̂, Q̂) as a sum of subsystem, bath and
coupling contributions: V̂ (q̂, Q̂) = V̂s(q̂)+ V̂b(Q̂)+ V̂c(q̂, Q̂).
In this case the Hamiltonian operator can be written as a sum
of contributions,

Ĥ = ĥs + Ĥb + V̂c, (3)

where ĥs = p̂2

2m
+V̂s(q̂) is the quantum subsystem Hamiltonian,

Ĥb = P̂ 2

2M
+ V̂b(Q̂) is the quantum bath Hamiltonian and V̂c is

the coupling between these two subsystems.
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Most often in considering the dynamics of such open
quantum systems one traces over the bath since it is the
dynamics of the subsystem that is of interest. As noted in the
Introduction, a considerable research effort has been devoted
to the construction of equations of motion for the reduced
density matrix, ρ̂s(t) = Trbρ̂(t). The Redfield equation [1]
describes the dynamics of a subsystem weakly coupled to a
bath with suitably fast bath relaxation time scales, since a
Born–Markov approximation is made in its derivation. In a
basis of eigenstates of ĥs, ĥs|λ〉 = ελ|λ〉, it has the form,

∂

∂t
ρλλ′

s (t) = −iωλλ′ρλλ′
s (t) + Rλλ′;νν ′ρνν ′

s (t), (4)

where the summation convention has been used. This
convention will be used throughout the paper when confusion
is unlikely. Here ωλλ′ = (ελ − ελ′)/h̄, while the second
term on the right accounts for dissipative effects due to the
bath. Remaining within the Born–Markov approximation, the
general form of the equation of motion for a reduced density
matrix that guarantees its positivity is given by the Lindblad
equation [2],

∂

∂t
ρ̂s(t) = − i

h̄
[ĥs, ρ̂s(t)] (5)

+
1

2

∑
j

(
[L̂j ρ̂s(t), L̂

†
j ] + [L̂j , ρ̂s(t)L̂

†
j ]

)
,

where the L̂j are operators that account for interactions
with the bath. In addition to these equations, a number of
other expressions for the evolution of the reduced density
matrix have been derived. These include various master
equations and generalized quantum master equations. There
is a large literature dealing with open quantum systems, which
is described and surveyed in books on this topic [3–5]. In such
reduced descriptions information about the bath is contained in
parameters that enter in the operators that describe the coupling
between the subsystem and bath. Also, quantum-classical
versions of the Redfield [6] and Lindblad [7] equations have
been derived.

There are many applications, such as those mentioned
in the Introduction, where a more detailed treatment of the
bath dynamics and its interactions with the subsystem is
required, even though one’s primary interest is in the dynamics
of the subsystem. If, as we suppose here, the systems we
wish to study are large and may involve complex molecular
constituents, a full quantum mechanical treatment is beyond
the scope of existing computational power and algorithms.
Currently, the only viable way to simulate the dynamics of
such systems is by using mixed quantum-classical schemes.
Quantum-classical methods in a variety of forms and derived
in a variety of ways have been used to simulate the dynamics
[8–12]. Mean field and surface-hopping methods are widely
employed and will be discussed in some detail below. Mixed
quantum-classical dynamics [13] based the on the exact time-
dependent potential energy surfaces derived from the exact
decomposition of electronic and nuclear motions [14] has
been constructed. In addition, semiclassical path integral
formulations of quantum mechanics [15–19] and ring polymer

dynamics methods [20] have been developed to approximate
the dynamics of open quantum systems.

In the next section the specific version of mixed quantum-
classical dynamics that is the subject of this review, quantum-
classical Liouville dynamics, will be described. The passage
from quantum to classical dynamics is itself a difficult
problem with an extensive literature and decoherence is often
invoked to effect this passage [21, 22]. Considerations
based on decoherence can also be used motivate the use of
mixed quantum-classical descriptions [23]. Mean-field and
surface-hopping methods suffer from difficulties related to the
treatment of coherence and decoherence and these methods
will be discussed in the context of the quantum-classical
Liouville equation, which is derived and discussed in the next
two sections. Some applications of the theory to specific
systems will be presented in order to test the accuracy of this
equation description and the algorithms used to simulate its
dynamics.

3. Quantum-classical Liouville dynamics

The first step in constructing a quantum-classical Liouville
description is to introduce a phase space representation of the
bath degrees of freedom in preparation for the passage to the
classical bath limit. This is conveniently done by introducing a
partial Wigner transform [24] over the bath degrees of freedom
defined by

ρ̂W (R, P ) = 1

(2πh̄)N

∫
dZ eiP ·Z/h̄

〈
R − Z

2
|ρ̂|R +

Z

2

〉
, (6)

with an analogous expression for the partial Wigner transform
of an operator ÂW (R, P ) in which the prefactor (2πh̄)−N is
absent. We let X = (R, P ) to simplify the notation. The
quantum Liouville equation then takes the form,

∂

∂t
ρ̂W (X, t) = − i

h̄

(
ĤW eh̄�/2i ρ̂W (t) − ρ̂W (t)eh̄�/2i ĤW

)
.

(7)

To obtain this equation the formula for the Wigner transform
of a product of operators [25],

(ÂB̂)W (X) = ÂW (X)eh̄�/2i B̂W (X), (8)

was used. Here the operator � = ←−∇ P ·−→∇ R−←−∇ R ·−→∇ P , where
the arrows denote the directions in which the derivatives act,
is the negative of the Poisson bracket operator,

ÂW�B̂W = −
(
∇RÂW · ∇P B̂W − ∇P ÂW · ∇RB̂W

)
≡ − {ÂW .B̂W } (9)

The partial Wigner transform of the total Hamiltonian is,

ĤW (X) = P 2

2M
+

p̂2

2m
+ V̂ (q̂, R) ≡ P 2

2M
+ ĥ(q̂, R). (10)

We have dropped the subscript W on the potential energy
operator to simplify the notation; when the argument contains
R the partial Wigner transform is implied.
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3.1. Derivation of the QCLE

The quantum-classical Liouville equation (QCLE) can be
derived by formally expanding the exponential operators on
the right side of equation (7) to O(h̄) [26, 27]. The truncation
of the series expansion can be justified for systems where the
masses of particles in the environment are much greater than
those of the subsystem, M � m [28]. Scaling similar to
that in the microscopic derivation of the Langevin equation for
Brownian motion from the classical Liouville equation [29]
can be used for this purpose and we may write the equations
in terms of the reduced bath momenta, P̃ = µP where
µ = (m/M)1/2. In this variable the kinetic energies of the
light and heavy particle systems are comparable so that P

is of order M1/2. To see this more explicitly we introduce
scaled units where energy is expressed in the unit ε0, time
in t0 = h̄/ε0 and length in units of λm = (h̄2/mε0)

1/2.
Using these length and time units, the scaling factor for the
momentum is pm = (mλm/t0) = (mε0)

1/2. Thus, in terms of
the scaled variables R′ = R/λm and P ′ = P̃ /pm we have

eh̄�/2i = eµ�′/2i = 1 + µ�′/2i + O(µ2), (11)

where the prime on � indicates that it is expressed in the
primed variables. Note that for a system characterized by a
temperature T the small parameter µ can be written as the ratio
of the thermal de Broglie wavelengths λM = (h̄2/MkBT )1/2

and λm = (h̄2/mkBT )1/2 of the heavy bath and light subsystem
particles, respectively, λM/λm = µ and truncation of the
dynamics to terms of O(µ) effectively averages out the
quantum bath oscillations on the longer quantum length scale
of the light subsystem.

Inserting the expression for the exponential Poisson
bracket operator, valid to O(µ), into the scaled version of
equation (7) and returning to unscaled variables we obtain the
quantum-classical Liouville equation [28],

∂

∂t
ρ̂W (X, t) = −iL̂ρ̂W (t) = − i

h̄
[ĤW , ρ̂W (t)] (12)

+
1

2

(
{ĤW , ρ̂W (t)} − {ρ̂W (t), ĤW }

)
.

Additional discussion of this equation can be found in the
literature [11, 26–28, 30–36]. Comparison of the second and
third equalities in this equation defines the QCL operator iL̂
and given this definition the formal solution of the QCLE is

ρ̂W (X, t) = e−iL̂t ρ̂W (X), (13)

where we let ρ̂W (X) = ρ̂W (X, 0) here and in the following to
simplify the notation. The QCLE (12) may also be written in
the form [37],

∂

∂t
ρ̂W (X, t) = − i

h̄

(→
H�ρ̂W (t) − ρ̂W (t)

←
H�

)
, (14)

which resembles the quantum Liouville equation but the
quantum Hamiltonian operator is replaced by the forward and
backward operators,

→
H� = ĤW

(
1 +

h̄�

2i

)
,

←
H� =

(
1 +

h̄�

2i

)
ĤW . (15)

This form of the evolution equation has been used to discuss
the statistical mechanical properties of QCL dynamics [37]
and will be used later to derive approximate solutions to the
QCLE.

In applications it is often more convenient to evolve an
operator rather than the density matrix and we may easily
write the evolution equations for operators. Starting from the
Heisenberg equation of motion for an operator B̂,

d

dt
B̂(t) = i

h̄
[Ĥ , B̂(t)], (16)

one can carry out an analogous calculation to find the QCLE
for the partial Wigner transform of this operator:

d

dt
B̂W (X, t) = iL̂B̂W (t), (17)

whose formal solution can be written as

B̂W (X, t) = eiL̂t B̂W (X). (18)

3.2. QCLE from linearization

The QCLE, when expressed in the adiabatic or subsystem
bases, has been derived from linearization of the path integral
expression for the density matrix by Shi and Geva [34]. It
can also be derived in a basis-free form by linearization [38]
and it is instructive to sketch this derivation here to see how
the QCLE can be obtained from a perspective that differs from
that discussed in the previous subsection.

The time evolution of the quantum density operator from
time t to a short later time t + 	t is given by

ρ̂(t + 	t) = e− i
h̄
Ĥ	t ρ̂(t)e

i
h̄
Ĥ	t . (19)

Writing the Hamiltonian in the form Ĥ = P̂ 2/2M + ĥ(q̂, Q̂),
for this short time interval, a Trotter factorization of the
propagators can be made:

e± i
h̄
Ĥ	t ≈ e± i

h̄
P̂ 2

2M
	te± i

h̄
ĥ(Q̂)	t + O(	t2). (20)

For simplicity, we have suppressed the q̂ dependence in ĥ but
kept the Q̂ dependence since it is required in the derivation.
Working in the {Q} representation for the bath, inserting
resolutions of the identity and evaluating the contributions
coming from the kinetic energy operators that appear in the
resulting expression, we obtain

〈Q|ρ̂(t + 	t)|Q′〉 =
∫

dQ0dP0dQ′
0dP ′

0 e
i
h̄
P0·(Q−Q0)

×e− i
h̄

P 2
0

2M
	te− i

h̄
ĥ(Q0)	t 〈Q0|ρ̂(t)|Q′

0〉
×e− i

h̄
P ′

0·(Q′−Q′
0)e

i
h̄

P ′2
0

2M
	te

i
h̄
ĥ(Q′

0)	t . (21)

Next, we make the change of variables R̄ = (Q + Q′)/2 and
Z = Q − Q′, along with similar variable changes for the
momenta P̄ = P + P ′ and 	P = (P − P ′)/2. In the new

4
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variables, the density matrix element is〈
R̄ +

Z

2
|ρ̂(t + 	t)|R̄ − Z

2

〉
(22)

=
∫

dR̄0dP̄0dZ0d	P0 e
i
h̄
P̄0·(Z−Z0)

×e
i
h̄
	P0·(R̄−R̄0)e− i

h̄

P̄0
M

	P0	te− i
h̄
ĥ(R̄0+ Z0

2 )	t

×
〈
R̄0 +

Z0

2
|ρ̂(t)|R̄0 − Z0

2

〉
e

i
h̄
ĥ(R̄0− Z0

2 )	t .

We may now make use of the definition of the partial Wigner
transform (see equation (6)) in the expression for the matrix
element of the density operator in equation (22) to derive
an equation of motion for ρ̂W (R̄, P̄ , t). To do this we first
expand the exponentials that depend on 	t to first order in this

parameter; e.g. e− i
h̄

P̄0
M

·	P0	t ≈ 1− i
h̄

P̄0
M

·	P0	t . We may then
use this expansion to compute the finite difference expression
(〈R̄ + Z

2 |ρ̂(t +	t)|R̄ − Z
2 〉−〈R̄ + Z

2 |ρ̂(t)|R̄ − Z
2 〉)/	t . Finally

we multiply the equation by e− i
h̄
P̄ ·Z , integrate the result over

Z and take the limit 	t → 0. The result of these operations is

∂

∂t
ρ̂W (X̄, t) = − P̄

M
· ∇R̄ ρ̂W (X̄, t) (23)

+
i

h̄

∫
dZe− i

h̄
P̄ ·Zĥ

(
R̄ +

Z

2

)〈
R̄ +

Z

2
|ρ̂(t)|R̄ − Z

2

〉

− i

h̄

∫
dZe− i

h̄
P̄ ·Z

〈
R̄ +

Z

2
|ρ̂(t)|R̄ − Z

2

〉
ĥ

(
R̄ − Z

2

)
,

where X̄ = (R̄, P̄ ). This integro-differential equation
describes the full quantum evolution of the density matrix
element; however, it is not a closed equation for ρ̂W (t) because
of the dependence of ĥ(R̄ ± Z

2 ) on Z. If we make use of the

expansion of this operator to linear order in Z, ĥ(R̄ ± Z
2 ) ≈

ĥ(R̄) ± Z
2 · ∇R̄ĥ(R̄) when performing the integrals in the right

side of equation (23), we obtain the QCLE in equation (12).
The linearization approximation can be justified for systems
where M � m [38]. The same scaled variables introduced
above in the first derivation may also be used to re-express
equation (23) in scaled form. In this scaled form one may
show that the expansion in Z is equivalent to an expansion in
the mass ratio parameter µ.

3.3. QCLE in a dissipative environment

At times it may be convenient to further partition the bath into
two subsets of degrees of freedom, X = (X0, Xa), where the
X0 variables are directly coupled to the quantum subsystem
and the remainder of the (usually large number of) degrees
of freedom denoted by Xa only participate in the subsystem
dynamics indirectly through their coupling to X0. In such
a case we can project these Xa degrees of freedom out of
the QCLE to derive a dissipative evolution equation for the
quantum subsystem and the directly coupled X0 variables [39].
For example, such a description could be useful in studies
of proton or electron transfer in biomolecules where remote
portions of the biomolecule and solvent need not be treated in
detail but, nevertheless, these remote degrees of freedom do
provide a source of decoherence and dissipation on the relevant
degrees of freedom.

For a system of this type the partially Wigner transformed
total Hamiltonian of the system is,

ĤW (X) = P 2
a

2M
+

P 2
0

2M
+

p̂2

2m
+ V̂ (q̂, R0, Ra)

≡ P 2
a

2M
+

P 2
0

2M
+ ĥ(R) . (24)

The potential energy operator, V̂ (q̂, R0, Ra) = V̂ (q̂, R0) +
Va(Ra) + V0a(R0, Ra), includes all of the coupling
contributions discussed above, namely, the potential energy
operator V̂ (q̂, R0) for the quantum subsystem and directly
coupled degrees of freedom, the potential energy of the outer
bathVa and the coupling between the two bath subsystems,V0a .

An evolution equation for the reduced density matrix of
the quantum subsystem and directly coupled X0 degrees of
freedom,

ρ̂W (X0, t) =
∫

dXa ρ̂W (X0, Xa, t), (25)

can be obtained by using projection operator methods [40, 41].
The result of this calculation is a dissipative QCLE, which takes
the form [39],
∂

∂t
ρ̂W (X0t) = −iL̂ρ̂W (t) − F · ∂

∂P0
ρ̂W (t)

+ζ(R0) :
∂

∂P0

(
P0

M
+ kBT

∂

∂P0

)
ρ̂W (t), (26)

where iL̂ is the QCL operator introduced earlier but now
only for the quantum subsystem and X0 bath degrees of
freedom. The effects of the less relevant Xa bath degrees of
freedom are accounted for by the mean force F defined by
F(R0) = −〈∂V0a/∂R0〉0 ≡ 〈F0a〉0, where the average is over
a canonical equilibrium distribution involving the Hamiltonian

H0 = P 2
a

2M
+ Va(Ra) + V0a(R0, Ra). The Fokker–Planck like

operator in equation (26) depends on the fixed particle friction
tensor, ζ(R0), defined by

ζ(R0) =
∫ ∞

0
dt 〈δF0a(t)δF0a〉0/kBT , (27)

where δF0a = F0a − F and its time evolution is given by the
classical dynamics of the Xa degrees of freedom in the field of
the fixed R0 coordinates. The quantum-classical limit of the
multi-state Fokker–Planck equation introduced by Tanimura
and Mukamel [42] is similar to the dissipative QCLE (26)
when expressed in the subsystem basis.

4. Some properties of the QCLE

The QCLE specifies the time evolution the density matrix
of the entire system comprising the subsystem and bath
and conserves the energy of the system. If the coupling
potential V̂c(q̂, R) in the Hamiltonian is zero, the density
matrix factors into a product of subsystem and bath density
matrices, ρ̂(X, t) = ρ̂s(t)ρb(X, t). In this limit the subsystem
density matrix satisfies the quantum Liouville equation,

∂

∂t
ρ̂s(t) = − i

h̄
[ĥs, ρ̂s(t)], (28)

5



J. Phys.: Condens. Matter 27 (2015) 073201 Topical Review

and bath phase space density satisfies the classical Liouville
equation,

∂

∂t
ρb(X, t) = {Hb(X), ρb(X, t)}. (29)

While the bath evolves by classical mechanics when it
is not coupled to the quantum subsystem, its evolution is no
longer classical when coupling is present. As we shall see in
more detail below, not only does the bath serve to account for
the effects of decoherence and dissipation in the subsystem, it is
also responsible for the creation of coherence. Conversely, the
subsystem can interact with the bath to modify its dynamics.
This leads to a very complicated evolution, but one which
incorporates many of the features that are essential for the
description of physical systems.

Often, when considering the dynamics of a quantum
system coupled to a bath, the bath is modeled by a collection
of harmonic oscillators which are bilinearly coupled to the
quantum subsystem. In this case we may write the coupling
potential as V̂c(q̂, R) = Ĉ(q̂) · R. The partially Wigner
transformed Hamiltonian then takes the form,

ĤW (X) = p̂2

2m
+ V̂s(q̂) +

P 2

2M
+ Vh(X) + Ĉ(q̂) · R

≡ ĥs + Hh(X) + Ĉ(q̂) · R (30)

where Hh is the harmonic oscillator bath Hamiltonian. When
the Hamiltonian has this form one may show easily that
(ĤW�2ρ̂W (t) − ρ̂W (t)�2ĤW ) = 0. Consequently, when
the exponential Poisson bracket operators in equation (7) are
expanded in a power series, the series truncates at linear order
and we obtain the QCLE in the form given in equation (14);
thus, the QCLE is exact for general quantum subsystems which
are bilinearly coupled to harmonic baths. For more general
Hamiltonian operators the series does not truncate and QCL
dynamics is an approximation to full quantum dynamics.

Quantum and classical mechanics do not like to mix.
The coupling between the smooth classical phase space
evolution of the bath and the quantum subsystem dynamics
with quantum fluctuations on small scales presents challenges
for any quantum-classical description. The QCLE, being
an approximation to full quantum dynamics, is not without
defects. One of its features that requires consideration
is its lack of a Lie algebraic structure. The quantum
commutator bracket (i/h̄)[Â, B̂] and Poisson bracket {A, B}
for quantum and classical mechanics, respectively, are bilinear,
skew symmetric and satisfy the Jacobi identity, so that these
brackets have Lie algebraic structures. The quantum-classical
bracket, (ÂW , B̂W )QC = (i/h̄)[ÂW , B̂W ] − ({ÂW , B̂W } −
{B̂W , ÂW })/2, which is the combination of the commutator
and the Poisson bracket terms does not have such a Lie
algebraic structure. While this bracket is bilinear and skew
symmetric, it does not exactly satisfy the Jacobi identity.
Instead, the Jacobi identity is satisfied only to order h̄ (or
µ if scaled variables are considered): (ÂW , (B̂W , ĈW )) +
(ĈW , (ÂW , B̂W )) + (B̂W , (ĈW , ÂW )) = O(h̄). The lack of
a Lie algebraic structure, its implications for the dynamics
and the construction of the statistical mechanics of quantum-
classical systems were discussed earlier [37, 43] where full

details may be found. For example, the standard linear
response derivations of quantum transport properties have to
be modified and in quantum-classical dynamics the evolution
of a product of operators is not the product of the evolved
operators; this is true only to order µ. These feature are
not unique to QCL dynamics and almost all mixed quantum-
classical methods used in simulations suffer from such defects,
although they are rarely discussed. Mixed quantum-classical
dynamics and its algebraic structure continue to attract the
attention of researchers [44–52].

One way to bypass some of the difficulties in the
formulation of the statistical mechanics of quantum-classical
systems that are associated with a lack of a Lie algebraic
structure is to derive expressions for average values and
transport property using full quantum statistical mechanics.
Then, starting with these exact quantum expressions, one
may approximate the quantum dynamics by quantum-classical
dynamics [53–56]. In this framework the expectation value of
an observable B̂W (X) is given by,

B(t) = Trs

∫
dX B̂W(X, t)ρ̂W (X), (31)

where ρ̂W (X) is the partial Wigner transform of the initial
quantum density operator and the evolution of B̂W (X, t) is
given by the QCLE. Similarly, the expressions for transport
coefficients involve time integrals of correlation functions
CAB(t) of the form,

CAB(t) = 1

ZQ

∫
dX

[(
e−βĤ Â

)
W

(X)B̂W (X, t)
]
, (32)

where
(
e−βĤA

)
W

(X) is the partial Wigner transform of the
product of the quantum canonical density operator and the
operator Â and the time evolution of B̂W (X, t) is again given by
the QCLE. Such formulations preserve the full quantum
equilibrium structure which, while difficult to compute, is
computationally much more tractable than full quantum
dynamics [57, 58]. The importance of quantum versus
classical equilibrium sampling on reactive-flux correlation
functions, whose time integrals are reaction rate coefficients,
has been investigated in the context of quantum-classical
Liouville dynamics [55]. In this review we shall focus on
dynamics but, when applications are considered, the above
equations that contain the quantum initial or equilibrium
density matrices will be used.

5. Surface hopping, coherence and decoherence

Surface-hopping methods are commonly used to simulate the
nonadiabatic dynamics of quantum-classical systems. In such
schemes the bath phase space variables follow Newtonian
trajectories on single adiabatic surfaces. Nonadiabatic effects
are taken into account by hops between different adiabatic
surfaces that are governed by probabilistic rules.

One of the most widely used schemes is Tully’s fewest-
switches surface hopping [9, 59, 60]. In this method
one assumes that the electronic wave function |ψ(R(t), t)〉
depends on the time-dependent nuclear positions R(t), whose
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evolution is governed by a stochastic algorithm. More
specifically, choosing to work in a basis of the instantaneous
adiabatic eigenfunctions of the Hamiltonian ĥ(R(t)),
ĥ(R(t))|α; R(t)〉 = Eα(R(t))|α; R(t)〉, we may expand the
wave function as |ψ(R(t), t)〉 = ∑

α cα(t)|α; R(t)〉. An
expression for the time evolution of the subsystem density
matrix ρ̂s(t) = |ψ(R(t), t)〉〈ψ(R(t), t)| can be obtained by
substitution into the Schrödinger equation. The equations
of motion for its matrix elements, ραα′

s (t) = cα(t)c∗
α′(t) are

given by,

dραα′
s (t)

dt
= −iωαα′(R(t))ραα′

s (t) (33)

−P(t)

M
· dαβ(R(t))ρβα′

s (t) − P(t)

M
· d∗

α′β(R(t))ραβ
s (t).

In this equation dαβ is the nonadiabatic coupling matrix
element, dαβ = 〈α; R| ∂

∂R
|β; R〉. From this expression the

rate of change of the population in state α may be written as

ρ̇αα
s = −2P

M
· �(dαα′′ρα′′α

s ), (34)

where, for simplicity, we have suppressed the time dependence
in the variables and � stands for the real part. This rate has
contributions from transitions to and from all other states α′′.
Consider a single specific state β. Then transitions into α from
β and out of α to β will determine the rate of change of the α

population due to transitions involving this β state. In fewest-
switches surface hopping the transitions β → α are dropped
and the transition rate for α → β, rα→β , is adjusted to give the
correct weighting of populations:

rα→β = −2P

M
· �(dαβρ

βα
s )

ραα
s

. (35)

This transition rate is used to construct surface-hopping
trajectories that specify the evolution of the phase space
variables (R(t), P (t)) as follows: When the system is in state
α, the coordinates evolve by Newtonian trajectories on the
α adiabatic surface. Transitions to other states β occur with
probabilities per unit time, pα→β = rα→β�(rα→β). Since the
rates may take negative values, the Heaviside function �(x)

sets the probability zero for negative values of the rate. If the
transition to state β occurs, the momentum of the system is
adjusted to conserve energy and the system then propagates on
the β adiabatic surface. The momentum adjustment is taken to
occur along the direction of the nonadiabatic coupling vector
and is given by P → P + 	P FS

αβ , with

	P FS
αβ = d̂αβ

(
sgn(P · d̂αβ)

√
(P · d̂αβ)2 + 2	EαβM

− (P · d̂αβ)
)
, (36)

The form that the stochastic evolution takes can be seen from
an examination of figure 2, which schematically shows the
evolution of a wave packet that starts on the upper adiabatic
surface of a two level system with a simple avoided crossing.
(This is Tully’s simple avoided crossing model [59].) When the
system enters the region of strong nonadiabatic coupling near

Figure 2. Schematic representation of the evolution of a wave
packet in a two-level system with a simple avoided crossing. The
diabatic (crossing curves) and adiabatic (avoided crossing curves)
are shown. Following the nonadiabatic transition from the upper to
lower adiabatic surfaces, the system continues to evolve on the
lower surface until the next nonadiabatic transition.

the avoided crossing, nonadiabatic transitions to the lower state
are likely, a surface hop occurs and the system then continues
to evolve on the lower surface after momentum adjustment.
For upward transitions it may happen that there is insufficient
energy in the environment to insure energy conservation. In
this case the transition rule needs to be modified, usually by
setting the transition probability to zero. This scheme is very
easy to simulate and captures much of the essential physics of
the nonadiabatic dynamics.

Fewest-switches surface hopping does suffer from some
defects associated with the fact that decoherence is not
properly treated. The transition probability depends on the
off-diagonal elements of the density matrix but no mechanism
for their decay is included in the model. As a result,
the fewest-switches surface hopping model overestimates
coherence effects and retains memory which can influence
the probabilities of subsequent hops. Several methods have
been proposed to incorporate the effects of decoherence in
mixed quantum-classical theories and, in particular, in surface-
hopping schemes [61–72]. In many of these methods a term of
the form, −γραα′

s (t), is appended to the equation of motion for
the off-diagonal elements of the subsystem density matrix to
account for the decay of coherence. The decoherence rate
γ is estimated using perturbation theory or from physical
considerations involving the overlap of nuclear wave functions.
In the remainder of this section we discuss how the QCLE
accounts for decoherence and comment on its links to surface-
hopping methods.

5.1. QCL dynamics in the adiabatic basis and decoherence

Since surface-hopping methods are often formulated in the
adiabatic basis, it is instructive to discuss the dynamical picture
that emerges when the QCLE is expressed in this basis.
Adopting an Eulerian description, the adiabatic energies,
Eα(R) and the adiabatic states, |α; R〉, depend parametrically

7
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on the coordinates of the bath. We may then take matrix
elements of equation (12),
∂

∂t
〈α; R|ρ̂W (X, t)|α′; R〉 = −i〈α; R|L̂ρ̂W (t)|α′; R〉, (37)

to find an evolution equation for the density matrix elements,
〈α; R|ρ̂W (X, t)|α′; R〉 = ραα′

W (X, t). Evaluation of the matrix
elements on the right side of this equation yields an expression
for the QCL superoperator [28],

iLαα′,ββ ′ = (iωαα′ + iLαα′)δαβδα′β ′ − Jαα′,ββ ′

≡ iL(0)
αα′,ββ ′ − Jαα′,ββ ′ . (38)

Here the frequency ωαα′(R) = (Eα − Eα′)/h̄ ≡ 	Eαα′(R)/h̄

(now in the adiabatic basis) and iLαα′ is the classical Liouville
operator

iLαα′ = P

M
· ∂

∂R
+

1

2
(Fα + Fα′) · ∂

∂P
, (39)

and involves the Hellmann–Feynman forces, Fα =
−∂Eα(R)/∂R. The superoperator, J , whose matrix
elements are

Jαα′,ββ ′ = −dαβ ·
(

P

M
+

1

2
	Eαβ

∂

∂P

)
δα′β ′

−d∗
α′β ′ ·

(
P

M
+

1

2
	Eα′β ′

∂

∂P

)
δαβ, (40)

couples the dynamics on the individual and mean adiabatic
surfaces so that the evolution is no longer described by
Newtonian dynamics.

The resulting QCLE in the adiabatic representation reads,

∂

∂t
ραα′

W (X, t) = −iLαα′,ββ ′ρ
ββ ′
W (X, t). (41)

To simplify we shall often use a formal notation and write
equation (41) as

∂

∂t
ρW (X, t) = −iLρW(X, t), (42)

where ρW and L (without ‘hats’) are understood to be a matrix
and superoperator, respectively, in the adiabatic basis.

Insight into the nature of QCL dynamics can be obtained
as follows. If the operator Jαα′,ββ ′ is dropped the resulting
equation of motion for the diagonal elements of the density
matrix is (

∂

∂t
+ iLα

)
ραα

W (X, t) = 0, (43)

which implies that the phase space density is constant along
trajectories on the α adiabatic surface,

ραα
W (X, t) = e−iLα(t−t0)ραα

W (X, t0) = ραα
W (X(t0), t0), (44)

where

Ṙ(t) = P(t)

M
, Ṗ (t) = − ∂

∂R(t)
Eα(R(t)), (45)

with the notation X(t) = X. The off-diagonal density matrix
elements satisfy(

∂

∂t
+ iLαα′

)
ραα′

W (X, t) = −iωαα′(R)ραα′
W (X, t), (46)

whose solution is

ραα′
W (X, t) = e−i(Lαα′ +ωαα′ )(t−t0)ραα′

W (X, t0)

= Wαα′(t, t0)ρ
αα′
W (X(t0), t0), (47)

where Wαα′(t, t0) = e−i
∫ t

t0
dt ′ ωαα′ (R(t ′)) and the evolution of the

phase space coordinates of the bath is given by

Ṙ(t) = P(t)

M
, Ṗ (t) = −1

2

∂

∂R(t)
(Eα(R(t)) + Eα′(R(t))) ,

(48)
The off-diagonal elements accumulate a phase in the course
of their evolution on the mean of the two α and α′ adiabatic
surfaces.

The momentum derivative terms in J are responsible
for the energy transfers that occur to and from the bath
when the subsystem density matrix changes its quantum state.
Consequently the subsystem and bath interact with each other
and the dynamics of both the subsystem and bath are modified
in the course of the evolution. Further, we can see from the
structure of the QCLE that there are continuous changes to
the subsystem quantum state and bath momenta during the
evolution, as opposed to the jumps that appear in surface-
hopping schemes. Nonetheless, links to surface-hopping
methods can be made.

Subotnik, Ouyang and Landry [70] established a
connection between fewest-switches surface-hopping and
the QCLE. They investigated what must be done to the
equations describing fewest-switches surface hopping in
order to obtain the QCL dynamics. Since there are
continuous bath momentum changes in QCL dynamics and
discontinuous changes in fewest-switches surface hopping,
there are limitations on the nuclear momenta. An important
element in their analysis is the fact that terms of the form,
−γ

(α)
αα′ ραα′

(t), that account for decoherence must be added
to the fewest-switches approach. The specific form of the
decoherence rate in their analysis is

γ
(α)
αα′ ≈ 1

2
(Fα′ − Fα) · 1

ραα′
∂ραα′

∂P
(49)

The superscript (α) indicates that evolution is on theα adiabatic
surface and all quantities on the right are taken to evolve on
this surface. An analogous expression can be written for γ

(α′)
αα′ .

Recall that surface-hopping schemes assume that the
dynamics occurs on single adiabatic surfaces between hops.
Given this fact, we can understand the need for such a
term by viewing QCL dynamics in a frame of reference
corresponding to motion along single adiabatic surfaces. To
see this consider the equation of motion for an off-diagonal
element of the density matrix as given by the QCLE. From
equations (38)–(41) we have
∂

∂t
ραα′

W (X, t) = −(iωαα′ + iLαα′)ραα′
W (t)

+Jαα′,ββ ′ρ
ββ ′
W (t). (50)

Defining the material derivative for the flow on the α adiabatic
surface as

dα

dt
= ∂

∂t
+ iLα, (51)
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we obtain
dα

dt
ραα′

W (X, t) =
(

− iωαα′ − 1

2
(Fα′ − Fα) · ∂

∂P

)
ραα′

W (t)

+Jαα′,ββ ′ρ
ββ ′
W (t). (52)

We see that the second term on the right side of this equation
is just the decoherence factor that appears in equation (49).
The fact that decoherence depends on the difference between
the forces is a common factor in many of the models for
decoherence mentioned above. The decoherence contribution
is difficult to compute in its current form because of the
bath momentum derivative and it is usually approximated in
applications [70].

5.2. Surface-hopping solution of the QCLE

As discussed above, the dynamics prescribed by the QCLE is
not in the form of surface hopping since quantum state and bath
momentum changes as embodied in the J superoperator occur
continuously throughout the evolution. The effects of J can
be seen by considering the formal solution of equation (41),

ραα′
W (X, t) = (

e−iLt
)
αα′,αN α′

N

ρ
αN α′

N

W (X, 0). (53)

The time interval t can be divided into N segments of lengths
	tj so that for the j th segment tj −tj−1 = 	tj = 	t . Without
approximation we may then write

(
e−iLt

)
α0α

′
0αN α′

N

=
N∏

j=1

(
e−iL(tj −tj−1)

)
αj−1α

′
j−1,αj α

′
j

, (54)

where α0 = α and α′
0 = α′. In each short time segment we

can write(
e−iL	t

)
αj−1α

′
j−1,αj α

′
j

≈ Wαj−1α
′
j−1

(	t)e
−iLαj−1α′

j−1
	t

×
(
δαj−1αj

δα′
j−1α

′
j

+ 	tJαj−1α
′
j−1,αj α

′
j

)
. (55)

If this expression for the short time evolution is substituted in
to equations (53) and (54), the resulting form for the density
matrix is represented as a sum of contributions involving
increasing numbers of nonadiabatic transitions governed by
the J operators. The first term in the series is just ordinary
adiabatic dynamics if a diagonal density matrix element is
considered; for an off-diagonal element the dynamics takes
place on the mean of two surfaces and incorporates a phase
factor as discussed earlier. The higher order terms in the
series involve nonadiabatic transitions between such adiabatic
evolution segments.

More specifically, the operator J contains terms which
can be written as follows:

dαβ ·
(

P

M
+

1

2
Eαβ

∂

∂P

)

= P

M
· dαβ

(
1 +

1

2

M	Eαβ

(P · d̂αβ)

∂

∂(P · d̂αβ)

)

= P

M
· dαβ

(
1 + M	Eαβ

∂

∂Yαβ

)
, (56)

where Yαβ = (P · d̂αβ)2. The second equality shows that the
momentum changes in the bath occur along the direction of the
nonadiabatic coupling matrix element while the third equality
shows that the momentum changes can be expressed in terms of
an R-dependent prefactor (	Eαβ(R)) multiplying a derivative
with respect to the square of the momentum along d̂αβ .

If the momentum derivative is approximated by finite
differences, a branching tree of trajectories will be generated;
each branch corresponding to the increment in the bath
momentum in the finite difference form the derivative [73].
The number of trajectories will then grow exponentially and
the dynamics cannot be propagated for long times and large
nonadiabatic coupling. Such a branching tree of trajectories
can be avoided and a surface-hopping description can be
obtained by making the momentum-jump approximation
described below [11, 28, 43].

An expression for the J operator for small M	Eαβ can
be obtained by approximating the factor in parentheses in the
last line of equation (56) as(

1 + M	Eαβ

∂

∂Yαβ

)
≈ e

M	Eαβ
∂

∂Yαβ ≡ jαβ. (57)

The operator jαβ acts as a momentum translation operator on
any function f (P ). If we decompose the momentum into its
components parallel and perpendicular to the direction of the
nonadiabatic coupling matrix element d̂αβ we have

P = (P · d̂αβ)d̂αβ + (P · d̂⊥
αβ)d̂⊥

αβ

= sgn(P · d̂αβ)
√

Yαβ d̂αβ + (P · d̂⊥
αβ)d̂⊥

αβ. (58)

Then jαβf (P ) = f (P + 	Pαβ), where

	Pαβ = d̂αβ

(
sgn(P · d̂αβ)

√
(P · d̂αβ)2 + 	EαβM

− (P · d̂αβ)
)
, (59)

and the momentum along the direction of the nonadiabatic
coupling matrix element is changed by the action of this
operator. Note that this expression for the momentum
adjustment is very similar to that in equation (36) for the
fewest-switches surface hopping algorithm, the only difference
being a factor of two multiplying 	Eαβ . This factor arises
because in fewest-switches surface hopping transitions occur
between single adiabatic states corresponding to populations;
instead, in QCL dynamics transitions change only one index
of the density matrix and correspond to changes from, say, a
diagonal density matrix element to an off-diagonal element.
It then takes two (or more generally an even number) of
quantum transitions to effect a population change; hence, two
of these half changes are needed to adjust the momentum in a
population change.

In this momentum-jump approximation the operator J is
given by

Jαα′,ββ ′ ≈ − P

M
· dαβjαβδα′β ′ − P

M
· d∗

α′β ′jα′β ′δαβ. (60)

If the momentum-jump expression for J is used in
equation (55) and the terms in the series in equation (54) are
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evaluated by Monte Carlo sampling, a solution in terms of
surface-hopping trajectories can be obtained [74–76]. To see
this in more detail it is convenient to introduce some notation
for the pairs of quantum indices that appear in the expressions
given above. We define an index s as s = αn + α′ with
the pair (αα′), where 0 � α, α′ < n for an n-state quantum
subsystem [74]. Then equations (54) and (55) can be written
more compactly as

(
eiLt

)
s0sN

≈
∑

s1s2...sN−1

N∏
j=1

Wsj−1(tj − tj−1)

×e−iLsj−1 (tj −tj−1)
(
δsj sj−1 + 	tJsj−1sj

)
. (61)

To propagate the dynamics through one time interval, the
positions and momenta and the phase factor are evaluated at
time 	t by applying e−iLsj−1 	t . Then, given sj−1, sj is chosen
uniformly from the set of allowed final states and a weight
associated with the number of final states is applied. Once
the final state is chosen, the non-adiabatic coupling matrix
element dsj−1,sj

at the updated position can be computed. Next,
a probability, π , for a nonadiabatic transition is defined as,

π = | P
M

· dsj−1sj
|	t(

1 + | P
M

· dsj−1sj
|	t

) , (62)

and is used to determine if a transition occurs. If no transition
occurs by the Monte Carlo sampling, then a weight 1/(1 − π)

is included to account for this failure. If a transition does occur,
a weight 1/π is applied and the bath momenta are adjusted by
the momentum-jump operator as discussed above.

If the transition is from an excited state to a lower state the
excess energy can always be deposited into the bath. However,
if the transition is from a state of lower energy to higher energy,
the energy needed for this transition will have to be removed
from the bath. As in fewest-switches surface hopping, it may
happen that bath degrees of freedom do not have sufficient
energy for this process to take place. Then the argument of
the square root in the expression for 	Pαβ will be negative
and the expression cannot be used. In such a circumstance
the transition is not allowed and the evolution continues on the
current adiabatic surface.

These features are a consequence of the making the
momentum-jump approximation. In the exact QCL dynamics,
as noted above, there are continuous bath momentum changes
along the trajectory from the J terms. The energy of
the ensemble is conserved but there is no requirement that
individual trajectories in a trajectory picture conserve energy.

Figure 3 is an illustration of two of the possible trajectories
that contribute to the surface-hopping solution of the QCLE
for the diagonal (αα) density matrix element at phase point X

at time t . Following the upper trajectory backward in time,
evolution on the α adiabatic surface proceeds until, at some
time, a nonadiabatic transition to an off-diagonal state αβ

occurs. Quantum coherence is created by this nonadiabatic
event; the system evolves on the mean of the α and β adiabatic
surfaces and carries a phase factor Wαβ . Proceeding along
the trajectory, another nonadiabatic transition occurs and this
transition takes the system back to the α population state and,

Figure 3. Schematic representation of stochastic trajectories that
contribute to the population in state α at time t . The solid lines
indicate propagation on single adiabatic surfaces while the dashed
lines indicate propagation on the mean of two adiabatic surfaces
accompanied by a phase factor. The vertical dotted lines indicate
nonadiabatic surface-hopping transitions accompanied by
momentum shifts.

after evolution on this surface, it ends at phase point X′. In
the second transition the quantum coherence that was created
in the first transition is destroyed. The other sample trajectory
in the figure shows that sequences of nonadiabatic transitions
can lead to more complex evolution in ‘off-diagonal’ space
before the coherence is destroyed. The ensemble of all such
trajectories will contribute to the solution of the density matrix.
Thus, we see that decoherence is automatically taken into
account in this description and will play an essential role in
determining the dynamics.

These largely qualitative considerations form the basis
for the sequential-short-time-propagation [74, 75] and more
the refined Trotter-based surface-hopping [76] algorithms.
Both of these algorithms make use of the momentum-
jump approximation and are surface-hopping schemes. In
addition both involve ‘hops’ between adiabatic surfaces, or
the means of adiabatic surfaces, based on weight functions
that are designed to simulate the evolution prescribed by the
QCLE. The contributions that yield the solution must then
include reweighting to compensate for the chosen transition
probabilities. While the dynamics is easily simulated for
relatively short times, the trajectory contributions contain both
weight factors and the signs of the P · dαβ/M terms that
enter the equations. As a result of the sign oscillations and
the accumulation of Monte Carlo weights, instabilities in
some trajectories can develop for long times. The number
of trajectories needed to accurately simulate the dynamics will
then grow. Filtering out the unstable trajectories can ameliorate
this problem but at the expense of introducing systematic
errors. Several filtering methods have been suggested and
employed in applications [76–78]. Nevertheless, simulations
on variety of systems (some described in section 7) have shown
that these surface-hopping schemes for the solution of the
QCLE often provide very accurate solutions. In addition,
several other methods have been constructed to simulate the
evolution of the QCLE [32, 33, 79–81] and the development
of effective simulation methods is an active area of
research.

10



J. Phys.: Condens. Matter 27 (2015) 073201 Topical Review

6. Mean-field methods and approximate solutions of
the QCLE

6.1. Mean-field theory neglects correlations in the QCLE

Mean-field methods are frequently used to study the
nonadiabatic dynamics of complex systems since they provide
a simple trajectory description of the dynamics that is easy
to simulate. The standard mean-field description of quantum-
classical systems follows from the QCLE when correlations
are neglected [27, 82]. In general, the density operator may
be written as a product of subsystem and bath density functions
plus a term that accounts for correlations: ρ̂W (X, t) =
ρ̂s(t)ρb(X, t) + ρ̂cor(X, t). Here ρb(X, t) = Trsρ̂W (X, t) and
ρ̂s(t) = ∫

dX ρ̂W(X, t). Substituting this form for ρ̂W (X, t)

into the QCLE and dropping all terms involving ρ̂cor(X, t)

leads to two coupled equations. The equation for the bath
density is

∂

∂t
ρb(X, t) = {Heff , ρb(X, t)}, (63)

with an effective Hamiltonian given by Heff = Hb +
Trs(V̂cρ̂s(t)), while the subsystem density matrix satisfies

∂ρ̂s(t)

∂t
= − i

h̄
[ĥs +

∫
dX V̂cρb(X, t), ρ̂s(t)], (64)

Equation (63) admits a solution of the form ρb(X, t) = δ(X −
X(t)) where

Ṙ(t) = P(t)

M
, Ṗ (t) = −∂Veff(R(t))

∂R(t)
, (65)

with Veff(R(t)) = Vb(R(t)) + Trs(V̂c(R(t))ρ̂s(t)). The
equation for the subsystem density may then be written as,

∂

∂t
ρ̂s(t) = − i

h̄
[ĥs + V̂c(R(t)), ρ̂s(t)]. (66)

These equations are the Ehrenfest mean-field equations of
motion [83–85].

When expressed in a basis of the instantaneous adiabatic
states these equations take the form,

Ṙ(t) = P(t)

M
, Ṗ (t) = �(Fαα′(R(t))ρα′α

s ), (67)

where the force matrix elements are

Fαα′(R) = Fα(R)δαα′ + 	Eαα′(R)dαα′(R). (68)

The subsystem density matrix elements satisfy

∂

∂t
ραα′

s (t) = −iωαα′(R(t))ραα′
s (t) (69)

− P(t)

M
· dαβ(R(t))ρβα′

s (t) − P(t)

M
· d∗

α′β(R(t))ραβ
s (t),

which has the same the same form as equation (33) in
the discussion of surface hopping; however, now the bath
phase space coordinates evolve according to the mean-field
equations (67).

Both the utility and difficulties of mean-field dynamics
have been discussed often in the literature [9, 12, 86, 87].

In particular, since the classical degrees of freedom evolve
subject to a potential that is the average of all subsystem
quantum states, the mean-field dynamics will not be able to
capture aspects of the dynamics where the potential energy
surfaces differ markedly and trajectories populate the levels
with very different probabilities. Because of these problems,
several methods have been proposed to modify mean-field
dynamics to correct these difficulties. These methods include
combinations of mean-field and surface-hopping dynamics
[66, 86–90], which are designed to allow the system to evolve
to a single quantum state in regions where the coupling
vanishes.

In the remainder of this section we consider approximate
solutions to the QCLE which have a mean-field-like character
but are not equivalent to the simple mean-field theory outlined
above. The results we present below are derived by employing
a mapping of the discrete subsystem states onto single-
occupancy oscillator states, as in earlier semi-classical path
integral methods [16, 91–97]. The mapping representation
yields a continuous phase-space-like representation of the
quantum degrees of freedom. We first show how the QCLE
can be written in this mapping basis and then describe how
approximate solutions can be constructed.

6.2. QCLE in the mapping basis

The representation of the QCLE (12) in the mapping basis can
be carried out by mapping either the adiabatic or subsystem
quantum states onto oscillator states. We first consider a
mapping representation of subsystem quantum states, while
results for adiabatic states will be presented later in this section.

The subsystem basis was defined earlier by the solutions
of the eigenvalue problem, ĥs|λ〉 = ελ|λ〉, where ĥs is the
quantum subsystem Hamiltonian defined below equation (3).
We may then take matrix elements of equation (12),

∂

∂t
〈λ|ρ̂W (X, t)|λ′〉 = −i〈λ|L̂ρ̂W (t)|λ′〉, (70)

to evaluate the matrix elements of the QCL operator, Lλλ′,νν ′ ,
in this basis. We obtain [28],

iLλλ′,νν ′ = i(ωλλ′ + Lb)δλνδλ′ν ′ − i

h̄
(δλνV

ν ′λ′
c − V λν

c δλ′ν ′)

− 1

2

(
δλ′ν ′

∂V λν
c

∂R
+ δλν

∂V ν ′λ′
c

∂R

)
· ∂

∂P
, (71)

where ωλλ′ = (ελ − ελ′)/h̄, V λλ′
c = 〈λ|V̂c|λ′〉, iLb = P

M
· ∂

∂R
+

Fb(R) · ∂
∂P

and Fb(R) = −∂Vb/∂R is the force exerted by the
bath.

The mapping basis provides another way to write the
subsystem (or adiabatic) representation of QCLE. In the
mapping representation [91, 93, 98–100] the eigenfunctions of
ann-state quantum subsystem are replaced with eigenfunctions
of n fictitious harmonic oscillators with occupation numbers
limited to 0 or 1: |λ〉 → |mλ〉 = |01, · · · , 1λ, · · · 0n〉. A matrix
element of the density ρ̂W (X) in the subsystem basis, ρλλ′

W (X),
can be written in mapping form as

ρλλ′
W (X) = 〈λ|ρ̂W (X)|λ′〉 = 〈mλ|ρ̂m(X)|mλ′ 〉, (72)

11
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where
ρ̂m(X) = ρλλ′

W (X)â
†
λ âλ′ , (73)

with an analogous expression for an operator. The mapping
annihilation and creation operators are given by

âλ =
√

1

2h̄
(q̂λ + ip̂λ), â

†
λ =

√
1

2h̄
(q̂λ − ip̂λ). (74)

They satisfy the commutation relation [âλ, â
†
λ′ ] = δλ,λ′ and act

on the single-excitation mapping states to give â
†
λ |0〉 = |mλ〉

and âλ |mλ〉 = |0〉, where |0〉 = |01 . . . 0n〉 is the ground state
of the mapping basis.

Because of the equivalence of matrix elements in the
subsystem and mapping bases, we can write equation (70) as

∂

∂t
〈mλ|ρ̂m(X, t)|mλ′ 〉 = −i〈mλ|L̂mρ̂m(t)|mλ′ 〉. (75)

Here L̂m has the same form as L̂ in equation (12) but
with the Hamiltonian replaced by the corresponding mapping
Hamiltonian. Provided we restrict our calculations to mapping
function matrix elements, we have the following alternative
formal expression for the QCLE:

∂

∂t
ρ̂m(X, t) = −iL̂mρ̂m(t). (76)

By taking a Wigner transform of this equation in the
mapping space, we can cast the equation of motion into a form
where the discrete quantum degrees of freedom are described
by continuous position and momentum variables [101]. This
can be done by making use of an n-dimensional coordinate
space representation of the mapping basis. More specifically,
we take matrix elements of the equation with respect to
{|r−z/2〉, |r+z/2〉} and then take the Wigner transform defined
as

ρm(X ) = 1

(2πh̄)n

∫
dz eip·z/h̄

〈
r − z

2
|ρ̂m(X)|r +

z

2

〉
, (77)

where X = (x, X) with x = (r, p). To evaluate the terms
in the Wigner transform of L̂mρ̂m(t) we again make use of
the rule for the Wigner transform of a product of operators in
equation (8) to obtain,

∂

∂t
ρm(X , t) = −2

h̄
Hm sin

(
h̄�m

2

)
ρm(t) (78)

+
∂Hm

∂R
cos

(
h̄�m

2

)
· ∂ρm(t)

∂P
− P

M
· ∂ρm(t)

∂R
,

where the negative of the Poisson bracket operator on the
mapping phase space coordinates is defined as �m = ←−∇p ·−→∇r − ←−∇r · −→∇p. The Hamiltonian in the mapping basis is

Hm(X ) = P 2

2M
+ V0(R) +

h̄λλ′

2h̄
(rλrλ′ + pλpλ′), (79)

where hλλ′(R) = 〈λ|ĥ(R)|λ′〉, h̄λλ′(R) = hλλ′(R) −
(Tr ĥ)δλλ′/n and V0(R) = Vb(R) + Tr ĥ/n. Evaluating the
exponential Poisson bracket operators and making use of the

fact that the mapping Hamiltonian is a quadratic function of
the mapping coordinates, we have,

∂

∂t
ρm(X , t) = {Hm, ρm(t)}X (80)

− h̄

8

∂hλλ′

∂R

(
∂

∂rλ′

∂

∂rλ

+
∂

∂pλ′

∂

∂pλ

)
· ∂

∂P
ρm(t),

where {Am, Bm(t)}X is a Poisson bracket in the full mapping-
bath phase space of the system. We may write equation (80)
more compactly as

∂

∂t
ρm(X , t) = −iLmρm(t) = (−iLPB

m − iL′
m)ρm(t), (81)

where the QCL operator is given by the sum of two
contributions: a Poisson-bracket term, iLPB

m , which gives rise
to Newtonian evolution in the X phase space and a second term,
iL′

m, which involves derivatives with respect to both mapping
and bath variables. This latter operator accounts for a portion
of the influence of the quantum subsystem on the bath [102]
and the dynamics that results when this term is included can
be described by an ensemble of ‘entangled’ trajectories [103],
analogous to but different from the entangled trajectories that
arise in the solutions of the Wigner transformed quantum
Liouville equation constructed by Donoso, Zheng and Martens
[104, 105].

6.3. Poisson-bracket mapping equation and Its extensions

A simple approximation to equation (81) is obtained by
neglecting the difficult iL′

m operator to obtain the Poisson-
bracket mapping equation,

∂

∂t
ρm(X , t) = −iLPB

m ρm(t), (82)

where the explicit form of iLPB
m is

iLPB
m = −{Hm, }X =

(∂Hm

∂P
· ∂

∂R
− ∂Hm

∂R
· ∂

∂P

)
, (83)

It is possible to solve this equation in characteristics leading to
a solution in terms of an ensemble of independent trajectories
that satisfy the Hamiltonian set of equations,

dχµ

dt
= ∂Hm

∂πµ

,
dπµ

dt
= −∂Hm

∂χµ

, (84)

where χ = (r, R) and π = (p, P ). These equations
have appeared earlier in mapping formulations based on
semi-classical path integral formulations of the dynamics
[94, 100, 106].

The solutions of Poisson-bracket mapping equation often
provide a quantitatively accurate description of the dynamics
[100–103], but for some systems this approximation may not
provide accurate results and even artifacts in the dynamics may
appear [103, 107]. Common with other approaches that use the
mapping representation, these difficulties can be traced to the
fact that the dynamics may take the system out of the physical
space [96, 100, 108].

The dynamics will be confined to the physical space
provided that mapping operators act on mapping functions

12
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|mλ〉. In mapping space we have the completeness relations
P̂ = ∑n

λ=1 |mλ〉〈mλ| = 1, where P̂ is the projector onto
the complete set of mapping states. We may then consider
operators projected onto the physical space to ensure that they
act there. The density operator projected onto the physical
space is given by

ρ̂P
m(X) = |mλ〉ρλλ′

W (X)〈mλ′ |. (85)

Taking the Wigner transform of this operator, we obtain

ρP
m(X ) =

∫
dz eip·z/h̄

〈
r − z

2
|ρ̂P

m(X)|r +
z

2

〉
(86)

=
∫

dz eip·z/h̄
〈
r − z

2
|mλ

〉〈
mλ|ρ̂m(X)|mλ′

〉〈
mλ′ |r +

z

2

〉

= (2πh̄)ngλ′λ(x)

∫
dx ′ gλλ′(x ′)ρm(x ′, X) ≡ Pρm(X ).

The quantity gλλ′(x) is defined by

gλλ′(x) = 1

(2πh̄)n

∫
dz eip·z/h̄

〈
r − z

2
|mλ′

〉〈
mλ|r +

z

2

〉
, (87)

and its explicit form is

gλλ′(x) = φ(x) (88)

×2

h̄

(
rλrλ′ + pλpλ′ − i(rλpλ′ − rλ′pλ) − h̄

2
δλλ′

)
,

where φ(x) = (πh̄)−n exp (−x2/h̄) is a normalized Gaussian
function. Here x2 = rλrλ + pλpλ in the Einstein summation
convention.

One may show that the projected density satisfies the
QCLE in the mapping basis [103],

∂

∂t
ρP

m(X , t) = −iLmρP
m(t), (89)

and that the QCL operator, iLm, commutes with the projection
operator: ∫

dX Bm(X )iLmPρm(X ) (90)

=
∫

dX Bm(X )PiLmρm(X ).

The same is not true for the Poisson-bracket mapping
approximation; if iLm is replaced by iLPB

m in the above equation
the identity is no longer satisfied [103]. Therefore, unlike
the evolution under the full QCL operator, the evolution
prescribed by the Poisson-bracket mapping operator may take
the dynamics out of the physical space. As a consequence,
there are instances where this approximation fails and it is
desirable to construct schemes for solving the full mapping
form of the QCLE (80).

6.3.1. Extensions of the Poisson-bracket mapping solution.
In order to break the mean-field character of the Poisson-
bracket mapping solution and ensure that the solutions remain
in the physical space, the operator iL′

m that accounts for
additional correlations between the quantum subsystem and
the bath must not be neglected. Several approaches have

been proposed to do this. In circumstances when the Poisson-
bracket mapping solution fails, it is still often very accurate
at short times. This feature has been exploited by Kelly and
Markland [109] who combined the Poisson-bracket mapping
solution with an exact generalized master equation derived
using projection operator methods. Using this approach,
accurate solutions could be obtained for long times. The utility
of the method was verified through calculations on a model for
condensed phase charge transfer where both fewest-switches
surface hopping and mean-field approaches failed.

Rather than dropping the iL′
m operator, Kim and Rhee

[110] constructed an approximation to this term by making
use of its simpler form in the subsystem basis. Their
approximation,

iL′
m ≈ n

2(n + 4)h̄

∂hλλ′

∂R

(
rλrλ′ + pλpλ′ − h̄

2
δλλ′

)
, (91)

leads to a simple set of equations for the dynamics. The
results of simulations on symmetric and asymmetric spin-
boson models for a variety of parameters are in good agreement
with exact results, even for long times. Such approximations
to and use of the mapping form of the QCLE could prove to
be very useful in applications to complex systems.

6.4. Forward–backward trajectory solution

The formal solution of the quantum Liouville equation (1) can
be written as

ρ̂(t) = e−iĤ t/h̄ρ̂(0)eiĤ t/h̄, (92)

which is the starting point for the derivation of a number
of forward–backward evolution methods for the solution of
quantum and mixed quantum-classical dynamics [19, 95, 96,
106, 111–117]

A more accurate approximate solution to the QCLE
may be constructed by starting with the formal solution of
equation (14):

ρ̂W (X, t) = S
(

e−i
→
H�t/h̄ρ̂W (X)ei

←
H�t/h̄

)
(93)

which is the analog of equation (92). Here the S operator
specifies the order in which the forward and backward
evolution operators act on ρ̂W (X) [37, 118, 119]. We may
write the formal solution of the QCLE for an operator (18)
in a similar form,

B̂W (X, t) = S
(

ei
→
H�t/h̄B̂W (X)e−i

←
H�t/h̄

)
, (94)

and, since this expression will be used in the applications
discussed in section 7, we shall construct the approximate
solution for the time evolution of this operator. We
shall see that the approximate solution to the QCLE given
below [118, 119], which utilizes this starting point, bears a
close connection to linearized forward–backward propagation
schemes.

Consider the matrix elements of B̂W (X, t) in the
subsystem basis,

Bλλ′
W (X, t) = 〈λ|S

(
ei

→
H�t/h̄B̂W (X)e−i

←
H�t/h̄

)
|λ′〉. (95)
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We may now follow the procedure given in the previous section
and convert to a representation in mapping states:

Bλλ′
W (X, t) = 〈mλ|S

(
ei

→
Hm

�t/h̄B̂m(X)e−i
←

Hm
�t/h̄

)
|mλ′ 〉, (96)

where
→

Hm
� = Ĥm(1 + h̄�/2i), with an analogous definition

for
←

Hm
�. The formal solution of QCLE for an operator in the

mapping basis then reads

B̂m(X, t) = S
(

ei
→

Hm
�t/h̄B̂m(X)e−i

←
Hm

�t/h̄

)
. (97)

Instead of going directly to a coordinate representation
of the mapping equation as for the Poisson-bracket mapping
equation, we introduce a coherent state basis |z〉 in the mapping
space,

âλ |z〉 = zλ |z〉 , 〈z| â†
λ = z∗

λ 〈z| , (98)

where |z〉 = |z1, . . . , zn〉 and the eigenvalues are zλ = (qλ +
ipλ)/

√
h̄. The mean coordinates and momenta of the harmonic

oscillators entering the coherent state |z〉 are q = (q1, . . . , qn)

and p = (p1, . . . , pn), respectively. The coherent states form
an overcomplete set and the inner product of two states is

〈z| z′〉 = e−(|z−z′|2)−i(z·z′∗−z∗·z′). (99)

The resolution of identity in the coherent state basis is given by

1 =
∫

d2z

πn
|z〉 〈z| , (100)

where d2z = d(�(z))d(�(z)) = dqdp/(2h̄)n.
The forward and backward evolution operators in

equation (97) may now be written as a concatenation of M

short-time evolution segments with 	ti = τ and Mτ = t . In
each short-time interval 	ti , we introduce two sets of coherent
states, |zi〉 and

∣∣z′
i

〉
using the resolution of the identity (100)

in order to compute the forward and backward time evolution
operators, respectively. Evaluating the resulting expression
(details can be found in [118] and [119]), the matrix elements
of equation (97) can be written as

Bλλ′
W (X, t) =

∫ M∏
i=1

d2zi

πn

d2z′
i

πn
〈mλ |z1〉

〈
z′

1

∣∣ mλ′ 〉

eiLe(X,z1,z
′
1)	t1

(
〈z1(	t1)|z2〉

eiLe(X,z2,z
′
2)	t2

(
〈z2(	t2|z3〉 . . . |zM〉

eiLe(X,zM,z′
M)	tM

(
〈zM(	tM |mµ〉

B
µµ′
W (X)〈mµ′ |z′

M(	tM)〉
)

(101)〈
z′
M

∣∣ . . . ∣∣z′
2(	t2)

〉 )〈z′
2|z′

1(	t1)〉
)
.

The evolution operators in this equation should be evaluated
sequentially, from smallest to largest times, by taking
the bath phase space propagators in expressions such as
eiLe(X,zi ,z

′
i )	ti (· · ·) to act on all quantities in the parentheses,

including other propagators at later times. The bath phase
space propagator is given by

iLe(X, z, z′) = P

M
· ∂

∂R
− ∂

∂R
Ve(X, z, z′) · ∂

∂P
, (102)

where

Ve(X, z, z′) = Vfb(R) +
1

2

(
hλλ′

z∗
λzλ′ + hλλ′

z′∗
λ z′

λ′

)
,

≡ Vfb(R) +
1

2

(
hcl(R, z) + hcl(R, z′)

)
,

(103)

with Vfb(R) = Vb(R) − Tr ĥ. In obtaining the expression for
Bλλ′

W (X, t) in equation (101), we used the exact form for the
coherent state evolution under a quadratic Hamiltonian ĥm(R):

e−iĥm
	ti
h̄ |z〉 = |z(	ti)〉, where the trajectory evolution of zλ is

governed by
dzλ

dt
= − i

h̄

∂hcl(R, z)

∂z∗
λ

, (104)

with hcl(R, z) = hλλ′
z∗
λzλ′ . The dynamics of the quantum

subsystem comprises discontinuous segments of coherent state
trajectories, since the coherent state variables zi and zi+1 are
independent of each other. While this feature complicates the
simulation of the dynamics, in the limit of sufficiently small
time steps this formulation will yield an exact solution of the
QCLE.

However, to obtain a simple tractable solution involving a
continuous trajectory evolution, we make the approximation
that the inner products, 〈zi(ti) |zi+1〉, are orthogonal:
〈zi(ti) |zi+1〉 ≈ πnδ(zi+1 − zi(ti)).

With this approximation, equation (101) reduces to the
compact expression,

Bλλ′
W (X, t) =

∫
dxdx ′φ(x)φ(x ′)

1

h̄
(qλ + ipλ)(q

′
λ′ − ip′

λ′)

×B
µµ′
W (X(t))

1

h̄
(qµ(t) − ipµ(t))(q ′

µ′(t) + ip′
µ′(t)), (105)

where x = (q, p) gives the real and imaginary parts of z,
dx = dqdp and φ(x) = (h̄)−n e− ∑

ν (q
2
ν +p2

ν )/h̄ is the normalized
Gaussian distribution function. In the extended phase space of
(X, x, x ′) = (χ, π), with χ = (R, q, q ′) and π = (P, p, p′),
the trajectories follow Hamiltonian dynamics,

dχµ

dt
= ∂He(χ, π)

∂πµ

,
dπµ

dt
= −∂He(χ, π)

∂χµ

, (106)

where

He(χ, π) = P 2/2M + Vfb(R) (107)

+
1

2h̄
hλλ′(R)(qλqλ′ + pλpλ′ + q ′

λq
′
λ′ + p′

λp
′
λ′).

This is the forward–backward trajectory solution. It is
very simple to simulate since it only involves propagating
Newtonian trajectories in an extended phase space whose
dimension is four times the number of quantum states plus
the number of bath degrees of freedom. A schematic
representation of the nature of the trajectories is given in
figure 4. The forward and backward quantum mapping
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Figure 4. Schematic representation of a trajectory contribution to
the forward–backward trajectory solution. The evolution of the bath
phase space variables (R, P ) (central dark trajectory) couples to the
evolution of the (q, p) and (q ′, p′) coherent state phase space
variables.

coherent state phase space variables couple to the evolution
of the bath variables but are not directly coupled to each
other. Efficient schemes have been constructed to evolve the
dynamics [103]. As we shall see below, the forward–backward
trajectory solution often yields an excellent approximation to
the dynamics but does fail in some circumstances. The set of
evolution equations (106) for the forward–backward trajectory
solution are similar to those that arise in the partial linearized
density matrix method [116]; in fact, they are identical if the
system Hamiltonian is traceless. To understand this difference,
note that the quantity Vfb(R) = Vb(R) − Tr ĥ appears in
the evolution equations for the forward–backward trajectory
solution. The trace term arose from the need to use an anti-
normal order for the product of the annihilation and creation
operators when evaluating the short-time propagator. If this
trace term is not present, the solution will not satisfy the
differential form of the QCLE and the derivation will depend
on how one chooses to write the Hamiltonian operator (for
example, as a sum of trace and traceless parts).

6.4.1. Adiabatic basis. In some instances it is more
convenient to carry out calculations in the adiabatic basis, since
the adiabatic states can be obtained from quantum electronic
structure calculations. The forward–backward trajectory
solution can be formulated in this basis as follows [120].
We may define adiabatic versions of the forward and

backward mixed quantum-classical Hamiltonians,
→

Ha
� =

|α; R〉
→
Ha

αα′
〈
α′; R

∣∣, with

→
Ha

αα′ ≡
(

P 2

2M
+ V0(R) + Eα(R)

)
δαα′ (108)

+
h̄

2i

[
P

M
·

→
∂

∂R
δαα′ + 2

P

M
· dαα′ + Fαα′

W ·
→
∂

∂P

]
,

and
←

Ha
� = |α; R〉

←
Ha

αα′
〈
α′; R

∣∣, with a definition for
←
Ha

αα′

similar to that given above for the right-acting operator. Given
these definitions, the adiabatic matrix elements of the operator

equation,

∂

∂t
B̂W (X, t) = i

h̄

( →
Ha

� B̂W (X, t) − B̂W (X, t)
←

Ha
�

)
, (109)

just reproduce the QCLE (41) in the adiabatic basis. Following
a strategy like that for calculations in the subsystem basis, the
mapping transformation,

|α; R〉
→
Ha

αα
′ 〈α; R| →

→
Ha

m ≡
→
Ha

αα
′ b̂†

α b̂α′ , (110)

|α; R〉 Bαα′
W

〈
α′; R

∣∣ → B̂m(X) ≡ Bαα′
W b̂†

α b̂α′ ,

is introduced. The annihilation and creation operators, b̂α

and b̂
†
α , respectively, now act on the single excitation states

corresponding to the occupancy of the adiabatic states: |0〉 =
b̂α |mα〉 and |mα〉 = b̂

†
α |0〉. The mapping matrix elements

of the adiabatic mapping operators are identical to the matrix
elements of operators in the adiabatic basis; for example,

〈α; R|
→

Ha
�

∣∣α′; R
〉 =

→
Ha

αα′ = 〈mα|
→
Ha

m |mα′ 〉 . (111)

To complete the calculation, coherent states |y〉 are
introduced such that b̂α |y〉 = yα |y〉, where yα = 1√

h̄
(q̃α +ip̃α)

and x̃ = (q̃, p̃) and, following the steps used in the subsystem
basis calculation, the expression for Bαα′

W (X, t) has a form
identical to that in equation (105). In this adiabatic formulation
the evolution equations for the bath variables are
dR

dt
= P

M
,

dP

dt
= −∂V0

∂R
+ Fαα′

1

2

(
yαy∗

α′ + y ′
αy ′∗

α′
)
, (112)

where the force matrix elements are defined by equation (68).
The structure of these equations is similar to that of the bath
mean-field equations (67) but the bath momenta evolve under a
mean force that depends on the forward and backward coherent
states |y〉 and

∣∣y ′〉.
The quantum coherent state variables evolve by

dyα

dt
= − i

Eα

h̄
yα −

(
dαα′(R) · P

M

)
yα′ ,

dy ′
α

dt
= − i

Eα

h̄
y ′

α −
(

dαα′(R) · P

M

)
y ′

α′ , (113)

or, written as equations for yαy∗
α′ , by

dyαy∗
α′

dt
= −iωαα′yαy∗

α′ (114)

− P

M
· dαβ(R)yβy∗

α′ − P

M
· d∗

α′β(R)yαy∗
β,

with an analogous set of equations for the backward
propagating subsystem variables. Each of these sets of
equations has a form identical to the mean-field equations
of motion for the subsystem density matric elements in
equation (69). Thus, although the forward–backward
trajectory solution provides a more sophisticated treatment of
the dynamics, it nevertheless has a mean-field character. This
mean-field nature stems from the orthogonality approximation
made on the coherent state overlap matrices. This
approximation leads to a simple trajectory description (in the
subsystem basis) which necessarily endows it with a mean-field
character. In order to break this mean-field structure one must
relax the orthogonality approximation and we next describe
how this may be done.
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6.5. Jump forward–backward solution

Returning to the subsystem mapping representation, equa-
tion (101) has the general structure,

Bλλ′
W (X, t) =

∑
µµ′

∫ ∏
i

d2zi

πn

d2z′
i

πn
· · · (115)

× 〈zi(ti) |zi+1〉 · · · 〈z′
i+1

∣∣ z′
i (t1)〉 · · · .

If the orthogonality approximation were not invoked, one
would have to evaluate the coherent state integrals at each
intermediate time step and compute the integrals by Monte
Carlo or some other sampling method. This would give rise to
an exponentially large set of trajectories, making the algorithm
impracticable. However, the orthogonality approximation
need not be relaxed at every time step. For example, given a
total of M time steps in the expression for the matrix element,
we may select L = M/J time steps that are J steps apart for
possible relaxation of the orthogonality approximation. The
steps at which this occurs may be chosen randomly by using
a given binary sequence {κ1, . . . , κL}, to determine when to
fully evaluate the coherent state integrals. If at the vJ -th
time step κv = 1, the full integral is performed (by some
sampling method); otherwise, if κv = 0 the orthogonality
approximation is applied. The matrix element Bλλ′

W (X, t) is
given by an average over all possible binary sequences as,

Bλλ′
W (X, t) =

∑
κ1,...κL

P{κ}Bλλ′
κ1,...,κL

(X, t), (116)

where P{κ} denotes the discrete probability distribution of
a given binary sequence of {κ1, . . . , κL}. This is the
jump forward–backward trajectory solution. The continuous
forward–backward trajectories experience discontinuous
jumps in the forward and backward subsystem phase variable
and between such jumps the evolution is governed by
equation (106). This method is closely related to the iterative
partial linearized density matrix method [117]. Both
methods make use of stochastic sampling at intermediate
times. The method is also similar in spirit to schemes that
combine surface-hopping and mean-field methods. Finally
we note that the forward–backward trajectory solution in the
adiabatic basis can be reformulated to yield other variants of
the jump forward–backward solution that could prove useful
in applications [120], but such solutions have not been fully
explored.

7. Simulations of the dynamics

The validity and accuracy of quantum dynamical methods are
often tested on standard simple models that are designed to
include features present in more complex realistic systems. In
this section we shall present results for several such models
in order to test how the solutions of the QCLE compare to
full quantum dynamics and, as well, to determine the utility
and accuracy of some of the algorithms for the simulation of
this equation. Rather than presenting an exhaustive review
of work along these lines, the focus of this section will be

restricted to results obtained using the Trotter-based surface-
hopping method, the forward–backward trajectory solution
and its jump extension. As discussed in previous sections,
the Trotter-based scheme makes use of the momentum-jump
approximation to arrive at a surface-hopping picture, while the
forward–backward trajectory solution imposes orthogonality
of coherent states to obtain a simple trajectory picture. The
jump forward–backward solution can yield a numerically exact
solution of the QCLE, provided a sufficient number of ‘jumps’
are taken, but this quickly become computationally infeasible
for some systems for long times. Calculations on a variety of
models using quantum-classical Liouville dynamics have been
carried out using the Poisson-bracket mapping approximation
[76, 101–103] as well as number of other computational
schemes [32, 33, 79–81] and this literature can be consulted for
details. The general conclusion from these studies is that the
QCLE solutions agree very well with exact quantum results
for a wide variety of systems; however, approximations that
are made in some simulation algorithms may fail in some
circumstances. Special emphasis will be given here to models
that challenge the simulation algorithms.

7.1. Spin-boson and FMO models

We begin with a discussion of two models for which the QCLE
provides an exact description of full quantum dynamics: the
spin-boson and Fenna–Matthews–Olson models. Both models
describe systems where ann-level quantum system is bilinearly
coupled to a harmonic bath.

Spin-boson models have been studied often since they
provide a simple description for a wide range of physical
phenomena and are some of the first systems used to gauge
the efficacy of quantum dynamics algorithms [4]. Although
all three QCLE simulation methods described earlier have
been used to simulate this model [76, 101, 121, 122], here we
give the results using the forward–backward trajectory solution
and its extension including jumps. The partially Wigner
transformed Hamiltonian for the spin-boson model is,

ĤW (X) =
Nb∑
i=1

(
P 2

i

2Mi

+
1

2
Miω

2
i R

2
i − ciRiσ̂z

)

+ εσ̂z − �σ̂x, (117)

where Mi and ωi are the mass and frequency of bath oscillator i,
respectively, ci controls the bilinear coupling strength between
the oscillator i and the two-level quantum subsystem, �

is the coupling strength between the two quantum levels,
ε is the bias and σ̂z(x) is a Pauli matrix. The bilinear
coupling is characterized an ohmic spectral density, J (ω) =
π

∑
i c

2
i /(2Miωi)δ(ω − ωi), where ci = (ξ	Mj)

1/2ωi , ωi =
−ωc ln(1 − i	ω/ωc) and 	ω = ωc(1 − e−ωmax/ωc)/NB with
ωc the cut-off frequency, NB the number of bath oscillators
and ξ the Kondo parameter. The two-level system is initially
in the state |1〉 and the bath is initially in thermal equilibrium
characterized by a thermal energy kBT = 1/β.

Results for the symmetric spin-boson system with
ε = 0 using the forward–backward trajectory solution are in
quantitative agreement with exact quantum calculations [123]
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Figure 5. Comparison of exact quantum [125], forward–backward
trajectory solution (FBTS) and jump forward–backward trajectory
solution (JFBTS) results [119] for the asymmetric spin-boson
model with parameters, ε = � = 0.4, ξ = 0.13, β = 12.5 and
ωc = 1.0. Reproduced with permission from [119]. Copyright
2013, AIP Publishing LLC.

for a wide range of parameter values [119] and will not be
shown here. Instead, we prefer to focus on the asymmetric
case (ε �= 0) where the forward–backward trajectory solution
is not in quantitative agreement with the exact quantum results.
The introduction of a bias leads to significant differences
between the symmetric and asymmetric spin-boson models
[124]. Figure 5 compares the exact results for < σz(t) >

for the asymmetric spin-boson model with simulations using
the forward–backward trajectory solution and its jump analog.
The forward–backward trajectory solution deviates from the
exact results but this discrepancy can be corrected when jumps
are included (results with 26 jumps are shown). The number
of jumps needed to reproduce the exact result depends on
factors such as the size of the time-step and the probability
distribution chosen for the jumps [119]. While very few
trajectories are needed to obtain converged results for the
forward–backward trajectory solution, implementation of the
jump forward–backward solution requires substantially more
trajectories, depending on the number of jumps needed for a
specific application.

Photosynthesis involves excitation energy transfer from
antenna proteins to the reaction center. [126, 127] The
Fenna–Matthews–Olson (FMO) protein plays an important
role in the excitation energy transfer process in green
sulfur bacteria [126]. The model Hamiltonian for this
system comprises a seven-level quantum subsystem with each
quantum level bilinearly coupled through a Debye spectral
density to its own set of bath harmonic oscillators [128].
The quantum subsystem is initially in quantum state |1〉
and all bath oscillators are initially in thermal equilibrium.
Numerically accurate quantum results are available [128, 129]
and simulations using the Poisson-bracket mapping equation
[130] and partial linearized density matrix [116] algorithms
have been carried out. (Also, the Poisson-bracket mapping
equation was used to study the dynamics of a much more
realistic model for FMO [131]). Since this model corresponds
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Figure 6. Populations in states |1〉, |2〉 and |3〉 of
bacteriochlorophyll as function of time at a temperature of 77 K.
The solid lines are the forward–backward trajectory solution
results [119], while the data points are extracted from numerically
exact quantum results [129]. Reproduced with permission
from [119]. Copyright 2013, AIP Publishing LLC.

to a quantum subsystem bilinearly coupled to a harmonic bath,
the QCLE is again exact.

The populations in quantum states |1〉, |2〉 and |3〉,
computed using the forward–backward trajectory solution,
are plotted versus time in figure 6. Numerically exact
full quantum results using the rescaled Hierarchical Coupled
Reduced Master Equation algorithm [129] are also shown
for comparison. One can see that the two sets of results are
indistinguishable on the scale of the figure. If the calculations
are extended to very long times the population distributions
obtained from the forward–backward trajectory solution
closely approximate the thermal equilibrium distribution. This
algorithm is able to accurately simulate dynamics of this multi-
level system for long times in a computationally efficient
manner since it only involves following Newtonian trajectories
in an extended phase space.

7.2. Avoided crossing and conical intersection models

Nonadiabatic dynamical events are especially important in
systems where the adiabatic states are nearly degenerate
at avoided crossings or at conical intersections where the
adiabatic states cross. Plots of diabatic and adiabatic states
for a two-level system as a function of a nuclear coordinate
R were shown in figure 2 when surface-hopping dynamics
was discussed. In the vicinity of an avoided crossing the
nonadiabatic coupling matrix elements, dαα′(R), are large and,
if a surface-hopping method is used to evolve the system,
transitions between the two adiabatic states will occur with
high probability.

A set of such avoided crossing models was constructed by
Tully [59] and these have served as test cases for nonadiabatic
methods. Figure 2 is actually a sketch of the diabatic and
adiabatic curves for Tully’s single avoided crossing model.
The Hamiltonian matrix in the diabatic representation is
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Figure 7. Plot of the momentum distribution p(Pf) after passage
through the avoided crossing obtained from Trotter-based
surface-hopping solutions of the QCLE [103]. The parameter
values are A = 0.01, B = 1.6, C = 0.005 and D = 1 and the initial
momentum is P0 = 11. All parameters are reported in atomic units.

HW = (P 2/2M)1 + h(R), where

h(R) =
[
A[1 − e−B|R|] R

|R| Ce−DR2

Ce−DR2
A[1 − e−B|R|] R

|R|

]
. (118)

The numerical values of parameters and all other details of this
particular model are available in the literature [59, 102, 119].
Initially, the quantum subsystem is taken to be in the state
|1〉 and the bath particle is modeled as a Gaussian wave packet
centered at R0 with initial bath momentum P0 directed towards
the interaction region. The forward–backward trajectory
computations of the populations are in quantitative agreement
with exact quantum results, except for very small initial
momenta P0 where small deviations are observed. Simulations
using the jump forward–backward trajectory solution with 2
jumps converge to the exact quantum results [119].

The properties of the nuclear degrees of freedom in this
model provide more stringent tests of simulation algorithms.
Simulations based on the forward–backward initial-value
representation yield a double-peak structure in accord with
exact quantum results [106]. As the system passes through
the avoided crossing and the coupling vanishes, the nuclear
momenta have characteristically different values in the two
asymptotic states. Consequently, the probability density of
final nuclear momenta, p(Pf), has a bimodal form. By
contrast, computations using the forward–backward trajectory
solution (and the Poisson-bracket mapping equation) yield
a single-peak structure. The nuclear mean-field character
of these solutions fails to capture this effect, although the
quantum populations are described accurately. This is not a
failure of the QCLE, but only of these specific algorithms.
Both the Trotter-based surface-hopping and jump forward–
backward trajectory solution algorithms are able to capture
this nuclear quantum effect as can be seen from the plot of the
momentum distribution in figure 7 obtained using the Trotter-
based surface-hopping algorithm [103].

Conical intersections involve dynamical features that are
different from those near avoided crossings, such as the
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Figure 8. Asymptotic adiabatic ground state population at 50 fs
versus γ computed using various simulation methods:
forward–backward trajectory solution (FBTS), jump
forward–backward trajectory solution (JFBTS), numerically exact
quantum solution (QM) and Trotter-based surface hopping (TBSH).
Reproduced with permission from [119]. Copyright 2013, AIP
Publishing LLC.

appearance of a geometrical phase, and are believed to be
responsible for the rapid population transfer observed in some
systems [132]. To examine such dynamics, we consider a two-
level, two-mode quantum model for the coupled vibronic states
of a linear ABA triatomic molecule constructed by Ferretti,
Lami and Villiani [133, 134]. In this model, the nuclei are
described by two vibrational degrees of freedom, X and Y ,
the tuning and coupling coordinates. The partially Wigner
transformed Hamiltonian is

HW(Rs, Ps) =
(

P 2
X

2MX

+
P 2

Y

2MY

+
1

2
MY ω2

Y Y 2

)
1 + h(Rs),

(119)

where the subsystem Hamiltonian is defined by the following
matrix elements:

h11(Rs) = 1

2
MXω2

X(X − X1)
2,

h22(Rs) = 1

2
MXω2

X(X − X2)
2 + 	,

h12(Rs) = γ Y exp
(−α(X − X3)

2 − βY 2
)
. (120)

In these equations, Rs = (X, Y ), Ps = (PX, PY ), MX,Y and
ωX,Y are the mass and frequency for the X and Y degrees of
freedom, respectively. The quantum subsystem is initialized
in the adiabatic ground state, while the vibronic X and Y initial
states are taken to be Gaussian wave packets. Further details
of this model can be found in the literature [133, 135].

Figure 8 plots the adiabatic ground state population
at t = 50 fs as a function of the coupling strength γ .
We see that all results agree for small coupling strengths,
somewhat less than γ = 0.02; however, the forward–backward
trajectory solution results differ considerably from the jump
forward–backward, Trotter-based and exact quantum results
for larger coupling strengths. At the higher coupling strengths,
the errors introduced by the coherent state orthogonality
approximation become significant but the 15-jump forward–
backward solution and Trotter-based results shown in the figure
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are able to reproduce all major trends in population versus
coupling strength curve. The description of dynamics in
systems with a conical intersection places significant demands
on simulation algorithms due to the strong nonadiabaticy that
arises near the conical intersection point, especially for strong
coupling. Both the jump forward–backward and Trotter-based
solutions can account for this strong nonadiabaticity; however,
many nonadiabatic events and more extensive statistical
sampling are needed to improve the results further.

Systems with conical intersections also exhibit effects
due to the existence of a geometric phase. These quantum
effects manifest themselves in the nodal structure seen in the
probability densities of the nuclear coordinates and provide
a stringent test of the QCLE. Investigations of the geometric
phase within the context of QCL dynamics have also been
carried out for this model [135], as well as for a linear vibronic
model that has a conical intersection [136, 137]. The Trotter-
based results on both of these models are able to capture nuclear
nodal structure effects that are signatures of a geometric phase,
again attesting to the accuracy of QCL dynamics.

7.3. Proton transfer in a polar solvent

All of the above examples considered very simple models for
both the subsystem and bath. Any of those model systems
could have been (and were) solved using a full quantum
description. The main motivation for developing quantum-
classical dynamical models was to be able to simulate large
complex many-body systems that are not amenable to a
full quantum treatment. Our last example is of this type.
We consider the system mentioned in the Introduction (see
figure 1): proton transfer (AH-B � A−–H+B) in a phenol
(A)-trimethylamine (B) complex solvated by polar methyl
chloride molecules. We shall not consider the dynamics
of this system by using first-principles, electronic-structure
expressions for all of the interactions which are determined
in the course of the dynamical evolution. Rather, we again
appeal to a model for this system, but one that is far more
realistic than those described above and contains most of the
elements needed to simulate quantum dynamics in complex
environments. In this Azzouz-Borgis model [138] the phenol
and trimethylamine molecular groups are treated as united-
atom spheres, as are the methyl and chloride groups comprising
the solvent molecules. The phenol-amine complex is solvated
by condensed-phase methyl chloride molecules that interact
among themselves and with the proton, phenol and amine
groups through intermolecular potentials. The proton is treated
quantum mechanically and the Schrödinger equation is solved
at each time step to determine the adiabatic energies and
eigenfunctions that enter the quantum-classical dynamics. In
addition to illustrating the effects of solvent polarization on
proton transfer dynamics, this model has served as test case
for quantum reactive dynamics in condensed phase systems
and has been studied often using various approaches [62, 77,
139–144], where further details of the model and results can
be found. The rate and mechanism of this quantum transfer
reaction are of primary interest. This system provides a
good example of how a quantum-classical description can be

used to study a quantum rate process in a condensed phase
environment that may be approximated by classical mechanics.

Following the strategy briefly described at the end of
section 4, we may compute the rate constant from the reactive
flux correlation function by sampling from quantum initial
conditions and approximating the dynamics by evolution given
by the QCLE. Expressions for reaction rate constants in this
framework have been formulated [53, 55, 56, 145–147]. The
QCL expression for the time-dependent rate coefficient, k(t) is

k(t) = −(βn
eq
R )−1Trs

∫
dX N̂P (X, t)(

i

h̄
[N̂R, ρ̂e])W , (121)

where N̂R and N̂P are operators that characterize the reactant
R = (AH-B) and product P = (A−–H+B) states and n

eq
R is

the equilibrium density of the reactant state. The quantum
equilibrium canonical density is ρ̂e and the dynamics of
N̂P (X, t) is given by the QCLE. If there is a significant time
scale separation between the chemical and other relaxation
processes, the plateau value of k(t) yields the measured rate

constant k for the reaction R
k→ P .

The solvent polarization, defined as the difference be-
tween the solvent electrical potentials at points s and s ′ within
the complex, 	E(R) = ∑

i,a zae(|Ra
i − s|−1 − |Ra

i − s ′|−1
),

can be used as a reaction coordinate to monitor the proton trans-
fer reaction [148, 149]. Here zae is the charge on atom a, s and
s ′ are two points within the complex, one at the center of mass
and the other displaced from the center of mass and the sums
run over all solvent molecules i and atoms a. The free energy
along this reaction coordinate is plotted in figure 9 when the
system is in the ground and excited protonic states [144]. This
figure shows that when the system is in the ground state the
values of 	E(R) can be used to identify reactant R (left) and
product P (right) species separated by a free energy barrier at
	E‡. The free energy when the system is in the first excited
state has a single minimum at 	E(R) = 	E‡ and the avoided
crossing with a small energy gap leads to strong nonadiabatic
coupling in the vicinity of the barrier. Given this picture, we
can choose R and P species as, N̂P = θ(	E(R) − 	E‡) and
N̂R = θ(	E‡ − 	E(R)). If the quantum equilibrium density
is approximated by its adiabatic value, the expression for the
rate coefficient can be written as

k(t) ≈ 1

n
eq
R ZQ

∑
α

∫
dX Nαα

P (X, t) (122)

× P

M
· ∇R	E(R)δ(	E(R) − 	E‡)e−βHα(X),

where ZQ is the partition function. This expression can be
simulated using rare event sampling starting at the barrier
top and the rate constant can be determined from relatively
short-time QCL dynamics simulations using the Trotter-based
surface-hopping algorithm [77, 144]. The rate coefficient
extracted from such simulations is k = 0.163 ps−1. The
transmission coefficient κ = k/kTST, defined to be the ratio of
the rate coefficient to its transition state value, has the value
κ = 0.65. The reduction of the rate coefficient is due to
dynamical recrossing of the barrier arising from both motion
on the ground adiabatic surface and nonadiabatic effects
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Figure 9. Protonic free energy, W (times β = 1/kBT ), along the
solvent polarization coordinate, 	E(R), for the system in the
ground (lower curve) and first excited (upper curve) adiabatic
states [144]. The solid lies are parabolic fits to the free energy in the
left and right well regions.

involving transitions to the excited state surface. Other details
concerning correlations between the dynamical evolution of
the solvent polarization and the quantum mechanical average
value of the proton position in the complex have also been
extracted from such nonadiabatic QCL simulations and have
served to elucidate the nature of the reaction mechanism [77].

Proton transfer in the phenol-amine complex has also
been investigated when the complex is solvated by a small
cluster of methyl chloride molecules [150, 151]. In addition
to the computations of the rate coefficients for proton and
deuteron transfer rates, the QCL simulations indicate that the
cluster structure itself is changed as a result of the quantum
particle transfer in the molecular complex. Figure 10 shows
two configurations of the cluster. In the left configuration the
proton-phenol-amine complex is in the covalent form and the
complex resides on the surface of the cluster. When a quantum
proton transfer takes place in the complex to yield the ionic
form, the complex moves to the interior of the cluster since
this is the more favorable solvation state. Thus, the structure
of the complex itself can also serve as a reaction coordinate.

The QCLE has been generalized to include the presence
of a radiation field in order to be able to theoretically model
multi-dimensional spectroscopy, which has then been applied
to this proton transfer model, in both condensed phase and
cluster environments [152–154].

While various methods have been used to simulate
quantum-classical Liouville dynamics [32, 33, 79, 80, 82, 102],
we have chosen limit the above illustrative computational ex-
amples to the Trotter-based method, the forward–backward
trajectory solution and its jump extension. The forward–
backward solution is very simple to implement since it only
requires the solution of a set of Hamiltonian equations in an
extended phase space. The computational effort is compara-
ble to that of Ehrenfest dynamics but it provides a much more
accurate treatment of the dynamics. As discussed above, be-
cause of the coherent state orthogonality approximation that
leads to a simple trajectory representation, it retains a mean-
field character, albeit different from Ehrenfest dynamics. Its

Figure 10. Two configurations of the proton-phenol-amine complex
in a polar molecule nanocluster [151]. In the left configuration the
complex is its covalent form (both spheres in the complex are
yellow) and it tends to reside on the surface of the cluster. In the
right configuration it is in its ionic form (red and blue spheres denote
the phenol and amine groups in the complex with negative and
positive charges) and is solvated in the interior of the cluster. The
polar methyl chloride molecules are shown as linked spheres whose
colors denote the partial charges (light purple—negative chloride
and rust—positive methyl) in the molecule.

jump extension breaks this mean-field structure and yields a
numerically exact solution of the quantum-classical Liouville
equation, provided a sufficient number of ‘jumps’ are included
in the simulation. This method can then be used to gauge
the accuracy of the simple forward–backward scheme. The
Trotter-based method makes use of the momentum-jump ap-
proximation that leads to a surface-hopping trajectory picture
of the dynamics, which is different from fewest-switching sur-
face hopping since decoherence is taken into account. Like the
jump forward–backward solution, it is also able to describe ef-
fects that lie outside mean-field-like descriptions and properly
accounts for the back reaction of the quantum system on its
environment.

8. Summary and conclusion

There have been significant advances in the construction
of quantum dynamical algorithms that are applicable for
increasingly large systems [155–159]. Nevertheless, at the
present time it is still difficult to treat the full complexity of
quantum dynamics in condensed-phase or large biochemical
systems at a level of detail where the environment is not
described in a highly idealized fashion. As a result, the study
of quantum dynamics in open quantum-classical systems is a
topic worth pursuing.

Quantum-classical Liouville dynamics, which was the
focus of this review, is one of several quantum-classical
dynamical schemes that are currently being developed and
applied to study quantum dynamics. Problems are encountered
when any mixed quantum-classical method is used. These
problems center around the theoretical foundations of the
mixed dynamics and the way interactions between the
quantum subsystem and its environment are treated. The
manner in which theories account for (or do not account
for) decoherence in the quantum subsystem is an important
factor in the construction of quantum-classical dynamics.
When approximations are made to quantum-classical Liouville
dynamics it was shown that mean-field and surface-hoping
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descriptions of the dynamics could be obtained. In addition,
it was also shown how decoherence is naturally accounted for
in quantum-classical Liouville dynamics.

While the quantum-classical Liouville equation is able
to provide an accurate description of many of the complex
systems that are encountered in nature, it is not easy to simulate
the dynamics prescribed by this equation. Several algorithms
that yield either numerically exact or approximate solutions of
this equation were presented and the advantages and limitations
of these algorithms were discussed. One of the important areas
for future research on this topic is the development of more
robust and generally accurate algorithms. In more a general
context, it is also an interesting and challenging exercise to
seek schemes that combine quantum and classical dynamics.
The construction of mixed quantum and classical dynamical
theories still presents many challenges and is fertile ground for
future new developments.
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