
Surface-hopping dynamics and decoherence with quantum
equilibrium structure

Robbie Grunwald,1,a� Hyojoon Kim,2,b� and Raymond Kapral1,c�

1Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto,
Ontario M5S 3H6, Canada
2Department of Chemistry, Dong-A University, Hadan-2-dong, Busan 604-714, Republic of Korea

�Received 22 January 2008; accepted 17 March 2008; published online 24 April 2008�

In open quantum systems, decoherence occurs through interaction of a quantum subsystem with
its environment. The computation of expectation values requires a knowledge of the quantum
dynamics of operators and sampling from initial states of the density matrix describing the
subsystem and bath. We consider situations where the quantum evolution can be approximated by
quantum-classical Liouville dynamics and examine the circumstances under which the evolution
can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments
exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces.
The justification for the reduction depends on the validity of a Markovian approximation on a bath
averaged memory kernel that accounts for quantum coherence in the system. We show that such a
reduction is often possible when initial sampling is from either the quantum or classical bath initial
distributions. If the average is taken only over the quantum dispersion that broadens the classical
distribution, then such a reduction is not always possible. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2906485�

I. INTRODUCTION

The exact quantum dynamics of processes such as pro-
ton transfer in chemical or biological systems,1–3 vibrational
energy relaxation in condensed phases,4,5 or ultrafast dynam-
ics of photoexcited molecular systems6,7 cannot be directly
computed, due to the exponential scaling of computational
time with the number of degrees of freedom of the system.
Consequently, a number of different approximate quantum
dynamical schemes have been used to circumvent this diffi-
culty. Surface-hopping schemes,8–10 where classical degrees
of freedom evolve on single adiabatic surfaces and make
probabilistic hops from one surface to another, are the most
commonly used methods. Generally, one would expect the
system to evolve into a coherent state as a result of the cou-
pling between adiabatic states. The justification for the re-
striction of the evolution to single adiabatic surfaces is based
on the fact that interaction with the environment rapidly de-
stroys coherence resulting in the collapse of the system onto
a single adiabatic surface. Several prescriptions have been
put forth to capture this physics.9–15

Mixed quantum-classical Liouville dynamics16–23 can be
used to model quantum dynamics coupled to a classically
evolving environment and naturally accounts for nonadia-
batic transitions and quantum coherence. Recently, we
showed how this theory could be recast into the form of a
master equation, so that the dynamics involves classical tra-
jectory segments on single adiabatic surfaces, interrupted by
hops between these surfaces—dynamics akin to that in

surface-hopping schemes.24 In this formulation, the transition
probabilities are determined by coherent evolution trajectory
segments where two adiabatic surfaces are coupled. Deco-
herence, which is again attributed to interaction with the en-
vironment, is accounted for by averaging the coherent evo-
lution segments over an initial distribution of the bath
degrees of freedom.

This analysis was applied to the computation of the
quantum reactive flux correlation function and rate constant.
The reaction rate coefficient was computed in an approxima-
tion where the reaction coordinate and bath equilibrium dis-
tributions were taken to be classical. Here, we study the ef-
fects that result from sampling from quantum equilibrium
distributions. This allows us to study a number of issues
related to quantum initial states, decoherence, and the valid-
ity of simple surface-hopping schemes.

The outline of this article is as follows. In the next sec-
tion, we present a brief overview of the reduction of the
quantum-classical Liouville equation to a master equation
description, along with a discussion of the computation of
off-diagonal matrix elements of a bath averaged operator in
terms of the evolution of the diagonal elements. In Sec. III,
we consider a model for a reactive barrier crossing process to
illustrate the effects of decoherence on the reaction rate by
using classical and quantum initial sampling. We compare
the results of master equation and quantum-classical Liou-
ville dynamics. The quantum initial distribution can be writ-
ten in terms of a classical distribution broadened by quantum
dispersion. In Sec. IV, we investigate whether averages over
the quantum dispersion are sufficient to justify a Markovian
description of the dynamics. Finally, we present our
conclusions.
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II. THEORY

The average value of a quantum mechanical operator is
given by

A�t� = Tr Â�̂�t� = Tr Â�t��̂�0� , �1�

where Â�t� is some observable whose time evolution is given
by the Heisenberg equation of motion and �̂�0� is the initial
quantum density matrix. Depending on the problem of inter-
est, it may be convenient to represent a subset of the degrees
of freedom in some basis. In this study, we find it convenient
to use an adiabatic basis but any other basis may be chosen.
The remaining degrees of freedom are Wigner transformed,25

providing a phase-space-like representation of this part of the
system. The choice of which degrees of freedom are Wigner
transformed is based on a consideration of the problem of
interest. Thus an equivalent exact quantum expression for the
average value in Eq. �1� is

A�t� = Tr�� dXÂW�X,t��̂W�X� ,

=�
���

� dXAW
����X,t��W

����X� , �2�

where the adiabatic states and energies are given by the so-

lutions to the eigenvalue problem, ĥW�R��� ;R�=E��R��� ;R�,
with ĤW= ĥW�R�+ P2 /2M. In these expressions, X denotes
phase space variables �R , P�, Tr� denotes the partial trace
over the remaining quantum degrees of freedom, and the
subscript W denotes the partial Wigner transform over the
selected degrees of freedom. The evaluation of this expres-
sion involves sampling from an initial quantum distribution
followed by the evolution of the dynamical variable.

Here, as in previous studies,26,27 we assume that the full
quantum evolution can be replaced by mixed quantum-
classical Liouville evolution given by20,28

d

dt
AW

����X,t� = �
���

iL���,���AW
����X,t� . �3�

The quantum-classical Liouville superoperator L���,��� is

iL���,��� = i����� + L������������ − J���,���. �4�

The two operators in the first term on the right hand side are
the frequency corresponding to the energy gap ����= �E�

−E��� /� and classical Liouville operator iL���= P /M ·� /�R

+ 1
2 �FW

� +FW
��� ·� /�P. The Hellmann–Feynman force for state

� is FW
� . The last term J���,��� is the operator responsible

for nonadiabatic transitions and corresponding momentum
adjustments which ensure energy conservation. The
complete definitions of these operators can be found in Refs.
20 and 24.

We define the subsystem as those degrees of freedom
that are of primary interest while the bath comprises the re-
mainder of the system. For example, in the study of proton
transfer,29 the subsystem was chosen to be the protonic de-
gree of freedom q̂ plus the solvent polarization, while the
bath consisted of the remaining solvent and molecular com-

plex degrees of freedom. Let X0	�R0 , P0� and Xb

	�Rb , Pb� be the variables in the subsystem and bath, re-
spectively, which are Wigner transformed; the Hamiltonian

can be written as ĤW= Ĥ0+Hb�0�, where the subsystem and
bath-plus-interaction Hamiltonians are given by

Ĥ0 =
p̂2

2m
+

P0
2

2M0
+ V̂s�q̂,R0� , �5�

Hb�0� =
Pb

2

2M
+ Vb0�Rb;R0� . �6�

For this Hamiltonian, the adiabatic states depend on the sub-
system coordinates R0, while the adiabatic energies E��R�
depend on the full set of coordinates.

The subsystem density matrix �s�X0� and the bath den-
sity �̂c�Xb ;X0� conditional upon the subsystem configuration
R0 are defined as

�̂s�X0� 	 � dXb�̂W�X0,Xb� , �7�

�̂c�Xb;X0� 	 �̂W�X0,Xb��̂s
−1�X0� . �8�

Thus, we can express the initial quantum density in the adia-
batic basis as

�W
����X0,Xb� = �

�

�c
���Xb;X0��s

����X0� . �9�

By using this definition, we may rewrite Eq. �2� as

A�t� = �
���

� dX0
ÂW�X,t��b
����s

����X0� . �10�

This expression is now composed of an average of the dy-
namical variable over the conditional bath distribution,


ÂW�X,t��b
��� = �

�
� dXbAW

���X,t��c
����Xb;X0� , �11�

followed by an average over the subsystem density. The
computation of this quantity, thus, consists of sampling from
the initial subsystem quantum distribution and evolution of
the bath averaged dynamical variable. In the Schrödinger
picture, one would expect that averaging the density matrix
over the bath distribution would result in the rapid decay of
the coherences, the off-diagonal elements of the subsystem
density matrix. This idea served as motivation to derive a
master equation, which provided a simple surface-hopping
description of the dynamics.

A. Quantum-classical master equation

The quantum-classical master equation was derived by
writing Eq. �3� as a coupled set of evolution equations for the
diagonal and off-diagonal elements. By formally solving this
set of coupled differential equations, one obtains a general-
ized master equation for the evolution of the diagonal ele-
ments of the operator,24
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d

dt
Ad

��X,t� = iL�Ad
��X,t�

+ �
0

t

dt���
�

M��
���X,t��Ad

��X̄0��,t�
�� ,Xb,t�,t − t��

+ �
�

M��
���X,t��Ad

��X̄0��,t�
�� ,Xb,t�,t − t��� , �12�

where the memory function M��
���X , t�� is defined as

M��
���X,t� = 2 Re�W���t�,0��D���X0�D���X̄0��,t�� . �13�

Here, D���X0�= �P0 /M0� ·d���R0�, the nonadiabatic coupling
matrix is d���R0�= 
� ;R0��R0

�� ;R0�, W�� is a phase factor,
and the subscripts and superscripts on the memory function
label the indices on the first and second D functions, respec-
tively. For the remainder of this article, superscripts and sub-
scripts that appear on variables denote evolution along a par-
ticular adiabatic surface, �����, and the appearance of both a
subscript and superscript on a variable indicates the action of
two consecutive nonadiabatic transitions. A bar appearing
over X0 denotes a shift in the momentum coming from the J
operator. The shift is applied to the momentum coordinate
P0, such that28

P̄0 = P0 + d̂���sgn�P0 · d̂���

� 
�P0 · d̂���2 + 	E��M0 − �P0 · d̂���� . �14�

and X̄0	�R0 , P̄0�. Given that the operator is initially diago-
nal, the evolution equation �12� is formally equivalent to the
mixed quantum-classical Liouville equation,20 only now it is
organized into two parts: Evolution on single adiabatic sur-
faces and the memory kernel containing all of the off-
diagonal evolution.

A generalized master equation was derived by projecting
Eq. �12� onto the subsystem space and by making a Markov-
ian approximation on the bath averaged memory kernel that
accounts for the coherence in the system. The bath average
provides a mechanism for decoherence and leads to decay of
the memory kernel. The resulting equation is still non-
Markovian in character as a result of the projection of the
adiabatic evolution onto the subsystem. The final master
equation is obtained by lifting the equation back into the full
phase space to recover a fully Markovian master equation
description,

d

dt
Ad

��X,t� = iL�Ad
��X,t� + �

�

m���X0�j�→�Ad
��X,t�

− m���X0�Ad
��X,t� , �15�

where

m���X0� = �
0




dt�
M��
���X,t���b �16�

and j�→� is a momentum shift operator.24 Since Eqs. �2� and
�10� are equivalent, computation of the average value by
using either Eq. �2� and the master equation after the lift to
the full phase space or Eq. �10� with the non-Markovian
subsystem equation will yield the same results. Note that the

subscripts on the second memory term in Eq. �15� are the
same. This term arises from the memory function corre-
sponding to 
M��

���X , t��b. Trajectories accounted for by this
term jump to the mean surface and then return to their origi-
nal surface. Thus, the net effect is no jump but a phase factor
is introduced.

The master equation �15� provides a trajectory descrip-
tion that prescribes evolution on single adiabatic surfaces
interspersed with quantum transitions between them. The
probability of a transition is obtained entirely from the co-
herent evolution. Furthermore, decoherence is accounted for
by the decay of the off-diagonal evolution segments resulting
from averaging over the bath distribution.

B. Off-diagonal elements

The expression for the average value in Eq. �10� includes
a sum over all of the matrix elements of the observable.
Here, we show that the evolution of the off-diagonal matrix
elements can be expressed in terms of the diagonal matrix
elements so that the master equation can be used to approxi-
mately compute these contributions.

The off-diagonal part of the quantum-classical Liouville
evolution equation �3� is given by

d

dt
Ao�X,t� = iLoAo�X,t� + iLo,dAd�X,t� , �17�

where the subscripts d and o indicate diagonal and off-
diagonal matrix elements, respectively. Formally solving this
equation gives

Ao�X,t� = eiLotAo�X,0� + �
0

t

dt�eiLo�t��iLo,dAd�X,t − t�� .

�18�

If we assume that the observable is initially diagonal, then
the first term vanishes. By applying the definition of L given
in Eq. �4�, the second Liouville operator in the above expres-
sion reduces to iLo,d=−Jo,d. By substituting into Eq. �18�,
we find

A����X,t� = �
0

t

dt� �
���,�

U���,���
o �X,t��J���,�Ad

��X,t − t�� ,

�19�

where U���,���
o �X , t�= �eiLo�X�t����,��� is the off-diagonal

propagator responsible for evolution in off-diagonal space.
For a two-level quantum system, this propagator is exactly
given by

U���,���
o �t� = W����t,0�eiL����X�t��������, �20�

for � ,�� ,� ,��=1,2, and ���� ,����. This can be veri-
fied by using the Dyson formula and noting that, for a two
level system, the only off-diagonal propagator matrix ele-
ments that contribute to the dynamics are U12,12

o =U21,21
o� . This

definition is generally applicable for weak nonadiabatic cou-
pling. By acting on the observable with this propagator and
by using the definition20,24 of J, the evolution equation be-
comes
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A����X,t� = �
0

t

dt�Mo
����X0,t��A����X,t,t�� , �21�

where we have introduced the off-diagonal memory function,

Mo
����X0,t� = W����t�D����X0,t�

���� , �22�

and

A����X,t,t�� = �Ad
���X̄0,t�

���,Xb,t�,t − t��

− Ad
��X̄0,t�

���,Xb,t�,t − t��� . �23�

The expression given in Eq. �21� prescribes the evolution
along the mean surface for a time t� followed by a jump to a
diagonal surface. Thus, once again, this memory function is
entirely made up of coherent evolution segments which carry
phase factors.

The off-diagonal memory function differs from that in
Eq. �13� by a single momentum-jump operator. In the diag-
onal form, evolution starts on an adiabatic surface, jumps to
the mean surface, and then jumps to another adiabatic sur-
face; thus, two jump operators are involved. In contrast, off-
diagonal evolution starts on a mean surface and, therefore,
requires only one jump to get to an adiabatic surface.

By taking the bath average of Eq. �21� and by factoring
the average on the right hand side, we obtain an evolution
equation for the bath averaged observable in the reduced
subsystem phase space,


A����X,t��b = �
0

t

dt�
Mo
����X0,t���b
A����b�t,t�� . �24�

The arguments which are used to justify this approximation
have been given in the Appendix of Ref. 24. The bath aver-
age of the oscillating phase factor in the memory function
once again leads to decay. If this decay is rapid, it provides
justification for making a Markovian approximation,


Mo
����X0,t���b � 2��

0




dt�
Mo
����X0,t���b���t��

	 2mo
����X0���t�� , �25�

so that the expression for the evolution of the off-diagonal
matrix elements of an observable is given by


A����X,t��b = mo
����X0�
A����X,t��b. �26�

By lifting the equation back to the full phase space, we have

A����X,t� = mo
����X0��j����X0�Ad

���X,t� − j���Ad
��X,t�� .

�27�

The dynamics of the diagonal terms is given by Eq. �15�, and
the momentum shift operators j���, defined in Ref. 24, have
been pulled out of the observable. We have obtained an ex-
pression for the evolution of the off-diagonal matrix ele-
ments of an observable entirely in terms of diagonal evolu-
tion. This expression prescribes a transition from the mean to

each adiabatic surface at time t=0 with probability mo
����X0�,

followed by diagonal evolution. The resulting trajectories are

the same as those given by the diagonal master equation,
only now the momentum is shifted at time t=0.

Since upward jumps from the mean surface require
energy input to the subsystem, one must check that there
is sufficient energy in the bath to provide the subsystem
with the required energy. Transitions that satisfy

	E��M0 / �P0 · d̂���2�1 are not allowed. In the case where
this requirement is satisfied, the off-diagonal evolution is
only a function of the evolution along the lower adiabatic
surface.

III. REACTION RATE AND QUANTUM SAMPLING

The master equation theory was used to compute the
chemical reaction rate for a process A�B, assuming that the
bath and subsystem reaction coordinate were treated
classically24 Here, we consider the quantum mechanical ex-
pression for the rate coefficient that involves averaging over
the quantum equilibrium structure. This allows us to investi-
gate the implications of quantum equilibrium sampling on
decoherence and the quantum-classical master equation ap-
proximation to the reaction rate.

The forward rate constant is given by30

kAB�t� =
1

nA
eq�

�
�

��
�

�2 − �����

�� dX Re�NB
����X,t�WA

����X,
i��

2
�� , �28�

where WA
����X , i�� /2� is the spectral density function that

includes the quantum equilibrium structure and NB
����X , t� is

the time evolved matrix element of the number operator for
the product state B. To calculate the rate, one samples initial
configurations from quantum equilibrium distributions and
then computes the evolution of the number operator for prod-
uct state B.

The reaction model we consider here is the same as used
in our previous study.24 The subsystem consists of a two-
level quantum system bilinearly coupled to a quartic oscilla-
tor and the bath consists of �−1=300 harmonic oscillators
bilinearly coupled to the nonlinear oscillator but not directly
to the two-level quantum system. The Hamiltonian and sys-
tem parameters are the same as those used in prior
studies,24,31 except the potential parameters are a=0.25 and
b=1.0; �=1 /kBT is taken to be �=1.0 and 0.5 corresponding
to low and high temperatures, respectively, and the nonadia-
batic coupling strength is �0=1.25. The reaction coordinate

is R0 and the product species operator NB
����R0�=��R0����� is

initially diagonal in the adiabatic basis. Here, ��R0� is the
Heaviside function.

For this reaction model, the barrier region of the poten-
tial is locally harmonic along the reaction coordinate R0.
Consequently, one can construct an approximate expression
for the spectral density function that has the factorized form,

ŴA�X , i�� /2�� �̂A�X0��b
c�Xb ,R0�, where �̂A�X0� is the sub-

system spectral density function and �b
c�Xb ;R0� is the Wigner

transform of the canonical equilibrium density matrix for the
bath in the field of the R0 coordinate.30 By inserting this form
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of the spectral density function into the rate coefficient ex-
pression, the second line of Eq. �28� may be replaced by

� dX Re�NB
����X,t�WA

����X,
i��

2
��

=� dX0 Re�
NB
����b�X0,t��A

����X0,
i��

2
�� , �29�

where the angle brackets indicate an average over the condi-
tional equilibrium distribution, �b

c�Xb ;R0�. The computation
of the rate constant now involves the bath averaged observ-
able discussed in Sec. II, allowing us to make use of the
formalism discussed above.

A. Simulation results

The evolution of the observable NB
����X , t� was com-

puted by using both quantum-classical Liouville dynamics
and master equation dynamics. The simulation of quantum-
classical Liouville dynamics was carried out by using the
sequential short time propagation algorithm32 in conjunction
with the momentum-jump approximation28,29,33 and a bound
on the observable.29,34 The initial positions and momenta of
the quartic oscillator were Monte Carlo sampled from the
harmonic part of the quantum equilibrium density distribu-

tion �A
����X0 , i�� /2�,27 and the bath coordinates were

sampled from the quantum equilibrium density for harmonic
oscillators with appropriate frequencies. Simulation of the
master equation consisted of two stages: Calculation of the
memory kernel, followed by the sequential short time propa-
gation algorithm restricted to single adiabatic surfaces.24

Quantum transitions were Monte Carlo sampled by using the
appropriate memory function for the transition probabilities.

Computation of the off-diagonal memory function in-
volves a procedure similar to that of the diagonal memory
function.24 A bath configuration is sampled from the quan-
tum equilibrium density for a given subsystem coordinate X0,
and then a trajectory is adiabatically evolved along the mean
surface for a prescribed time t. The memory function is cal-
culated by numerically integrating Eq. �22� along the trajec-
tory and then averaging over an ensemble of initial bath
configurations. This was done for a range of X0 values re-
sulting in a memory function surface. The surface generated
by integrating this quantity is plotted as a function of X0 in
Fig. 1 for the low temperature case. The surface for the high
temperature case is very similar in structure; however, there
are minor numerical differences that one would expect to see
due to weaker quantum effects at higher temperatures.

Once the memory functions are known, we may calcu-
late the evolution of the observable, as discussed
elsewhere.24 The off-diagonal contribution may be calculated
by using Eq. �27�. The initial bath configuration and sub-
system coordinate are sampled from the off-diagonal ele-
ments of the full quantum equilibrium structure as before;
however, a nonadiabatic transition from the mean surface to
each adiabatic surface is now immediately made. If there is
insufficient energy for an upward transition, then there is no
population transfer to the excited state for that realization.
Otherwise, the trajectory contributes to the rate, weighted by

mo
12�X0�. The evolution is then computed by using the se-

quential short time propagation algorithm to simulate Eq.
�15� for each diagonal matrix element.

A comparison of the reactive flux correlation function
computed by using quantum-classical Liouville dynamics,
master equation dynamics, and adiabatic dynamics can be
seen in Fig. 2. The lowering of the rate due to nonadiabatic
effects is notable in both cases. The master equation repro-
duces the short time buildup of the quantum correlation func-
tion in both cases in spite of the fact that the short time
buildup occurs on the same time scale as the decay of the
bath averaged memory kernel. The zero initial value of the
correlation function is a consequence of the quantum me-
chanical treatment of the reaction coordinate. As expected,
the error bars associated with the master equation calculation
are smaller than those from the quantum-classical Liouville
simulation, since the master equation calculation does not
involve oscillating phase factors.

FIG. 1. �Color� Plot of mo�R0 , P0� vs R0 and P0 for �=1.0.

FIG. 2. Forward rate constant kAB�t� as a function of time. In both figures,
the upper curve is the adiabatic rate, the middle curve is the quantum master
equation result, and the lowest curve is the mixed quantum-classical Liou-
ville result. In both panels, the microscopic relaxation time tmic is approxi-
mately 3.4 units. �a� �=1.0. �b� �=0.5.
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The reaction rate constant is given by the plateau value
of the correlation function. The full rate computed with the
master equation is close to but larger than the quantum-
classical Liouville calculation. From Fig. 3, one sees that the
discrepancy is due to the off-diagonal and excited state con-
tributions to the rate.

The quantum-classical Liouville and master equation
ground state diagonal contributions to the rate agree very
well. There are discrepancies between the two methods in the
excited state and mean surface contributions. For the excited
state contribution, the discrepancy can be understood in
terms of recrossing of the barrier region. In the master equa-
tion description, trajectories start in the excited state, jump
down to the ground state, accompanied by an increase of
momentum, and rapidly stabilize. In contrast, for quantum-
classical Liouville evolution, trajectories starting in the ex-
cited state first make a transition to the mean surface; subse-
quent evolution results in recrossings on this surface,
followed by a transition to the ground state where it stabi-
lizes. This results in increased recrossing of the barrier re-
gion, lowering the plateau value of the correlation function.
Although the ground state contribution is subject to the same
qualitative dynamics, upward transitions are associated with
a reduction in the momentum and, thus, stay confined to the
barrier region in both descriptions. As a result, there is a
smaller difference between the recrossing corrections for the
ground state contribution in the two descriptions.

The deviations between the off-diagonal terms are
largely a consequence of the approximations made in Sec.
II B. In particular, the Markov approximation gives rise to a
nonzero initial value, which ultimately results in a higher
plateau value. Similar effects have been seen in the context

of quantum master equations.35,36 Short time transients typi-
cally relax before the slow subsystem processes take place,
and the neglect of this behavior leads to a shift in the initial
conditions which affects the longer time value of computed
quantities. The relevant time scale to consider in relation to
this effect is the decay rate of the memory function or the
decoherence time �decoh. The probability distribution of de-
coherence times was calculated from the first zero crossing
of the bath average of the memory function for an ensemble
of X0 values. The results of this calculation can be seen in
Fig. 4. The mean decoherence time is slightly longer for the
low temperature case with �decoh�0.992, while the high tem-
perature value �decoh�0.738. The difference can be attributed
to the form of the distribution of decoherence times, which
exhibits a long tail in the lower temperature case. The time
scale of the decay to the plateau value in the off-diagonal
contribution to the correlation function is of the same order
of magnitude as �decoh. Thus, one can infer that the discrep-
ancy appearing in this contribution is due to the neglect of
transient memory effects.

The decoherence time as defined above characterizes the
decay associated with the bath average of the dynamics of
off-diagonal density matrix elements in the adiabatic basis.
Recall that the memory kernel results from substituting the
solution of the equation of motion for the off-diagonal den-
sity matrix elements into the evolution equation for the diag-
onal elements. A number of different measures of the deco-
herence time have been used in the literature. A basis-
independent quantity that has been used to determine the
decoherence time is Tr� �̂s

2, where �̂s is again the subsystem
density matrix averaged over the bath.37 This quantity con-
tains information regarding population transfer in addition to
the decay of off-diagonal density matrix elements, resulting
in biexponential decay. The time associated with the fast
decay segment of the curve can be identified with the deco-
herence time.38 We have computed the decoherence time for
the high temperature parameter set from the short time decay
of Tr� �̂s

2 and obtained a value �decoh�0.80 in agreement
with that obtained for the decay of the memory kernel. We
note here that the ratio of decoherence and microscopic time
scales tmic /�decoh, where tmic is the time that characterizes the
relaxation of the correlation function to the plateau value,
ranges between 10 and 4 for our simulation results. To pro-
vide some insight into these values, we remark that our re-

FIG. 3. Ground state, excited state, and off-diagonal contributions to the
forward rate constant kAB�t� as a function of time. The top pair of curves is
the ground state contribution, the middle pair is the excited state contribu-
tion, and the bottom set is the off-diagonal contribution. In each pair, the
smoother curve is the result from the master equation simulation, while the
noisier curve is from the quantum-classical Liouville calculation. In both
cases, it is clear that the discrepancy arises from the disagreement in the
off-diagonal and excited state contributions. �a� �=1.0. �b� �=0.5.

FIG. 4. Distribution of the decoherence times for the bath averaged memory
function at �a� high and �b� low temperatures.
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action model provides a simple representation of proton
transfer in solution.31 In a more realistic model of proton
transfer, tmic was found to be approximately 300 fs.29 By
using the scaling reported here our decoherence time would
correspond to tens of femtoseconds, a value that is reason-
able for condensed phase systems. A precise assignment of
real time units depends on how the model parameters are
mapped into those of physical systems.

IV. QUANTUM DISPERSION

The above results were obtained by sampling from an
equilibrium quantum distribution, while in our earlier study
of decoherence and surface-hopping dynamics,24 equilibrium
initial states were sampled from a classical initial distribu-
tion. We now explore the differences between the two de-
scriptions.

The quantum mechanical treatment of the reaction coor-
dinate has the most significant effect on the structure of the
reactive flux correlation function.39 The correlation function
rapidly increases from zero �Fig. 2�, and this is qualitatively
different from the classical case, where the reactive flux cor-
relation function has a nonzero initial value equal to the tran-
sition state theory rate. A quantum mechanical treatment of
the reaction coordinate has a more significant effect on the
reaction rate than a quantum treatment of the bath.39 How-
ever, we are interested in decoherence, which arises from a
bath average for fixed values of the reaction coordinate.
Therefore, it is important to examine the consequences of
quantum mechanically or classically treating the bath.

The memory surface, which is used to compute the
nonadiabatic transition rates, is calculated by averaging the
memory function over an initial bath distribution. In Fig. 5,
we compare the surfaces obtained by using the quantum and
classical bath distributions. The surface obtained by using
quantum sampling is somewhat broader than the classical
surface. This is expected since quantum dispersion will
broaden the distribution. The magnitude of the variation is
quite small and has a small effect on the transition rates.

A different perspective on how the quantum bath struc-
ture affects the decoherence can be obtained by noting that
the quantum equilibrium distribution for a bath of harmonic
oscillators can be written as a convolution of the classical
density, �b

cl�Xb ;R0�=1 /Zb
cle−�Hb, with its quantum dispersion

function,39,40

�b�Xb;R0� =� dXb�g�Xb� − Xb��b
cl�Xb�;R0� , �30�

g�Xb� =
Zb

cl

Zb
�

j

�� j

2��uj� − 1�

� e−��/�uj�−1����1/2Mj�Pj
2+�1/2�Mj�j

2Rj
2�, �31�

where uj�=uj coth uj and uj =��� j /2. The effect of the quan-
tum dispersion function g�Xb�−Xb�, a Gaussian centered at
the bath phase point Xb, is to broaden the classical density
around each point in phase space. This function accounts for
the quantum fluctuations of the bath. We consider whether
averages over the bath quantum dispersion distribution of the
memory kernel for fixed values of the reaction coordinate
and bath phase space coordinates yield sufficiently
rapid decay of the memory kernel to justify a Markovian
approximation.

By starting from the quantum rate expressions �28� and
�29�, we substitute the convoluted form of the bath density to
obtain

kAB�t� =
1

nA
eq �

�,��
� dX
NB

����X�,t��g�X,t�

� �A
����X0,

i��

2
��b

cl�Xb;R0� , �32�

where the average value of the species variable over the

quantum dispersion is denoted by 
NB
����X� , t��g�X , t�

=�dXb�g�Xb�−Xb�NB
����X� , t�. The resulting quantity depends

on the subsystem degrees of freedom and bath phase space
coordinates determined by the classical bath distribution. An
approximate evolution equation for the quantum dispersion
average of an observable can be obtained a follows.

By starting from the generalized master equation �12�,
we take the average of the entire evolution equation over the
quantum dispersion to obtain

d

dt

Ad

��X�,t��g�X,t�

= 
iL�Ad
��X�,t��g�X,t�

− �
0

t

dt�
M�X�,t��Ad�X�,t − t���g�X,t − t�� , �33�

where we have simplified the notation of the memory term
analogous to that in Appendix B of Ref. 24. Since the fac-
tored form of the bath distribution involves a convolution,
one cannot use the projection operator formalism that was
employed in the derivation of the master equation. Instead,
we assume that the observable varies slowly over the width
of the quantum dispersion function, so that it may be taken
out of the integral. Furthermore, if the observable is approxi-
mately constant over the integration region, then Ad

��X , t�
�
Ad

��X� , t��g�X , t�. By using these approximations, we
obtain

FIG. 5. �Color� Memory surface calculated by using �a� the quantum bath
equilibrium distribution and �b� classical bath equilibrium distribution.
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d

dt

Ad

��X�,t��g�X,t� = iL�
Ad
��X�,t��g�X,t�

− �
0

t

dt�
M�X�,t���g�X,t��

� 
Ad�X�,t − t���g�X,t − t�� . �34�

The quantum dispersion average of the memory function ap-
pears in the second term of this expression. In Fig. 6, we
show 
M���X� , t��g�X , t� as a function of time. Each curve in
the plot represents a particular choice of X0 and Xb, averaged
over the quantum dispersion function g�Xb�−Xb�. From the
figure, we see that the function does not decay on a short
time scale and exhibits long time recurrences. This structure
should be contrasted with that shown in Fig. 6 where a full
bath averaged was carried out. By comparing the classical
distribution to the quantum dispersion function �see Fig. 7�,
one sees that even at low temperatures, the range of bath
configurations described by g�Xb�−Xb� is narrow.

In this representation, each classical trajectory on the
mean surface is replaced by an ensemble of trajectories
whose initial values are determined by the quantum disper-
sion. The simulation results for our reactive model indicate
that each ensemble of trajectories centered at a given system
phase space point is confined to a narrow tube for long times.
Thus, decoherence is not observed on a time scale relevant to
the decay of the reactive flux correlation function. However,
if the average is taken over the full bath distribution, then
decoherence is rapid, justifying the Markovian approxima-
tion leading to master equation dynamics.

There is another aspect of quantum dispersion versus full
bath averaging that merits discussion. The bath projection

led to an equation of motion valid in the subsystem. The lift
to full phase was a device to obtain a fully Markovian de-
scription to compute the subsystem expectation values.24 In
contrast, if quantum dispersion averaging could be used to
justify a Markovian approximation on the memory kernel,
one would obtain a master equation. valid in the full phase
space of the system. To study the nature of this dependence,
we computed the quantum dispersion average of the memory
surface as a function of the initial bath configuration. For
each initial subsystem coordinate, we sampled a bath con-
figuration from a Boltzmann distribution and then performed
an average over the quantum dispersion for that particular
configuration. A new bath configuration was used for each
subsystem coordinate. The results of this calculation, as
shown in Fig. 8, indicate that the memory surface is sensitive
to the initial bath configuration. Consequently, it is not pos-
sible to reduce the dimensionality of the memory surface in
this formulation and this makes the calculation of the transi-
tion probabilities difficult. The surface may be smoothed by
averaging over the ensemble of bath configurations, i.e., tak-
ing the full bath average.

V. CONCLUSION

Decoherence in open quantum systems has its origin in
the interactions of the system with its environment.37 This
paper focused on the effects of quantum versus classical
equilibrium sampling on decoherence and the computation of
average values and correlation functions. Both of these quan-
tities can be written in forms that involve quantum initial
sampling �or classical sampling when this approximation is
appropriate� and quantum dynamics, which we model by
quantum-classical Liouville dynamics. As in our earlier
study,24 the decoherence problem can be cast in the form of
the validity of a Markovian approximation on the bath aver-
aged memory kernel for the evolution of the diagonal ele-
ments of the density or operators.

The simulations on a simple reaction model with quan-
tum initial sampling allowed us to assess the validity of

FIG. 6. Comparison between the quantum dispersion average

M12

12�X� , t��g�X , t� and full bath average 
M12
12�b�t� of the memory function vs

time. �a� For high �solid� and low �dashed� temperatures, the oscillations
persist through the simulation time. �b� The full bath average of the diagonal
memory function for high �solid� and low �dashed� temperatures, for com-
parison to the quantum dispersion averaging. Note that the scale on the time
axis is shorter and that the function quickly decays.

FIG. 7. Comparison of the classical bath density �solid line� plotted as a
function of momentum at R0=0 and the quantum dispersion for different
oscillator frequencies. The widest quantum dispersion curve �dashes� corre-
sponds to the cutoff oscillator frequency �max=3, while the narrow curve
�dots� corresponds to an intermediate oscillator frequency � j =1.2. Low tem-
perature ��=1� results are plotted, where one would expect the quantum
dispersion to be the most significant. Although the curve corresponding to
the maximum oscillator frequency is close to the width of the full bath
density, it comprises a small contribution to the quantum dispersion average
over the distribution of oscillator frequencies.
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simple surface-hopping dynamics and how it relates to deco-
herence. Since the reaction coordinate is quantum mechani-
cally treated, the reactive flux correlation function starts from
zero and finally reaches a plateau value from which the rate
constant can be determined. In spite of the fact that this
buildup typically occurs on a similar time scale to the deco-
herence time, the initial structure of the correlation function
is well described by master equation dynamics.

The role of quantum dispersion on decoherence was also
investigated. Depending on system parameters, averages
over the quantum dispersion around fixed bath phase space
coordinates may be insufficient to provide a justification for
a Markovian approximation to the memory kernel. Further-
more, simulations on the reaction model indicated that the
quantum dispersion average of the memory kernel is a strong
function of the bath coordinates and, thus, so are the transi-
tion probabilities in the master equation.

An aim of this investigation was to examine the condi-
tions under which simple surface-hopping descriptions of the
dynamics, where the system evolves on single adiabatic sur-
faces interrupted by quantum transitions between such sur-
faces, are valid. An average of the memory kernel over some
distribution that results in decay on a time scale faster than
the decay of the correlation function of interest is required
for a Markovian master equation description of the dynamics
to be valid. The decoherence of the subsystem must occur on
a time scale that is shorter than that of slow subsystem pro-
cesses. When these conditions are satisfied, the resulting dy-

namics provides a useful tool to compute expectation values
since it is more stable with smaller statistical uncertainties.
The results of this work should prove to be useful for under-
standing the dynamics of many body quantum systems that
are more complex than those considered for our model
calculations.
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