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The quantum-classical Liouville equation describes the dynamics of a quantum subsystem coupled
to a classical environment. It has been simulated using various methods, notably, surface-hopping
schemes. A representation of this equation in the mapping Hamiltonian basis for the quantum
subsystem is derived. The resulting equation of motion, in conjunction with expressions for
quantum expectation values in the mapping basis, provides another route to the computation of the
nonadiabatic dynamics of observables that does not involve surface-hopping dynamics. The
quantum-classical Liouville equation is exact for the spin-boson system. This well-known model is
simulated using an approximation to the evolution equation in the mapping basis, and close
agreement with exact quantum results is found. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2971041�

I. INTRODUCTION

Nonadiabatic quantum-mechanical effects are known to
be important for the description of the dynamics of many
chemical and biological processes. Photochemical dynamics,
proton and electron transfer reactions, and vibrational relax-
ation processes are just a few examples where quantum ef-
fects play significant roles. Due to the difficulty in simulating
the full quantum dynamics of large, complex, many-body
systems, various mixed quantum-classical and semiclassical
schemes have been developed. Here we consider quantum
dynamics based on the quantum-classical Liouville equation
�see Ref. 1 and references therein�,

d

dt
�̂W�R,P,t� = −

i

�
�ĤW, �̂W�t�� +

1

2
��ĤW, �̂W�t��

− ��̂W�t�,ĤW�� , �1�

where �Â , B̂� is the commutator and �Â , B̂� is the Poisson

bracket for any operators Â and B̂. The density matrix
�̂W�R , P , t� is a function of the environmental phase space
variables �R , P� and is an operator in the degrees of freedom

of the quantum subsystem. The Hamiltonian ĤW includes
terms describing the quantum subsystem, its environment,
and the coupling between these parts of the system. This
equation has been used to describe nonadiabatic dynamics on
coupled electronic states,2,3 vibrational dephasing,4 proton
transfer reactions,5–9 and population relaxation in the spin-
boson model,10,11 to name a few examples. The simulation of
the dynamics using this equation presents challenges, and a
number of different schemes have been devised for this pur-
pose. Often the simulation methods are based on specific
representations of the quantum degrees of freedom. For ex-

ample, surface-hopping dynamics that make use of the adia-
batic basis have been constructed,10–12 evolution of the den-
sity matrix in the diabatic basis has been carried out using a
trajectory-based algorithm,3 and a representation of the dy-
namics in the force basis has been simulated using the mul-
tithread algorithm.13,14

The discrete quantum degrees of freedom of the system
can be described by the “classical electron analog” model15

or the mapping formalism.16–19 Extending Schwinger’s20 an-
gular momentum formalism to the N-level case, the mapping
formulation employs a quantum-mechanically exact mapping
of discrete electronic states onto continuous variables; thus,
the dynamics of both electronic and nuclear degrees of free-
dom are described by continuous variables.21 The mapping
basis has been used to compute quantum dynamics in the
context of semiclassical path integral formulations of the
theory15,17,18,22 and in linearized path integral methods.23–25

In this paper we show how the quantum-classical Liouville
equation can be written in this mapping representation. The
resulting evolution equation, just as the basis-free quantum-
classical Liouville equation �1� from which it was derived,
provides a useful description of the dynamics of a quantum
subsystem coupled to its environment. Since the quantum-
classical Liouville equation is exact for any quantum system
bilinearly coupled to a harmonic bath, so is its representation
in the mapping basis presented here. The spin-boson model
is of this type, and this standard test model, for which exact
quantum results are available, is employed to illustrate fea-
tures of the simulation of the mapping form of the quantum-
classical Liouville equation. In particular, we show that an
approximation to the evolution operator allows one to accu-
rately simulate the evolution using a few trajectories with an
algorithm that does not involve surface-hopping dynamics.
Comparisons with the results of other simulation algorithms
are made. A discussion of the applicability of this represen-
tation of the theory to general many-body quantum systems
is given in Sec. IV.
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II. QUANTUM-CLASSICAL DYNAMICS
IN THE MAPPING BASIS

We consider a quantum-mechanical system that is parti-
tioned into a subsystem and bath. The expectation value of

an operator B̂�t� can be written generally as

B�t� = Tr B̂�t��̂ = Tr�� dXB̂W�X,t��̂W�X� , �2�

where a partial Wigner transform over bath degrees of free-
dom,

B̂W�X� =� dZeiPZ/��R −
Z

2
	B̂	R +

Z

2

 , �3�

has been taken. Here, X= �R , P� denotes phase space vari-
ables of the bath. The initial density matrix is �̂W�X�. The
partially Wigner-transformed Hamiltonian of the system can
be written as

ĤW =
P2

2M
+

p̂2

2m
+ V̂s�q̂� + VB�R� + V̂c�q̂,R� , �4�

where the subscripts s, B, and c denote the subsystem, bath,

and coupling, respectively. Letting ĥs= p̂2 /2m+ V̂s�q̂� be the

subsystem Hamiltonian, whose eigenvalue problem is ĥs���
=�����, we can write the expectation value of B̂�t� in the
form

B�t� = 

�,��

� dXBW
����X,t��W

����X� �5�

in the subsystem basis.

A. Average value in mapping basis

Next, we write this expectation value in the mapping

basis by noting that any operator B̂W�X� can be decomposed

as B̂W�X�=
���BW
����X��������. The evolution of the N-state

subsystem can be conveniently replaced, using mapping re-
lations, with that of N fictitious harmonic oscillators with
occupation numbers limited to 0 or 1, namely, ���→ �m��
= �01 , . . . ,1� , . . .0n�.15–19,21–25 The matrix element of an op-

erator may then be written in the mapping form, BW
����X�

= ���B̂W�X�����= �m��B̂m�X��m���, where

B̂m�X� = 

���

BW
����X�â�

†â��. �6�

The annihilation and creation operators on the mapping
states are given by

â� =� 1

2�
�q̂� + ip̂��, â�

† =� 1

2�
�q̂� − ip̂�� �7�

and satisfy the commutation relation �â� , â��
† �=����. Explic-

itly, we may write

â�
†â�� =

1

2�
�q̂�q̂�� + p̂�p̂�� − i�p̂�q̂�� − q̂�p̂���� . �8�

The matrix elements of B̂m�X� in the mapping basis are iden-

tical to those of B̂W�X� in the subsystem basis, as is easily
confirmed using the action of the annihilation and creation
operators on the mapping states: â�

†â���m���= �m��.
In the analysis that follows it is convenient to work in a

Wigner representation of the mapping basis. To this end we
introduce a coordinate representation of the mapping states
and annihilation and creation operators,

�q�m�� = �q1,q2, . . . ,qN�01, . . . ,1�, . . . ,0N�

= �0�q1� ¯ �0�q�−1��1�q�� ¯ �0�qN� �9�

and

�q�â��q�� =
1

�2�
�q�� + �

�

�q��
���q� − q��� �

���

N

��q� − q�� � ,

�10�

with an analogous expression for �q�â�
†�q��. Here

�0�q�� = ����−1/4e−q�
2/2�,

�11�
�1�q�� = �2���3�−1/4q�e−q�

2/2�.

Equation �5� may be written in the mapping basis using the
coordinate representation to obtain

B�t� = 

�,��

� dX�m��B̂m�X,t��m����m����̂m�X��m��

= 

�,��

� dX� dqdq�dq�dq��m��q��q�B̂m�X,t��q��

	�q��m����m���q���q���̂m�X��q���q��m�� . �12�

Note that the coordinate space dimension of the mapping
variables is N. We may now introduce the Wigner transforms
of the coordinate space matrix elements of the mapping vari-
ables,

�r −
z

2
	B̂m�X,t�	r +

z

2

 =

1

�2���N� dpe−ipz/�Bm�x,X,t� ,

�13��r� −
z�

2
	�̂m�X�	r� +

z�

2

 =� dp�e−ip�z�/��m�x�,X� ,

where x= �r , p� are the phase space coordinates of the map-
ping variables. Using these definitions, Eq. �12� can be writ-
ten as

B�t� =� dXdxdx�Bm�x,X,t�f�x,x���m�x�,X�

=� dXdxBm�x,X,t��̃m�x,X� , �14�

where �̃m�x ,X�=�dx�f�x ,x���m�x� ,X� and
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f�x,x�� =
1

�2���N 

���
� dzdz��m�	r −

z

2
	


	�	r +
z

2
	m��
�m��	r� −

z�

2
	


	�	r� +
z�

2
	m�
e−i�p·z+p�·z��/�. �15�

The function f�x ,x�� can be computed explicitly using
Eqs. �9� and �11�.

B. Evolution equation in mapping basis

In quantum-classical dynamics the time evolution of an
operator may be described by the quantum-classical Liou-
ville equation26

d

dt
B̂W�t� =

i

�
�ĤW,B̂W�t�� −

1

2
��ĤW,B̂W�t�� − �B̂W�t�,ĤW�� .

�16�

In order to make use of Eq. �14� we must cast this equation
in the mapping basis.

Using the results of Sec. II A, the matrix elements of any

operator ĈW can be written in the form

���ĈW���� =� dqdq��m��q��q�Ĉm�q���q��m��� . �17�

Furthermore, if ĈW= ÂWB̂W is a composition of operators, we
have

���ĈW���� = �m��Ĉm�m��� = �m��ÂmB̂m�m��� . �18�

Using Eqs. �17� and �18�, we can write the quantum-classical
Liouville equation as

d

dt
�q�B̂m�t��q�� =

i

�
�q��Ĥm,B̂m�t���q�� −

1

2
��q��Ĥm,B̂m�t���q��

− �q��B̂m�t�,Ĥm��q��� . �19�

Taking the Wigner transform over the mapping coordinate
space, we obtain

d

dt
Bm�x,X,t� =

2

�
Hm sin��
m

2
�Bm�t�

−
�Hm

�R
cos��
m

2
� �Bm�t�

�P
+

P

M

�Bm�t�
�R

,

�20�

where the negative of the Poisson bracket operator on the

mapping phase space coordinates is defined as 
m=�p
� ·�r

�

−�r
� ·�p

�. In writing this equation we have used the fact that
the Wigner transform of a product of mapping operators is
given by

�Âm�X�B̂m�X��W = Am�x,X�e�
m/2iBm�x,X� . �21�

The Wigner transform of a mapping variable is given by

Am�x,X� =
1

2�


���

A����R��r�r�� + p�p�� − ������ . �22�

In particular, the mapping Hamiltonian takes the form

Hm�x,X� =
P2

2M
+ VB�R�

+
1

2�


���

h����R��r�r�� + p�p�� − ������ , �23�

where h����R�= ���p̂2 /2m+Vs�q̂�+Vc�q̂ ,R�����, and we have
used the fact that h���=h���. Given this form of the Hamil-
tonian one may show that

Hm
mBm =
1

�


���

h����p�

�

�r��
− r�

�

�p��
�Bm, �24�

Hm
m
2 Bm =

1

�


���

h���� �

�r��

�

�r�

+
�

�p��

�

�p�
�Bm, �25�

and

Hm
m
n Bm = 0 �when n � 3� . �26�

Then, using these relations, we can simplify Eq. �20� to de-
rive the quantum-classical Liouville equation in the mapping
basis:

d

dt
Bm�x,X,t� =

1

�


���

h����p�

�

�r��
− r�

�

�p��
�Bm�t�

+ � P

M

�

�R
−

�Hm

�R

�

�P
�Bm�t�

+
�

8 

���

�h���

�R � �

�r��

�

�r�

+
�

�p��

�

�p�
� �

�P
Bm�t� . �27�

Since the quantum-classical Liouville equation is exact for
an arbitrary quantum subsystem bilinearly coupled to a har-
monic bath, the mapping version of this equation �Eq. �27��
is also exact for such systems.

The first term in Eq. �27� is the quantum evolution of the
subsystem in the mapping phase space, while the second
term describes the evolution of the bath where the forces
involve the mapping coordinates. The complicated third term
represents the higher-order correlations between the sub-
system and the bath. The evolution equation can be written
more compactly as

d

dt
Bm�x,X,t� = − �Hm,Bm�t��x,X +

�

8 

���

�h���

�R � �

�r��

�

�r�

+
�

�p��

�

�p�
� �

�P
Bm�t� � iLmBm�t� , �28�

where �Am ,Bm�t��x,X denotes a Poisson bracket in the full
mapping-bath phase space of the system. The last line of this
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equation defines the quantum-classical Liouville operator in
the mapping basis,

iLm = iLm
0 + iLm� , �29�

where

iLm
0 = − �Hm, �x,X,

�30�

iLm� =
�

8 

���

�h���

�R � �

�r��

�

�r�

+
�

�p��

�

�p�
� �

�P
.

The iLm
0 evolution operator, which gives rise to the Poisson

bracket in Eq. �28�, generates a classical-like evolution of the
coupled dynamics of the quantum mapping and classical
bath phase space variables that can be simulated by
Newtonian trajectories. The force field that the classical vari-
ables feel, which depends on the coupling matrix elements in
the subsystem basis, continuously changes as a result of the
dependence of these forces on the mapping phase space vari-
ables. Consequently, the dynamics prescribed by this term is
very different from either mean field or adiabatic dynamics
and incorporates nonadiabatic effects. The more complex
term iLm� can be viewed as dispersion in the mapping
Hamiltonian force �arising from the second derivative char-
acter in the mapping variables in this term� that the classical
variables feel. Consequently, its effects are expected to be
smaller than the direct effects from the mapping Hamiltonian
force, although the magnitude of this contribution must be
analyzed in specific applications. In Sec. III we apply this
equation to the spin-boson model and show that accurate
results can be obtained when the last term on the right side of
this equation is neglected.

III. SPIN-BOSON MODEL

The spin-boson model is often used as a test case for
quantum simulations of many-body systems and we present
the results of simulations of this model using the quantum-
classical Liouville equation in the mapping basis. The spin-
boson model describes a two-level system bilinearly coupled
to a harmonic bath of NB oscillators with masses Mj and
frequencies � j. The system Hamiltonian is given by

HW = �HB + �
�R� − ��

− �� HB − �
�R�
� , �31�

where HB=
 j�Pj
2 /2Mj +Mj� j

2Rj
2 /2� and 
�R�=−
cjRj. The

energy gap of the isolated two-state system is 2��. By sub-
stituting Eq. �31� into Eq. �23�, we can obtain

Hm = HB + 1
2
�R��r1

2 + p1
2 − r2

2 − p2
2� − ��r1r2 + p1p2� .

�32�

Equation �28� is an exact evolution equation for the spin-
boson model. Previous simulations of the quantum-classical
Liouville equation in the adiabatic basis have been carried
out using a Trotter-based scheme and were able to reproduce
the exact results for a wide range of system parameters.11

Consequently, the results presented here can be viewed as a
test of the utility of the simulation schemes that use the map-

ping basis to represent quantum-classical Liouville dynam-
ics.

As in previous studies we assume that the initial density
matrix is uncorrelated so that the subsystem is in the ground
state and the bath is in thermal equilibrium, namely,

�W�0� = �s�0��B�X�, �s�0� = �1 0

0 0
� , �33�

where the Wigner distribution of the bath, �B�X�, is given
by27,28

�B�X� = �
j=1

N
�� j

2�uj�
exp�−

�

uj�
� 1

2Mj
Pj

2 +
1

2
Mj� j

2Rj
2�� ,

�34�

with uj�=uj coth uj and uj =��� j /2. The subsystem initial
density matrix in the Wigner-transformed mapping basis is

�sm�x� = �2���−2�2��−1�r1
2 + p1

2 − �� . �35�

Using the results in Eq. �14�, the time evolution of the popu-
lation difference between the ground and excited states,
given by the expectation value of the Pauli matrix �̂z, can be
written as

�z�t� = 

���
� dX�z

����t��s
����0��B�X�

=� dXdx�zm�x,X,t��̃sm�x��Bt�X� , �36�

where �̃sm�x� has the explicit form

�̃sm�x� =
2

�3�2�r1
2 + p1

2 −
�

2
�e−�r2+p2�/�. �37�

The initial value of the Wigner-transformed mapping repre-
sentation of �̂z is �zm�x�= �2��−1�r1

2+ p1
2−r2

2− p2
2�.

To compute �z�t� we need to solve for �zm�x ,X , t� using
Eq. �28�. This equation is difficult to solve because of the
structure of the last term of the quantum-classical Liouville
operator in the mapping basis. For the spin-boson model one
may show by direct calculation for short times that the last
term does not contribute until the fifth-order initial derivative
of �zm�x�. This suggests that it may be possible to obtain a
useful approximate solution by neglecting the last term in the
evolution equation �28� so that

d

dt
�zm�x,X,t� � iLm

0 �zm�t� . �38�

The dynamical variable �zm�x ,X , t� evolves by Newtonian
equations of motion and admits a solution in terms of char-
acteristics. The corresponding set of ordinary differential
equations is19
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dr��t�
dt

=
1

�


��

h����R�t��p���t� ,

dp��t�
dt

= −
1

�


��

h����R�t��r���t� , �39�

dR�t�
dt

=
P�t�
M

,
dP�t�

dt
= −

�Hm

�R�t�
.

Using this result, we obtain the simple form for the expecta-
tion value,

�z�t� = � 1

�2�4�� dxdX�B�X�e−�r2+p2�/��r1
2 + p1

2 −
�

2
�

	�r1�t�2 + p1�t�2 − r2�t�2 − p2�t�2� . �40�

The linear coupling in the spin-boson model is characterized
by an Ohmic spectral density, J���=�
cj

2 / �2Mj� j����
−� j�, where cj = �����Mj�1/2� j, � j =−�c ln�1− j�� /�c�,
and ��=�c�1−e−�max/�c� /NB with �c the cut-off frequency
and � the Kondo parameter.29 We used NB=20 and �max

=4�c. Dimensionless units with time scaled by �c are used
in the calculations below. The equations of motion were in-
tegrated using the velocity Verlet algorithm with time step
�t=0.1.

The expectation value �z�t� in Eq. �40� may be com-
puted by sampling the initial bath and mapping variables
from Gaussian distributions, reweighting to account for the
form of the initial density matrix, and computing �zm�x�t��.
We have also carried out the calculations using focused ini-
tial conditions23,24 where the state mapping variables are ini-
tially taken to be r1=1, p1=1, r2=0, and p2=0 �in dimen-
sionless units� when state 1 is initially occupied. Both
sampling methods yield comparable results but focused ini-
tial conditions require about a factor of 10 fewer trajectories
to obtain converged results for this model.

We tested our method for the parameters for which nu-
merically exact results are available. Approximately 104 tra-
jectories were used to obtain the results in the figures. Com-
parable results can be obtained even with ten times fewer
trajectories. In Fig. 1 the results are compared for a weak
system-bath coupling with �=0.09. The adiabatic energy gap
is chosen as �=0.4. For high temperatures, the time-
dependent population difference exhibits incoherent behavior
as in Fig. 1�a�. Our results, as well as those of other methods
such as the linearized approach to nonadiabatic dynamics
in the mapping basis �LAND-map� and the linearized semi-
classical initial value �LSC-IVR� methods, show excellent
agreement with the numerically exact results30 for the high-
temperature, weak-coupling case. The reproduction of the
coherent or oscillatory behavior at low temperatures shown
in Fig. 1�b� is a more severe test, especially at long times.
Our results predict the correct frequency of oscillations, but
the magnitude of the oscillations are somewhat smaller at
long times.

In Fig. 2, we plot ��z�t�� for a rather high friction con-
stant, �=2, at a high temperature of �=0.25. One can see

that the accuracy of our results does not change for a strong
system-bath coupling and is consistently better than other
approaches.

As a final test, in Fig. 3 we show ��z�t�� for two friction
constants, �=0.1 and 0.5, for a relatively low temperature,
�=3. The LAND-map approach predicts the slow incoherent
decay instead of oscillation around zero. This discrepancy
was attributed to the linearization approximation which un-
derestimates the coherent dynamics. Our results again show
reliable accuracy both for weak and strong couplings. Our
results are compared with those using the semiclassical in-
fluence functional formalism with four time slices. Similar
accuracy is obtained.

IV. CONCLUSION

The representation of the quantum-classical Liouville
equation in the mapping Hamiltonian basis provides the

0
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This work
Exact

LAND-map
LSC-IVR
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0 25 50

<
σ z

(t
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t

(b)

FIG. 1. Electronic population difference ��z�t�� as a function of t for two
dimensionless parameter sets: �=0.4, �=0.09, and �=0.25 �a� or 12.5 �b�.
The solid points are exact results �Ref. 30�, the dashed lines are the
LAND-map results �Ref. 24�, and the dotted lines are the LSC-IVR results
�Ref. 22�.
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This work
Exact
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TDSCF

LSC-IVR
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<
σ z
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FIG. 2. Electronic population difference ��z�t�� as a function of t for two
parameter sets: �=2, �=0.25, and �=0.8 �a� or 1.2 �b�. The solid points are
exact results �Ref. 31�, the dashed lines are the LAND-map results �Ref. 24�,
the dot-dashed lines are the time dependent self consistent field �TDSCF�
results �Ref. 17�, and the dotted lines are the LSC-IVR results �Ref. 22�.
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starting point for the development of a new class of algo-
rithms for the simulation of nonadiabatic dynamics. The sim-
plest such algorithm is constructed by neglecting iLm� in
Eq. �29� in the evolution operator. The resulting dynamics is
easily solved by characteristics and yields excellent agree-
ment with exact results for the spin-boson model at a small
computational cost. The extent to which this approximation
is applicable to more general systems requires examination
of more complex systems. The work also suggests that it
may be possible to construct simulation algorithms that use
evolution under iLm

0 as a zeroth order scheme about which
corrections involving iLm� can be computed. The utility of the
mapping formulation of the quantum-classical Liouville
equation for the computation of general correlation functions
is also another topic that is worth pursuing.
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FIG. 3. Electronic population difference ��z�t�� as a function of t for two
parameter sets: �= 1

3 , �=3, and �=0.1 �a� or 0.5 �b�. The solid points are
exact results �Ref. 32�, the dashed lines are the LAND-map results �Ref. 24�,
and the open squares are the results obtained using imaginary time path
integral semiclassical influence functional formalism with four time slices
�Ref. 32�.
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