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Decoherence and quantum-classical master equation dynamics
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The conditions under which quantum-classical Liouville dynamics may be reduced to a master
equation are investigated. Systems that can be partitioned into a quantum-classical subsystem
interacting with a classical bath are considered. Starting with an exact non-Markovian equation for
the diagonal elements of the density matrix, an evolution equation for the subsystem density matrix
is derived. One contribution to this equation contains the bath average of a memory kernel that
accounts for all coherences in the system. It is shown to be a rapidly decaying function, motivating
a Markovian approximation on this term in the evolution equation. The resulting subsystem density
matrix equation is still non-Markovian due to the fact that bath degrees of freedom have been
projected out of the dynamics. Provided the computation of nonequilibrium average values or
correlation functions is considered, the non-Markovian character of this equation can be removed by
lifting the equation into the full phase space of the system. This leads to a trajectory description of
the dynamics where each fictitious trajectory accounts for decoherence due to the bath degrees of
freedom. The results are illustrated by computations of the rate constant of a model nonadiabatic

chemical reaction. © 2007 American Institute of Physics. [DOI: 10.1063/1.2567164]

I. INTRODUCTION

When investigating quantum relaxation processes in the
condensed phase, one often partitions the full quantum sys-
tem into a subsystem whose dynamics is of interest and an
environment or bath with which the subsystem interacts.
There is a large literature dealing with such open quantum
systems.l’2 A number of different equations of motion for the
density matrix of the subsystem have been derived, including
the Lindblad® and Redficld* equations and a variety of gen-
eralized quantum master equations.y11 Effects due to the en-
vironment typically enter these equations through coupling
terms involving parameters that characterize the bath relax-
ation processes. Such equations have been used to investi-
gate aspects of decoherence in the quantum subsystem aris-
ing from interactions with bath degrees of freedom.

Sometimes it is convenient to suppose that the dynamics
of certain degrees of freedom is described by quantum me-
chanics while other degrees of freedom may be treated by
classical mechanics to a good approximation. This is the case
if one considers systems involving light particles interacting
with a bath of heavy particles. Proton and electron transfer
processes in the condensed phase and in biomolecules fall
into this category, as do many vibrational relaxation pro-
cesses. One is then led to study the dynamics of quantum-
classical systems where the entire system is partitioned into
quantum and classical subsystems.12 Equations of motion for
the quantum subsystem density matrix, where the classical
bath is modeled as a dissipative environment, have been
derived.”™"* Such descriptions are useful for many applica-
tions; however, there are situations where the quantum sub-
system evolution depends explicitly on the details of the bath
dynamics. This is important since specific features of bath
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motions can influence quantum rate processes.16 To describe
such specific bath dynamical effects one must use the full
quantum-classical equation of motion.

Another partition of the system is required when the
quantum subsystem is directly coupled to a small subset of
the environmental degrees of freedom. For example, in pro-
ton transfer within a biomolecule, the quantum subsystem
may be taken to be the proton, which interacts directly with
a specific set of functional groups of a larger molecule im-
mersed in a solvent. In this case, we may define a quantum-
classical subsystem comprising both quantum degrees of
freedom (the proton) and a subset of the classical variables
that directly couple to these quantum degrees of freedom (the
specified functional groups). The remaining classical vari-
ables constitute the bath. In such a partition, the bath may be
treated either explicitly or as a dissipative environment.
Equations of motion for the density matrix of a quantum-
classical subsystem interacting with a dissipative bath have
been derived.”” In this article we consider quantum-classical
systems of this type but instead retain the details of the bath
dynamics and study the conditions under which the dynam-
ics can be reduced to a master equation.

The reduction of quantum-classical dynamics to a sub-
system master equation hinges on the decoherence in the
subsystem induced by interactions with the bath degrees of
freedom.” Consequently, we focus on how decoherence is
described in quantum-classical systems and the conditions
under which it is strong enough to eliminate the off-diagonal
elements of the density matrix on short time scales. The re-
sult of the analysis is a non-Markovian generalized master
equation for the density matrix of the quantum-classical sub-
system. When this equation is used to compute nonequilib-
rium averages or correlation function expressions involving
subsystem properties, we show that the subsystem dynamics
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may be lifted to the full phase space, including the bath
degrees of freedom, to recover a Markovian master equation
for the quantum and all classical degrees of freedom. Solu-
tions of this equation may be obtained from an ensemble of
surface-hopping trajectories, each member of which incorpo-
rates the effects of quantum decoherence.

The outline of the paper is as follows: The starting point
of our analysis is the quantum-classical Liouville equation
for the entire system.zsf35 In Sec. IT we show how this equa-
tion can be cast into the form of a generalized master equa-
tion for the diagonal elements of the density matrix. This
equation involves a memory kernel operator that contains all
information on quantum coherence in the system. We discuss
the explicit form of the memory kernel operator that governs
the evolution in off-diagonal space and present its functional
form. The analysis in Sec. III and Appendix B shows that an
average over an ensemble of trajectories evolving on coher-
ently coupled surfaces with different bath initial conditions
can be used to reduce the full-system generalized master
equation to a non-Markovian subsystem generalized master
equation. We show that this equation can then be lifted back
to the full phase space to obtain a Markovian master equa-
tion. We apply this formalism in Sec. IV and calculate the
nonadiabatic rate constant for a model system. Numerical
results using full quantum-classical Liouville dynamics and
master equation dynamics are compared. In the concluding
section we comment on the relationship of our master equa-
tion dynamics to other surface-hopping methods.

Il. GENERALIZED MASTER EQUATION

Starting from the quantum-classical Liouville equation,
it is not difficult to derive a generalized master equation for
the diagonal elements of the density matrix. As described in
the Introduction, the position and momentum operators,
(g,p), of the quantum degrees of freedom are assumed to be
coupled directly to a set of classical phase space variables,
Xo=(Ry, Py). Together these make up the quantum-classical
subsystem. The classical X, variables are, in turn, directly
coupled to the remainder of the classical phase space vari-
ables, X,=(R,,P,), that constitute the bath. (Our formula-
tion must be modified if the quantum degrees of freedom
couple directly to all other variables in the system.) The total
Hamiltonian of the system is

T

HX)= YADITAL Y V(G,Ro,Rp)

_ P P
= 2M+2M+h(R). (1)

The potential energy operator, V(c},RO,Rb), includes the con-
tributions from the quantum-classical subsystem, the bath,
and the interaction between the two. It is often convenient to
represent the dynamics in the adiabatic basis given by
h(Ry,Ry)|a;Ro)=E(Ry,Ry)|a:Ry), where h(Ry,R,) is the
quantum Hamiltonian for a fixed configuration of the classi-
cal particles. The adiabatic eigenfunctions depend only on
the coordinates R since the dependence on the bath coordi-
nates enters through the potential as an additive constant. In
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this basis, the equation of motion for the full density matrix
-3
is

Ep;;“ (X,0) == 2 il Pl (X,1), (2)
BB’

where p{‘,‘V“’(X ,1) is a density matrix element which depends
on the full set of phase space coordinates X=(R,P)
= (Xj,X},). The quantum-classical Liouville superoperator is
given by33

- iﬁaaf’,,BIB’ =-— i(waar + Laa’)éaﬁéa’ﬁ’ + ja’a’,,BB’ s (3)

where w,, =AE,,/h, with AE,=E,—FE,, and the classi-
cal Liouville operator iL,, is given by
iLoza/ =

P 0 1 0
——+ —(F*+F*)—. (4)
MJR 2 JP

The Hellmann-Feynman force®™ for state a is F¢
=(a;Ry|0V(§,Ry.R,)/ R|a;Ry), and the operator Taw pp'»
defined in the next section, accounts for quantum transitions
and corresponding momentum changes in the environment.

We shall often simplify the notation in what follows.
Above, py(X,1) refers to the partially Wigner transformed

density matrix whose matrix elements are pﬁ,“/(X ,1). Since
we use partially Wigner transformed variables throughout
this article, we shall drop the subscript W.

The quantum-classical Liouville evolution operator can
be partitioned into diagonal, off-diagonal, and coupling com-
ponents by defining the superoperators: £, £%°, £, and
L°, where the d and o superscripts denote diagonal and off
diagonal, respectively. We define the diagonal part of the
density matrix py(X,t), with matrix elements, p*“(X,t) 5,y
=pg(X,). Similarly, the off-diagonal part of the density ma-
trix, p,(X,f), has matrix elements p““’(X (1=8,,)
Epf)“)"(X ,1). Using these definitions, the quantum-classical
Liouville equation may be expressed formally as the follow-
ing set of coupled differential equations:

Jd
~paXon) == iL%y(X,1) —iL%p,(X,1), (5)

g
~PoXo) == iL%p,(X.0) - iL%py(X.1). (6)

By substituting the formal solution of Eq. (6) into Eq. (5), we
obtain the evolution equation for p (X, 1):

3 -
Epd(X, 1) =—ilL%e " p (X,0) — iL%py(X,1)

13
+ f dt'iL%0e L= jpody (X 1), (7)
0

For the remainder of this analysis we will assume that
p,(X,0)=0, and thus the first term vanishes. This amounts to
initially preparing the system in a pure state or incoherent
mixture of states. Although Eq. (7) is general and may be
used to study systems that are initially prepared in coherent
states, we shall not consider such situations here. Using
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Eq. (3), the explicit definitions of the matrix elements of the
Liouville superoperators are

. ~d _
lﬁaa’,ﬁﬁ’ =L 6&[35 ,635/,
L%, =i T e (1= 8ggr)
aa' BB T a,pB’ Caa’ BB’ >
. po,d _
l‘caa’,ﬁﬁ’ = jtc)ta B(l aa,)éﬁﬂr’ (8)
iL5 pgr = iLaar ppr(1 = 8aar)(1 = Bgp1),

where iL,=iL,, and jdﬁﬁ,— wapp> for B# B, with a
similar definition for J°¢. Using these definitions and the
initial condition discussed above, we obtain the generalized
master equation for the evolution of the diagonal elements of
the density matrix.

(9 t
o P == iLapj(X.1) + f dt' 2 M s(tpl(X, e~ 1),
0 B

)
where the memory kernel operator M ,4(t) is given by
M (1) = > jc:m’u _ILO(X)(t))MM,’VV,j(;;/‘II,B (10)

v !

and acts on all of the classical degrees of freedom that appear
in functions to its right. Next, we analyze the form of the
memory kernel operator (10) in order to cast it into a form
that is suitable for the derivation of a master equation.

A. Memory kernel

The explicit form of the J operator was derived

previously33 and is given by
NI =6235a’ﬁ’ +CqrprOups (11)
where
Caﬂ=—DaB(XO)<1 +lSaB- i), (12)
2 P,

the nonadiabatic coupling matrix element is given by d,g
=(a;Ro|Vg |B:R0), Sap=AEapdap! Dop(Xo), and D ap(Xo)
=(Py/M,)-d,g. We have shown in earlier work that the ac-
tion of the C operator on phase space functions may be com-
puted using the momentum-jump approximationzo’g7

Ca,B(XO) =- DaB(XO)j aﬁ(XO) ) (13)

where the momentum shift operator, j,z(Xo), is a translation
operator in momentum space,

]an(PO) = eAEaBMoﬁ/ﬁ(PO : (}aB)zf(PO) :f(P() + APOaﬁ)’
(14)

APyup= C}aﬁ(sgn(f’o : aaﬁ) \/(Po : 301,6)2 +AE M,

—(Py-d,p). (15)

Since momentum shifts occur in conjunction with quantum
transitions, they depend on the quantum states involved in
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the transition. Consequently, we use the following notation:
XOaﬁz (RO’POaB):(RO’PO+APOa,B)’ SO that’ ja,B(X())f(X())
= f()?()aﬁ). It is worth noting here that the momentum shift
operators do not act on the full classical environment. They
only act on the classical variables X, that directly couple to
the quantum degrees of freedom. We also observe that the
argument of the square root in Eq. (15) must be positive.
This condition prevents quantum transitions when there is
insufficient energy in the classical degrees of freedom to ef-
fect the transition.

The time evolution in Eq. (10) is given by the propagator
¢ £’ The quantum-classical Liouville operator in this ex-
pression acts on the entire phase space X and accounts for the
following processes: classical evolution of the bath coordi-
nates X, and evolution of the classical subsystem coordinates
X, on the mean potential surface (E M+E/,L)/ 2 with an associ-
ated phase factor. This evolution is interspersed with quan-
tum transitions taking the subsystem to other coherently
coupled states where evolution is again on mean surfaces
with associated phase factors. In the course of this evolution
the system never returns to a diagonal state involving evolu-
tion on a single adiabatic surface. For this reason we refer to
such evolution as being in “off-diagonal space.”

If one considers the explicit action of the propagators
appearing in the memory kernel, one can show how this
operator acts on an arbitrary function of the phase space
coordinates X. The details are given in Appendix A. Using
the results obtained there, one can show that the generalized
master equation can be written as

2 05060) =~ L5061

f dr' (EM BX,t")ph (XOQBt,,th, t—t')

E MVC!(X ! )p X(I;zvt”Xb,l’at_t,))' (16)

In this expression the superscripts on the coordinates indicate
the action of a second momentum shift operator,

GoaXown)f Kowns Xp)=f(X* . X,)). This result provides us

Oav>
with a definition of the memory function,

MGE(X.1) = 2 Re[Wog(t',0)]D 15(Xo)D o s(Xpapr) . (17)

where the subscripts and superscripts on the memory func-
tion label the indices on the first and second D function,
respectively. The phase factor W, is defined as

Waplt1,ty) = ¢ Roap.). (18)

Now the actions of all classical propagators and momentum
jumps have been accounted for explicitly in Eq. (16) so that
the memory kernel is a function of the phase space variables.

Given the assumption about the initial condition on the
density matrix [py(X,0)=0], for a two-level system the gen-
eralized master equation (16) is fully equivalent to the
quantum-classical Liouville equation from which it was de-
rived. This result is also applicable to multilevel systems in a
weak coupling limit where quantum transitions among dif-
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ferent coherently coupled states are neglected in the the off-
diagonal propagator. This amounts to neglecting terms higher
than quadratic order in the nonadiabatic coupling strength,
d ., in the evolution operators. The time evolution described
by Eq. (16) consists of classical evolution along single adia-
batic surfaces and two memory terms. The memory terms
account for transitions to the mean surface, evolution along
this surface, and transitions to a new adiabatic surface with
rate M gg or transitions back to the original surface with rate
M. Thus, the dynamics of the generalized master equation
derived here is separated into diagonal and off-diagonal com-
ponents providing a framework within which to investigate
decoherence in the quantum-classical subsystem induced by
the bath.

lll. MASTER EQUATION

We next consider the conditions under which the gener-
alized master equation (16) may be reduced to a simple mas-
ter equation without memory. This reduction hinges on the
ability to consider the memory kernel as a rapidly decaying
function so that a Markovian approximation can be made.
From its form in Eq. (17) one can see that M(X,7), which
contains all information on quantum coherence, is an oscil-
latory function. As a result, a Markovian approximation to
the memory kernel cannot be made directly on the full phase
space equation since there is no obvious mechanism for the
decay of the memory function. It is the decoherence by the
environment that provides such a mechanism.

In this analysis we exploit the fact that decoherence has
its origin in interactions with the bath degrees of freedom.
We have already observed that we are interested in dynami-
cal properties of the quantum-classical subsystem. For in-
stance, nonequilibrium average values of interest have the
form

An=3 | dax, J dX,AP(Xo)p™P(X, 1)
af

=2 | dXAPU(X0)p (X 1), (19)
aB

where AP%(X,) are the matrix elements of a property of the
subsystem and p®*(X,,1)= [dX,p®#(X,?) is the subsystem
density matrix. If the operator A#%(X,) is diagonal, then only
the diagonal elements of the subsystem density matrix are
needed to compute its average value. Alternatively, if deco-
herence quickly destroys the off-diagonal subsystem density
matrix elements, then, after a short transient, only the diag-
onal elements will be needed to compute the expectation
value. Later, we shall show that similar considerations can be
used to evaluate correlation function expressions for trans-
port properties of the subsystem.

To compute such average quantities, we see that we need
the subsystem density matrix elements. Starting with the
generalized master equation in full phase space [Eq. (16)],
we can introduce a bath projection operator,
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whose action on the density matrix yields the subsystem den-
sity matrix. Here pj,(X},; Ry) is the bath density conditional on
the subsystem configuration space variables R,. The bath
density function is in general quantum mechanical but in
some applications it may be replaced by its high temperature
classical limit. In the projection operator formalism it is not
necessary to distinguish between these two cases. The
complement of P is Q. In Appendix B, using standard pro-
jection operator methods,* we argue that bath averaged cor-
relations involving the fluctuations of the memory kernel
from its bath average may be neglected. In this case, the
subsystem generalized master equation is

(9 . —i a . a
gpfvx(XO’t) =- <lLae QLatde(X7O)>b - <1La>bps (XO»I)

t
- f di’' (iL e i QL ), p*(Xo,t — 1)
0

t

" f dt’(z(Miﬁ(X,t’))bpg(ngB,t,,t—t’)
0 B

M) RE, ot = f)) . @

In this expression the memory function appears in the form
of an average over a bath distribution function conditional on
the subsystem configuration space variables, <Mgg(x N
= [dX,M gg(x ,1")p;(Xp;Rp). Since the memory function
Mgg(X ,t') involves evolution on the mean of the « and B
adiabatic surfaces, the average over bath initial conditions
will result in an ensemble of such trajectories, each carrying
an associated phase factor. As a result, the bath ensemble
average (M gg(X ,t')), will decay on a time scale character-
ized by the decoherence time, 7. If the decoherence time
is short compared to the decay of the populations, we can
make a Markovian approximation

(MEBX.1))y = 2( f dt’<M§§(X,t’)>,,) 8(t')
0
= 2m,5(X) &(t"). (22)

Applying this Markovian approximation to Eq. (21), we ob-
tain

(9 o
—p. (Xt
&tps( 0 )
=— f del.Lae_iQLatst(X,O) - <l.La>bp§V(X0,f)
I .
- f di'(iL e ' iQL ) pii(Xo, 1 = 1)
0

+ 2 Mag(X0)j s pPP (X ) = Mo X0)pE(Xot),  (23)
B

where
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maa(XO) == 2 f dt,<M;z(X’t,)>h' (24)
v 0

The use of the Markovian approximation results in the in-
stantaneous action of two momentum shift operators on the
density. Consequently, the penultimate term in Eq. (23) was
rewritten to incorporate a single momentum shift operator

whose action is j,_, gf(X,) f(XOaﬁ) resulting from a transi-
tion from one single adiabatic surface to another single adia-
batic surface,

]a%ﬁf(PO) .]aB(XO).]aﬁ(XO)f(PO) f(Po+ APOaﬁ) (25)

APGE, = flaﬁ(sgn(Po ~d p) \ (Po- dgap)? +2AE M,

—(Py-dap). (26)

This momentum shift differs from that defined earlier by a
factor of 2 in front of the energy difference since this opera-
tor captures the action of two jumps. In the last term in Eq.
(23) the net effect of two momentum shift operators with
reversed indices acting simultaneously is

FvaXown)jarXo)f(X)=£(X). Since these momentum shift op-
erators are inverses of each other, there is no net shift.
As discussed in Appendix A, the transition rate
M gg(x ,1) captures the effect of two momentum shift opera-
tors. Each of these operators imposes a condition on the sub-
system kinetic energy that ensures transitions to and from the
mean surface are allowed. Consequently, the transition rate
m,5(Xo) inherits these conditions. For example, if @< then
map(Xo) is nonzero only if (Py-d,g)*/2My>AEg,. Con-
versely, if a> 3 there is no such restriction. In contrast, the
transition rate m,,(X,) is nonzero only if (Py-d,,)?/2M,
>AE,,/2. This condition arises from the fact that this con-
tribution has its origin from transitions to the mean surface
and then back to the original surface.

A. Lift to full phase space

Equation (23) is still rather difficult to solve since it
contains a convolution involving bath projected dynamics.
Often, the non-Markovian character of an equation can be
removed by expanding the space upon which the equation is
defined. In the analysis above, the non-Markovian character
arose by projecting out the bath variables to obtain a descrip-
tion in the subsystem phase space. Consequently, by lifting
this equation back into the full phase space we can recover
the Markovian nature of the dynamics. In the full phase
space the equation of motion is given by

& 000 =~ L0 + 00

- maa(XO)p:;(th)- (27)

It is easily verified that applying the projection operator al-
gebra to this equation, using the projection operator defined
in Eq. (20), one obtains the subsystem evolution equation
(23). Thus, when computing average values like those in Eq.
(19), or their correlation function analogs discussed below,
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121'
\/\ 120
)_(

t 0

(2)Quantum-Classical Liouville Evolution

vz —

X
b) %XZZ’O

v

t o]

(b)Master Equation Evolution

FIG. 1. Trajectories that enter the solution of the quantum-classical Liou-
ville and master equations. (a) In quantum-classical Liouville dynamics, the
system makes transitions between single adiabatic surfaces and coherently
coupled states involving evolution on mean surfaces. (b) In master equation
evolution, the dynamics is restricted to single adiabatic surfaces. All off-
diagonal evolution is accounted for by the memory kernel.

the master equation lifted to full phase space yields results
identical to those of the non-Markovian equation (23).

Through this analysis we have succeeded in finding a
master equation description of the dynamics in the full phase
space which incorporates the effects of decoherence. The
first term in Eq. (27) yields dynamics on single adiabatic
surfaces. The other terms correspond to contributions to the
evolution due to nonadiabatic transitions between adiabatic
states. The nonadiabatic transition rates in these terms incor-
porate the effects of decoherence. Given the nature of the
dynamics generated by this master equation, there is a close
connection to many currently used surface-hopping schemes
which will be discussed below.

It is instructive to compare master equation and
quantum-classical Liouville dynamics. The master equation
(27), like the full quantum-classical Liouville equation (2),
can be simulated by following an ensemble of surface-
hopping trajectories. The trajectories that enter in each de-
scription are shown in Fig. 1. We see that in full quantum-
classical Liouville dynamics the system makes transitions
between single adiabatic surfaces via coherently coupled off-
diagonal states. Coherence is created when such an off-
diagonal state is entered and is destroyed when it is left. The
average over the ensemble accounts for net destruction of
coherence in the system as it evolves. In contrast, the master
equation evolves the classical degrees of freedom exclu-
sively on single adiabatic surfaces with instantaneous hops
between them. Transitions from a diagonal state to a coher-
ently coupled state and then back to the diagonal state, which
play an important role in quantum-classical Liouville dynam-
ics, are accounted for explicitly in master equation dynamics
by m,.(X,). Each single (fictitious) trajectory accounts for an
ensemble of trajectories that correspond to different bath ini-
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tial conditions. In this connection the evolution in off-
diagonal space is crucial: for a given initial subsystem coor-
dinate, the choice of different bath coordinates will result in
different trajectories on the mean surface. Thus, it is the av-
erage over this collection of classical evolution segments that
results in decoherence. Consequently, this master equation in
full phase space provides a description in terms of fictitious
trajectories, each of which accounts for decoherence. When
the approximations that lead to the master equation are valid,
this provides a useful simulation tool since no oscillatory
phase factors appear in the trajectory evolution.

IV. APPLICATION TO REACTION RATES

In this section we apply the formalism developed above
to calculate the rate constants of a reaction A=B. For this
reaction, the quantum-classical forward rate constant was de-
rived earlier and is given by40

qu 2 @2-

Aaa>a

kyp(t) =

X f dXRe{Ng“/(X,t)WX/“<X,mTB>}, (28)

where Ng“,(X ,t) is the time evolved matrix element of the
number operator for the product state B. At =0 this operator
is diagonal in the adiabatic basis and its value, in this con-
text, depends only on the subsystem coordinates R,. The
spectral density function, WX,“(X ,ifiB/2), accounts for the
quantum equilibrium structure of the entire system.‘m’41 The
spectral density can be approximated by the form
WS (X, ifiB12) =~ W “(X,.if812)p(X,: Ry), such that it is
factorized into subsystem and bath components. ? Perform-
ing the integration over the bath variables, the integral
needed to compute the rate constant expression may be writ-
ten as

hﬁ)

deOdeNga (X t)pb(Xb’RO) X WX a(Xo, >

f dXO Re

We see that the calculation of the rate coefficient entails
knowledge of the bath average of the time evolved species
variable and sampling from the subsystem spectral density
function. The time evolution of this species variable may be
calculated using mixed quantum-classical dynamics.43 In
general, the subsystem spectral density contains both diago-
nal and off-diagonal components; therefore, both diagonal
and off-diagonal components of the species operator contrib-
ute to the computation of the rate coefficient. Previous work
has shown that the off-diagonal contributions to the rate con-
stant are negligible,44 allowing one to consider only diagonal
contributions.

The computation of the time evolution of the bath aver-
aged species variable is completely analogous to the calcu-
lation of the subsystem density matrix leading to Eq. (23);
however, now the analysis must be carried out starting with
the quantum-classical Heisenberg equation of motion,”

(NS (X, 1)), WS “(xo, ’ f )] L)
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d ’ ’
—AY (X,1) = 2 iL o pprAPP (X,1). (30)
dt . :

The rate coefficient can be computed from the expression in
the first line of Eq. (29) using the lifted form of the evolution
equation for the diagonal elements of a dynamical variable,

d
AT =L (XA (X.)

+ E m—zyﬁ(XO).]a—»ﬁABB(X’ t)
B

F XA (X, 1), (31)

where the memory function, m", is the adjoint of m defined
previously in Eq. (22). The effects of decoherence that lead
to this expression restrict the evolution of the observable to
its diagonal components. Therefore, one only needs to con-
sider the diagonal terms of the subsystem spectral density in
the calculation of the rate coefficient.

A. Model system

As an application of this formalism, we consider a
simple model for a quantum rate process that has been stud-
ied earlier using mixed quantum-classical dynarnics.44 The
investigation of this model allows us to assess the validity of
the Markovian approximation, Eq. (22), and the utility of the
master equation for calculating the rate coefficient.

The model is a two-level system to which we couple v
oscillators. The subsystem consists of the two-level quantum
system bilinearly coupled to a nonlinear oscillator with phase
space coordinates (R, Py) governed by a symmetric quartic
potential, V,(Ro)=aRy/4—bR3/2. The bath consists of v—1
=300 harmonic oscillators whose frequencies w; are distrib-
uted with Ohmic spectral density that depends on &, the
Kondo parameter.45 The bath is bilinearly coupled to the sub-
system oscillator such that the quantum system does not di-
rectly interact with the bath; it only feels its effects through
the coupling to the quartic oscillator. As discussed elsewhere,
it has been argued that this model captures many of the es-

sential features of condensed phase proton transfer
processes.”"*
Using a diabatic representation, the Hamiltonian for this
system is
H= (Vq(Ro) + h'yORO - hQ )
- 1hQ Vy(Ro) = iyoRy

Py P; M, 2
I +E—’—+—wL(R —LRO) I.
oM, SoM; 2 M,

(32)
The solution of the eigenvalue problem for this Hamiltonian
yields the adiabatic eigenstates, |a;Ry), and eigenvalues
E(R)=V,(Ro)+Vy(Ry:Ry) ¥ i\ Q*+(%Rp)%, where 20 is
the adiabatic energy %ag. The adiabatic free energy surfaces,

Wo(Ro)=V,(Ry) + 1N O*+(yR)?, are sketched in Fig. 2. In
this figure we also show the mean free energy surface,
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Weak Coupling

Strong Coupling

-~

FIG. 2. Plots of free energy vs R, for strong and weak coupling cases. The
parameters are y,=10.56 for strong coupling and y,=2.64 for weak cou-
pling between the two-level quantum system and the quartic oscillator. The
other parameters are the same for both cases: 1=0.51, B=0.5, &=2, A
=0.5, and B=1. These parameters were chosen to give a well-defined rate
process with a significant number of recrossing events. The small energy
gap ensures that the majority of trajectories satisfy the energetic require-
ments for nonadiabatic transitions given by Eq. (15) and (26), and the pa-
rameter 3 was chosen to be small enough to satisty the high temperature
approximation. All other parameters in the Ohmic spectral density are the
same as those used in earlier studies, (Ref. 44) and the results are presented
in the same dimensionless units as those used in previous studies (Ref. 56).

Wia(Ro) = (W +W,)/2=V (R,), which plays an essential role
in the calculation of the memory function.

The simulations of quantum-classical Liouville dynam-
ics were carried out using the sequential short-time propaga-
tion algorithm46 in conjunction with the momentum-jump
approximationzo’37 and a bound on the observable.”” The ini-
tial positions and momenta of the quartic oscillator and bath
were sampled from the classical canonical density function.
The details of these methods can be found elsewhere,***40
The simulations of the master equation consist of two parts
which we describe below. First we compute 1,4(X) in an
independent calculation involving evolution on the mean sur-
face. Then we use this result in the sequential short-time
propagation algorithm restricted to single adiabatic surfaces.

B. Calculation of m,z(Xo)

In order to investigate the validity of the Markovian ap-
proximation we calculate (M gg(x ,1))p, as a function of time.
From Eq. (29), this average is weighted by pj(X,;R,), the
Wigner representation of the quantum bath distribution con-
ditional on the subsystem coordinate. In general the determi-
nation of the quantum distribution function is a difficult
problem; however, it is known for a harmonic bath*’ and
may be used to account for quantum bath effects. In Sec. V,
we comment briefly on quantum bath effects in our formal-
ism. In our calculations we use the high temperature limit
where the classical canonical equilibrium density, condi-
tional on the subsystem configuration, provides a good
approximation.41

The quantity (Mzg(X ,1)), involves the product of the
initial value of D g, the phase factor Wz, and D at a time
evolved phase point. The latter two quantities may be ob-
tained from adiabatic dynamics on the mean surface for a
given X,,. The bath averaged memory function, (M gg(x S ps
may be computed from an average over an ensemble of tra-

J. Chem. Phys. 126, 114109 (2007)

0 0.5 1 1.5 2 25 3

FIG. 3. Plot of the bath averaged memory function (M {%(X ,1)), vs time for
Y=2.64; solid line, Ry=-0.55, Py=3.2; dotted line, Ry=0.4, Py=2.4;
dashed line, Ry=-0.25, P,=-3.4; dot-dash line, Ry=0.6, Py=-2.2. Here we
see that for a range of choices of X, this function decays quickly.

jectories, each with a fixed initial value of X, and bath coor-
dinates drawn from the phase space distribution pj,(X,;R).
As discussed above, the bath average of this oscillatory func-
tion provides a mechanism for its decay, characterized by the
decoherence time, 7., This time will depend on the sub-
system coordinate X,. In Fig. 3 we plot <Mg§(x 1)), as a
function of time for several subsystem coordinate values and
show that the bath averaged memory function does indeed
decay on a rapid time scale. Figure 4 shows how the deco-
herence time, taken as the first zero crossing of (M gg(X )
depends on the phase space coordinate X;,. In the allowed
phase space regions, the decoherence time is a relatively
weak function of the phase space coordinates, with the ex-
ception of some localized regions where it varies strongly.
From these results we may compute the mean decoherence
time and find 74.,,=0.41+0.09 (weak coupling) and Tyecopn
=0.17+0.02 (strong coupling). In order for the Markovian
approximation to be valid, the decoherence time must be
short compared to the characteristic decay times of the cor-
relation function that determines the rate constant.
Simulation of the master equation requires knowledge of
the transition rates m,g(X,). These quantities were obtained
by numerically integrating the time dependent memory func-
tion discussed above. In this calculation one must ensure that
for a given X, the transition is allowed. Otherwise m1,4(X)) is
assigned a value of zero for that choice of subsystem coor-
dinates. These restrictions were discussed in Sec. III. This

FIG. 4. Plot of 74, corresponding to upward transitions 1 —2 vs R, and
P, for y,=2.64.
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FIG. 5. Plots of m,g(Ry,Py) vs Ry and Py for y,=2.64. (a) my(Ry,Py)
portions of the surface have a value of zero, corresponding to regions where
transitions are forbidden due to insufficient kinetic energy in the subsystem.
(b) m,(Ry,Py) does not have this feature as it corresponds to downward
transitions where the subsystem gains kinetic energy.

process is repeated for a range of X, values generating the
surface, m (R, Py). We obtain a different surface for each
transition (see Fig. 5).

The structure of these transition-rate surfaces is due en-
tirely to classical evolution of X, along the mean surface. It
is precisely this evolution that leads to spread in the en-
semble of trajectories giving rise to decoherence. Thus, even
though the evolution we are ultimately interested in calculat-
ing is entirely in diagonal space, the probability of the nona-
diabatic transitions is calculated from the off-diagonal or co-
herent evolution segments dependent on X,. In this way
decoherence is accounted for in the formalism.

C. Simulation of the master equation

Once the surfaces m,g4(X,) are obtained, Eq. (31) is
simulated using the sequential short-time propagation algo-
rithm where the probabilities of nonadiabatic transitions are
given by TI=[mglAt/(1+]m,gAr).* Note that the value of
I is determined at each time step using the value of m,4(X;)
corresponding to the specific value of X, at that time. The
initial sampling is taken from the spectral density function
where the bath distribution is given by the conditional den-
sity, pj,(Xp3Ro)-

The results of the calculation of the forward time depen-
dent rate coefficient, k45(7), are shown in Fig. 6. The figure
compares the rate coefficients using adiabatic, master equa-
tion, and quantum-classical Liouville dynamics. As expected
the plots show rapid decay on a time scale 7. to a plateau
region characterized by a much slower decay on the macro-

J. Chem. Phys. 126, 114109 (2007)

102 kag(®)

10° Kap(®)

FIG. 6. Plots of the time dependent rate coefficient as a function of time. (a)
v9=2.64 (weak coupling) and (b) y,=10.56 (strong coupling). In these plots
the upper dotted curve is from adiabatic dynamics, the middle curve is from
master equation dynamics, and the lowest solid curve is from quantum-
classical Liouville dynamics.

scopic chemical relaxation time scale, 7..,,~67 for weak
coupling, and =~1.3 X 10° for strong coupling.

In Fig. 6, we see that the short-time decay portion of the
rate coefficient given by the master equation simulation is in
agreement with the quantum-classical result. The time scale
of this decay, 7,,;.=4 in the weak coupling case and =2.5
for strong coupling, is about one order of magnitude larger
than the average decoherence time 7y..,,=~0.41 for weak
coupling, and =0.17 for strong coupling as discussed above.
From the figures we conclude that indeed 7yecon <€ Timic
< Tem- This inequality provides the conditions for the ap-
plicability of the Markovian approximation used to derive
the master equation. The plateau regions for both quantum-
classical Liouvile and master equation dynamics have lower
values than those for adiabatic dynamics. The smaller rate
constant for nonadiabatic dynamics is due to enhanced bar-
rier recrossing as a result of motion on either the excited
state or mean surfaces. The plateau value using master equa-
tion dynamics in the strong coupling case is slightly higher
than that obtained using quantum-classical Liouville dynam-
ics. This likely arises from the fact that in quantum-classical
Liouville dynamics the system evolves on the mean surface
for long times, allowing trajectories to reenter the region of
high nonadiabatic coupling where quantum transitions take
place. Thus, the rate coefficient is reduced due to recrossings
in the barrier region. In general, for both weak and strong
couplings, the master equation provides quite a good descrip-
tion of the rate coefficient data.

V. CONCLUSION

The master equation calculations presented above bear
many similarities to surface-hopping schemes that have been
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used previously to simulate nonadiabatic dynamics of
quantum-classical systems.49*54 It is useful to comment on
some of the similarities and highlight the differences. In most
surface-hopping schemes, and in our master equation dy-
namics, the classical degrees of freedom evolve on single
adiabatic potential energy surface segments according to
Newton’s equations of motion governed by Hellmann-
Feynman forces. This dynamics should be contrasted with
the trajectory evolution in quantum-classical Liouville dy-
namics, where the trajectory segments of the classical de-
grees of freedom evolve on single adiabatic surfaces as well
as mean surfaces. The differences between our master equa-
tion dynamics and other surface-hopping methods lie in the
prescription for quantum transitions and the manner in which
decoherence is incorporated into the theory. For example, in
the fewest switch surface-hopping scheme, ™! the probabil-
ity of a transition depends on the nonadiabatic coupling ma-
trix elements and the off-diagonal elements of the density
matrix. In our master equation the probabilities of quantum
transitions are determined by a Monte Carlo sampling based
on the magnitudes of our phase space dependent transition
rates, m,g(Xo), and the sampling algorithm reweights aver-
ages so that no bias is introduced. Decoherence is accounted
for in the fewest switch simulation by collapsing the density
matrix onto a diagonal state depending on certain conditions
such as motion outside a window of strong coupling.51 In our
calculation decoherence effects have been incorporated into
the calculation of the transition rates.

Decoherence has also been incorporated into the formu-
lations of surface-hopping methods using other physical
principles. The idea in such methods is to include the effects
of decoherence in single trajectories, much like the descrip-
tion our master equation provides. For example, in the meth-
ods developed by Rossky and co-workers™ ™ decoherence is
introduced through an additional term in the evolution equa-
tion that accounts for the quantum dispersion about each
classical phase space coordinate in the bath. In this way each
of the trajectories in the full phase space experiences deco-
herence. The quantum dispersion of the bath is not included
in the model calculations presented above but it is easily
accounted for in our theory. In our master equation decoher-
ence arises through averaging over the bath phase space vari-
ables which were taken to be classically distributed for high
temperatures. The rate coefficient formalism in Eq. (29) in-
volves sampling from the full quantum spectral density func-
tion thus incorporating quantum dispersion in the bath coor-
dinates. Such quantum effects have already been investigated
in the context of quantum-classical Liouville dynamics43 and
for the temperatures used in our calculations, these effects
are very small. Regardless of whether the bath is treated
classically or quantum mechanically, decoherence enters our
master equation through the forms of the transition rates and
not as an additional term in the equation of motion.

Finally, we remark that the simulation scheme for master
equation dynamics has a number of attractive features when
compared to quantum-classical Liouville dynamics. The so-
Iution of the master equation consists of two numerically
simple parts. The first is the computation of the memory
function which involves adiabatic evolution along mean sur-
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faces. Once the transition rates are known as a function of
the subsystem coordinates, the sequential short-time propa-
gation algorithm may be used to evolve the observable or
density. Since the dynamics is restricted to single adiabatic
surfaces, no phase factors enter the calculation increasing the
stability of the algorithm. For complex reaction coordinates
which are arbitrary functions of the bath coordinates the cal-
culation of the transition rates will be more difficult and time
consuming. Future research will determine if the master
equation can be applied easily to realistic general many-body
systems. Nevertheless, the results reported in this paper have
served to provide a basis for an understanding of the domain
of validity of master equation approaches to quantum-
classical nonadiabatic dynamics based on decoherence.
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APPENDIX A: REDUCTION TO MEMORY FUNCTION

Starting from the form of the memory kernel operator
given in Eq. (10), we may reduce this operator to a function.
Without loss of generality, we assume that the adiabatic basis
is real so that, Caﬁ,:CZ - Furthermore, taking the definition of
J, and acting with the operator j,(X,) coming from the
leftmost J%° operator on all operators to its right, the
memory kernel operator may be written as

Mapt) = 2 Do (X0)2 Re[UL,, 5, (X,0) + UL, o (Xo1)]

v,Bv

X Dv’ﬁ()_(O)ju’B()?O)jav(XO) . (A 1 )

In the above expression we have introduced the off-diagonal
propagator, U;,, 5.,(X )= (e, g In the case of a
two-level system this propagator is given exactly by
_ il (X
U,y (D =W (1,0)e i 01,8,

wv

(A2)

for w, u', v, v'=1,2 and u# u’, v# v'. Here we used the
fact that™

. . Lot .
e(_“‘)yﬂ'_lLuy')(r_[’) — e—lf’ dT“)p,,u.’(R()p,p.’,r)e_lLup,’(l_t,)

= Wﬂﬂr(l‘,t’)e—"“#ﬂ'(’_f/) (A3)

to express the operator as a product of a phase factor and a
classical propagator. We note that the only off-diagonal
propagator matrix elements that contribute to the dynamics
here are Z’{{I)Z,IZ:L@T,ZI'

Recall from the definition of the momentum shift opera-
tor, Eq. (15), that transitions can only occur if there is suffi-
cient momentum in the subsystem to make a transition to or
from a mean surface. Otherwise the transitions are not al-
lowed. Using the above form of the off-diagonal propagator
in Eq. (A1), the action of the memory kernel operator on
some arbitrary function of the phase space variables,
f(Xy,X},), takes the following form:
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Maﬁ(t)f(XO’Xb)

= 8452 2 R W, (1,0)1D 1, (Xpq e Lar¥)

XDVa()_(Oav)jva()_(Oav)f()_(OawXb) +2 Re[WaB(t’O)]
XDaB(XOaﬁ)e_iLaB(X)lDaﬁ(}?OaB)j w8 Xoap) fXoap X))
(A4)

The arguments of f reflect the fact that we have acted with
the rightmost momentum shift operator on the function. If
we now consider the action of the classical propagators that
enter in the memory kernel operator we obtain

e_iLm}(Xm})tDVa()_(Oav)jva()_(()av)f()_(()awxb)
= Dva()_(Oav,t)jVa()?OaV,t)f()?Oav,t’Xh,t)

= Dva()_(O(zv,t)f()_(Z?/,t’Xb,t) .

In the last line we denoted the indices coming from the ac-
tion of the second momentum shift operator as superscripts

(vaXoa)fKoa- X,) =f(X¢,,X,)). Substituting Eq. (A5) in
the expression (A4) for the memory kernel we obtain

M op(X,1)f(Xo,X,) = 5aBE MX0f(X0

(A5)

Xb,t)

+ Mgg(X, t)f()_(gg,t’xb,z) , (A6)

where the definition of M is given in Eq. (17).

APPENDIX B: SUBSYSTEM MASTER EQUATION

In this appendix we focus on the equation of motion for
the subsystem density matrix. In order to simplify the nota-
tion in the following calculation, it is convenient to write the
generalized master equation (16) in a more formal and com-
pact form. Letting

2 MEX 1) p§ (X Xt = 1)
B

+ 2 M)y, X o= 1)
14

= (MX.1)pyXyst 1)) g (B1)

We can write Eq. (16) as

1

J . o
gtps(XoJ)=—<1Ld>st(XoJ)—deblLde QL"’QPd(X,O)+f
0

1

+f dr'"(M(X,t")yp (Xt —1") +
0
L' ) . _
+ f f dr'di"{(SM(X,1")e ' 9Ld i QL )y, p (X it
0J0

t
+f dt'de,,ﬁM(X,t’)(D()_(t/,t—t').
0
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t

d _
%Pd(xat) =—iLp (X,1) + f dr'M(X,t")py(X,,t = 1").

0
(B2)

Starting from Eq. (B2), we use standard projection op-
erator methods™ to obtain the evolution equation for the sub-
system density matrix. If we let p;(X;;R,) be the bath equi-
librium density matrix conditional on the configuration of the
directly coupled R, subsystem coordinates, we may define
the projection operator as in Eq. (20) and its complement by
Q=1-"P. Note that Pp,y(X,1)=p(X;;Ro)ps(Xo,1).

Applying these projectors to the generalized master
equation (B2) we obtain

J
E”de(X, 1) == PiL,Ppy(X,t) = PiL;Qpy(X,1)

t
+ J
0

t

dt' PM(X,t")YPpy(X,,t —1')

+f dr'PM(X,t") Qp (Xt —1'), (B3)
0
Jd
Ede(X»t) == QlLded(X5 t) - QlLded(th)
+f dr' OM(X,t"YPpy(X,,t —t')
0
+f dr' OM(X,t") Qp (Xt —1'). (B4)
0

Solving the second equation formally, we obtain

Qpy(X,1) = e 9L Qp (X,0)

t

gl

where the function ®(X,7) involves fluctuations of the
memory function from its bath average, SM =M —(M),, at
various time displaced coordinates. Substituting this solution
into Eq. (B3) gives

dt'e 9 i QL Pp (Xt — 1) + D(X,1),

(B5)

dt' (iLge 9 i QL ) pp (X, — 1)

t
f f dr'dX,6oM(X,1")e 2L =) Qp (X,1,0)
0

_ t/ _ l”)

(B6)
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The last three terms in this equation involve integrals over
the bath of expressions containing fluctuations of the
memory kernel from its bath average. These expressions
consist of 6M correlated with dynamical quantities evolved
under projected dynamics. By definition, M is initially zero
and, due to the presence of the phase factor, it oscillates
strongly for long times. Consequently, the bath integral of
the product of the oscillatory function oM with a time
evolved dynamical quantity is expected to be small. Taking
these considerations into account, we neglect the last three
terms in Eq. (B6). Making this approximation, the subsystem
evolution equation takes the form

J o .
&_[pS(X’t) = f delLae QLdtde(X’O) - <lLd>bps(Xst)
t ) ,
- J dl,i<Lde_lQLdt lQLd>bpé(X,t - t’)
0

+ JI dr'{M(X,t")pp (Xt —1"). (B7)
0

This equation, written explicitly in terms of its components
is given in Eq. (21) and forms the basis for the reduction to
a master equation.
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