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QUANTUM-CLASSICAL WIGNER – LIOUVILLE EQUATION

KVANTOVO-KLASYÇNE RIVNQNNQ VIHNERA – LIUVILLQ

We consider a quantum system that is partitioned into a subsystem and a bath. Starting from the Wigner trans-
form of the von Neumann equation for the quantum mechanical density matrix of the entire system, the quantum-
classical Wigner – Liouville equation is obtained in the limit where masses M of the bath particles are large
compared to the masses m of the subsystem particles. The structure of this equation is discussed and it is
shown how the abstract operator form of the quantum-classical Liouville equation is obtained by taking the
inverse Wigner transform on the subsystem. Solutions in terms of classical trajectory segments and quantum
transition or momentum jumps are described.

Rozhlqnuto kvantovu systemu, rozdilenu na pidsystemu ta termostat. Pislq zastosuvannq peretvoren\

Vihnera do rivnqnnq fon Nejmana dlq kvantovo-mexaniçno] matryci wil\nosti systemy oderΩano

kvantovo-klasyçne rivnqnnq Vihnera – Liuvillq u hranyci, de masy M çastynok termostatu velyki

u porivnqnni z masamy m çastynok pidsystemy. Obhovoreno strukturu c\oho rivnqnnq i pokazano, qk

moΩna otrymaty abstraktnu operatornu formu kvantovo-klasyçnoho rivnqnnq Liuvillq za dopomohog

zvorotnoho peretvorennq Vihnera na pidsystemi. Rozv’qzky opysano v terminax klasyçnyx sehmentiv

tra[ktori] ta kvantovoho perexodu abo impul\snyx strybkiv.

1. Introduction. There are many circumstances when a mixed quantum-classical ap-
proach to the dynamics of a system is appropriate. If one considers proton or electron
transfer processes in condensed phases, the quantum character of the proton or electron
must be taken into account but the solvent in which these transfer reactions take place
may often be approximated by classical mechanics. There are also compelling practical
reasons for exploring such mixed schemes: it is impossible to simulate the full quantum
dynamics for a large many-body system. However, it may be possible to mix classical
molecular dynamics of the solvent with quantum evolution of some degrees of freedom.

Quantum dynamics in classical environments is often carried out using mean field
theories or surface-hopping algorithms [1]. Mixed quantum-classical dynamics can also
be described using a quantum-classical Liouville equation [2 – 6]. This equation may be
derived from the full quantum mechanical von Neumann equation for the density matrix,

∂ρ̂(t)
∂t

= − i
�
[Ĥ, ρ̂(t)] , (1)

where Ĥ is the Hamiltonian of the system. The system is assumed to be composed of a
subsystem and a bath or environment. The partial Wigner transform is first taken over the
environmental degrees of freedom,

ρ̂W (R,P ) = (2π�)−νh

∫
dzeiP ·Z/�

〈
R− Z

2

∣∣∣∣ ρ̂
∣∣∣∣R+

Z

2

〉
, (2)

where νh is the coordinate space dimension of the bath and, after introducing scaled
variables similar to those used in the classical theory of Brownian motion, the evolution
operator is expanded to first order in the small parameter µ = (m/M)1/2, where m
and M, M >> m, are the masses of the particles in the quantum subsystem and bath,
respectively. The quantum-classical Liouville equation takes the form [2 – 6],

∂ρ̂W (R,P, t)
∂t

= − i
�
[ĤW , ρ̂W (t)] +

1
2

({
ĤW , ρ̂W (t)

}
−

{
ρ̂W (t), ĤW

})
≡

≡ −iL̂ρ̂W (t) = −(ĤW , ρ̂W (t)), (3)
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where {·, ·} is the Poisson bracket and (·, ·) is the quantum-classical bracket. The
quantum-classical Liouville operator is L̂. It has been proposed and used in various con-
texts [7]. This formulation of quantum-classical dynamics has proved useful as a theo-
retical basis for understanding the validity of existing surface hopping schemes and has
provided a framework for constructing new surface-hopping algorithms for nonadiabatic
dynamics [8]. The quantum-classical bracket that enters the quantum-classical Liouville
equation does not have a Lie algebraic structure and this has implications for the dynamics
and the structure of nonequilibrium statistical mechanics constructed in the framework of
quantum-classical dynamics [9].

In this article we demonstrate some interrelations among various representations of
the quantum-classical Liouville equation and indicate how it may be solved using surface-
hopping trajectories.

2. Quantum-classical Wigner – Liouville equation. The dynamics of the entire
quantum system, subsystem plus bath, is described by the von Neumann equation (1) for
the density matrix. We may write the von Neumann equation in an equivalent form by
taking its full Wigner transform to obtain the Wigner – Liouville equation [10 – 12],[

∂

∂t
+ iL(0)

� + iL(0)
h

]
ρW (p, P, r, R, t) =

=
∫
dsdS ω(s, S, q, R)ρW (p− s, P − S, r,R, t).

Here we indicated Wigner transform variables as (p, r) for the subsystem and (P,R) for

bath. The classical free streaming Liouville operators are iL(0)
� =

p

m

∂

∂r
and iL(0)

h =

=
P

m

∂

∂R
. The kernel in the integral term is defined as

ω(s, S, r, R) =
2

�(π�)ν

∫
dr̃dR̃ V (r − r̃, R− R̃) sin

(2(sr̃ + SR̃)
�

)
,

where ν is the coordinate space dimension of the entire system and the potential can be
written as the sum of subsystem, bath and coupling contributions, V = Vs + Vb + Vc.

This equation is equivalent to the von Neumann equation and describes the quantum
dynamics of the entire system. We now wish to take the limit where the bath degrees
of freedom are treated classically. To this end we follow the procedure in Ref. [6] and
introduce scaled coordinates as follows: we measure the energy in units ε0, time in units

t0 =
�

ε0
, length in units λm =

(
�

2

mε0

)1/2

, momentum of the light subsystem particles

in units of pm =
mλm

t0
= (mε0)1/2 and momentum of the heavy subsystem particles in

units PM = (Mε0)1/2. The transformed variables are denoted by a prime: p′ =
p

pm
,

r′ =
r

λm
, P ′ =

P

PM
, R′ =

R

λm
and t′ = t/t0. In these scaled coordinates the

Wigner – Liouville equation takes the form,[
∂

∂t′
+ iL(0)′

� + µiL(0)′
h

]
ρ′W =

=
∫
ds′dS′ ω′(s′, S′, r′, R′)ρ′W (p′ − s′, P ′ − S′, r′, R′, t′). (4)
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The quantum-classical limit of this equation is obtained by expanding the right-hand side
of this equation to linear order in the small parameter µ. The Taylor expansion of V ′(r−
− r̃′, R′ − µR̃′′) that appears in the definition of the kernel is

V ′(r − r̃′, R′ − µR̃′′) ≈ V ′(r − r̃′, R′) − µ∂V
′(r − r̃′, R′)
∂R′ R̃′′ + O(µ2).

Keeping terms up to linear order in µ in the expression for ω′, we obtain

ω′(s′, S′, r′, R′) ≈ 2
(π)ν

∫
dr̃′dR̃′′V ′(r′ − r̃′, R′) sin

(
2s′r̃′ + 2S′R̃′′

)
−

− 2µ
(π)ν

∫
dr̃′dR̃′′ ∂V

′(r′ − r̃′, R′)
∂R′ R̃′′ sin

(
2s′r̃′ + 2S′R̃′′

)
+ O(µ2) .

Next, using the fact that
∫
dR̃′′ cos(2S′R̃′′) = πνhδ(S′) and

∫
dR̃′′ sin(2S′R̃′′) = 0,

we may write this equation in the form,

ω′(s′, S′, r′, r′) ≈ 2
πν�

∫
dr̃′V ′(r′ − r̃′, R′) sin(2s′r̃′)δ(S′) +

+
µ

πν�

∫
dr̃′
∂V ′(r′ − r̃′, R′)

∂R′ cos(2s′r̃′)
dδ(S′)
dS′ .

Inserting this expression for ω′ in the integral in Eq. (4) and simplifying, we obtain,[
∂

∂t′
+ iL(0)′

� + µiL(0)′
h

]
ρ′W =

=
2
πν�

∫
ds′

[∫
dr̃′V ′(r′ − r̃′, R′) sin(2s′r̃′)

]
ρ′W (p′ − s′, P ′, r′, R′, t′) +

+µ
∫
ds′∆F ′

R′,s′
∂

∂P ′ ρ
′
W (p′ − s′, P ′, r′, R′, t′),

where we have defined ∆F ′
R′,s′ =

1
πν�

∂

∂R′

[∫
dr̃′ cos(2s′r̃′)V ′(r′ − r̃′, R′)

]
.

Returning to the original unscaled coordinates we have the quantum-classical Wigner –
Liouville equation, [

∂

∂t
+ iL(0)

� + iL(0)
h

]
ρW (p, P, r, R, t) =

=
2

�(π�)ν�

∫
ds

[∫
dr̃V (r − r̃, R) sin

(
2sr̃
�

)]
ρW (p− s, P, r, R, t) +

+
∫
ds∆F (R, s)

∂

∂P
ρW (p− s, P, r, R, t), (5)

with

∆F (R, s) =
1

(π�)ν�

∂

∂R

[∫
dr̃ cos(2sr̃/�)V (r − r̃, R)

]
.

This equation gives the dynamics of the quantum-classical system in terms of phase
space variables (R,P ) for the bath and the Wigner transform variables (r, p) for the
quantum subsystem. The solution of this equation is difficult in general but this for-
mulation of mixed quantum-classical dynamics may prove useful in some contexts, for
example when the subsystem has a dense spectrum. However, in many cases the quantum
subsystem can be described in terms of a few quantum states and in this case it may be
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better to represent the quantum subsystem in terms of some suitable basis. The adiabatic
basis is a particularly convenient basis for making connection to surface hopping schemes.
To this end, we now show how to “undo” the Wigner transformation of the quantum sub-
system degrees of freedom and obtain the quantum-classical Liouville equation (3) that is
independent of the representation of the subsystem.

3. Partially undoing the Wigner transform. The quantum-classical Liouville equa-
tion (3) describes and abstract, representation free description of the dynamics, while
in the quantum-classical Wigner – Liouville equation (5) the quantum subsystem is de-
scribed in Wigner transform space. We now show that, as expected, if we undo the Wigner
transform on the quantum degrees of freedom we recover the quantum-classical Liouville
equation. The Wigner transform of a dynamical variable in the quantum subsystem can
be written as,

AW (r, p) =
∫
dξeipξ/�

〈
r − ξ

2

∣∣∣∣ Â
∣∣∣∣r +

ξ

2

〉
≡ W ◦

〈
r − ξ

2

∣∣∣∣ Â
∣∣∣∣r +

ξ

2

〉
,

while its inverse is defined by〈
r − ξ

2

∣∣∣∣ Â
∣∣∣∣r +

ξ

2

〉
=

1
(2π�)ν�

∫
dpe−ipξ/�AW (r, p) ≡ W−1 ◦AW (r, p).

A set of expressions analogous to Eq. (2) holds for the density matrix.
We may now apply W−1 to the quantum-classical Wigner – Liouville equation to

obtain the desired result. First, we consider

W−1 ◦
{
p

m

∂ρW (p, P, r, R)
∂r

}
=

1
(2π�)ν�

∫
dpe−ipξ/�

p

m

∂ρW (p, P, r, R)
∂r

=

=
i�

m

∂

∂ξ

∂

∂r

〈
r − ξ

2

∣∣∣∣ρ̂W (P,R)
∣∣∣∣r +

ξ

2

〉
=

=
i�

2m

[
−

(
∂2

∂r2

〈(
r − ξ

2

)∣∣∣∣
)
ρ̂W (P,R)

∣∣∣∣r +
ξ

2

〉
+

+
〈
r − ξ

2

∣∣∣∣ρ̂W (P,R)
(
∂2

∂r2

∣∣∣∣
(
r +

ξ

2

)〉)]
=

=
i

�

〈
r − ξ

2

∣∣∣∣
[
p̂2

2m
, ρ̂W (P,R)

]∣∣∣∣r +
ξ

2

〉
.

To obtain the last line we inserted complete sets of states and used the identity,〈
r

∣∣∣∣ p̂
2

2m

∣∣∣∣ r′
〉

= − �
2

2m
∂2

∂r2
δ(r − r′).

Next, consider the action of W−1 on the potential contribution,

W−1 ◦ c1
∫
ds

[∫
dr̃V (r − r̃, R) sin(2sr̃/�)

]
ρW (p− s, P, r, R, t) =

=
1

(2π�)ν�

∫
dpe−ipξ/�c1

∫
ds

[∫
dr̃V (r − r̃, R) sin(2sr̃/�)

]
×

×ρW (p− s, P, r, R, t) =

= c1

[∫
dr̃V (r − r̃, R)

∫
dse−isξ/� sin(2sr̃/�)

]
×

×
〈
r − ξ

2

∣∣∣∣ρ̂W (P,R)
∣∣∣∣r +

ξ

2

〉
,
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where c1 = 2/(�(π�)ν�). Noting that∫
dse−isξ/� sin

(
2sr̃
�

)
=

(2π�)ν�

2i

[
δ(ξ − 2r̃) − δ(ξ + 2r̃)

]
,

and carrying out the r̃ integration, the potential contribution becomes

W−1 ◦ c1
∫
ds

[∫
dr̃V (q − r̃, R) sin

(
2sr̃
�

)]
ρW (p− s, P, r, R, t) =

= − i
�

〈
r − ξ

2

∣∣∣∣
[
V̂ , ρ̂W (P,R)

]∣∣∣∣r +
ξ

2

〉
.

Lastly, the term that involves ∆F can be analyzed as follows. Consider

W−1 ◦
∫
ds∆F (R, s)

∂

∂P
ρW (p− s, P, r, R, t) =

=
∫
ds∆F (R, s)e−

i
�

sξ ∂

∂P

〈
r − ξ

2

∣∣∣∣ρ̂W (P,R, t)
∣∣∣∣r +

ξ

2

〉
.

Using the fact that∫
dse−

i
�

sξ cos
(

2sr̃
�

)
=

(2π�)ν�

2

[
δ(ξ − 2r̃) + δ(ξ + 2r̃)

]
,

we may write∫
dse−

i
�

sξ∆F (R, s) =
1

(π�)ν�

∂

∂R

∫
dr̃V (r − r̃, R)

∫
dse−

i
�

sξ cos
(

2sr̃
�

)
=

=
2ν�

2
∂

∂R

∫
dr̃V (r − r̃, R)

[
δ(ξ − 2r̃) + δ(ξ + 2r̃)

]
=

=
1
2



∂V

(
r − ξ

2
, R

)

∂R
+
∂V

(
r +

ξ

2
, R

)

∂R


 .

Using these results this term becomes


1
2



∂V

(
r − ξ

2
, R

)

∂R
+
∂V

(
r +

ξ

2
, R

)

∂R







∂

∂P

〈
r − ξ

2

∣∣∣∣ρ̂W (P,R, t)
∣∣∣∣r +

ξ

2

〉
=

=
1
2

〈
r − ξ

2

∣∣∣∣
(
{V̂ , ρ̂W } − {ρ̂W , V̂ }

) ∣∣∣∣r +
ξ

2

〉
,

where we have used the fact that

{V̂ , ρ̂W } − {ρ̂W , V̂ } =
∂V̂

∂R

∂ρ̂W

∂P
− ∂V̂

∂P

∂ρ̂W

∂R
− ∂ρ̂W

∂R

∂V̂

∂P
+
∂ρ̂W

∂P

∂V̂

∂R
=

=
∂V̂

∂R

∂ρ̂W

∂P
+
∂ρ̂W

∂P

∂V̂

∂R
,

since V̂ does not depend on P.
Collecting all of the expressions for the various terms we find that the inverse partial

Wigner transform of the quantum-classical Wigner – Liouville equation in Eq. (5) is

∂

∂t

〈
r − ξ

2

∣∣∣∣ρ̂W (P,R, t)
∣∣∣∣r +

ξ

2

〉
=
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= − i

�

〈
r − ξ

2

∣∣∣∣
[(

p̂2

2m
+ V̂

)
, ρ̂W (P,R)

] ∣∣∣∣r +
ξ

2

〉
−

− P
M

∂

∂R

〈
r − ξ

2

∣∣∣∣ρ̂W (P,R, t)
∣∣∣∣r +

ξ

2

〉
+

+
1
2

〈
r − ξ

2

∣∣∣∣
(
{V̂ , ρ̂W } − {ρ̂W , V̂ }

) ∣∣∣∣r +
ξ

2

〉
.

If we then use the definition of the partially Wigner transformed Hamiltonian, ĤW =

=
P 2

2M
+
p̂2

2m
+ V̂ , we may write this equation in the form,

〈
r − ξ

2

∣∣∣∣ ∂∂t ρ̂W (P,R, t)
∣∣∣∣r +

ξ

2

〉
=

〈
r − ξ

2

∣∣∣∣
[
− i

�

[
ĤW , ρ̂W (P,R)

]
+

1
2

(
{ĤW , ρ̂W } − {ρ̂W , ĤW }

)] ∣∣∣∣r +
ξ

2

〉
.

Considering the operators inside the involved in these matrix elements, we have again
obtained the quantum-classical Liouville equation (3) in its abstract form.

4. Solution of the Wigner – Liouville equation. In this section we shall contrast
the solutions of the quantum-classical Wigner – Liouville equation (5) with those of the
representation of the abstract quantum-classical Liouville equation (3) in the adiabatic
basis.

We begin with the quantum-classical Wigner – Liouville equation and note that it can
be written in a compact form as,[

∂

∂t
+ iL� + iLh

]
ρW (p, P, r, R, t) =

∫
ds K(s, P, r, R)ρW (p− s, P, r, R, t) (6)

where iL� =
p

m

∂

∂r
+ Fs(r)

∂

∂p
is the full classical Liouville operator for the subsystem

and iLh =
P

M

∂

∂R
+Fb(R)

∂

∂P
is the full classical Liouville operator for the bath. Here

Fs(r) = −∂Vs(r)
∂r

and Fb(R) = −∂Vb(R)
∂R

. The kernel K(s, P, r, R) is the sum of

two contributions, K = K� +Kh with

Kh(s, P, r, R) =
(
− ∂

∂R
Vb(R)

)
∂

∂P
δ(s) −

− 1
(π�)ν�

(
− ∂

∂R

∫
dr̃ cos

(
2sr̃
�

)
V (r − r̃, R)

)
∂

∂P
,

K�(s, P, r, R) = −∂Vs(r)
∂r

dδ(s)
ds

+

+
2

�(π�)ν�

∫
ds

[∫
dr̃V (r − r̃, R) sin

(
2sr̃
�

)]
.

Equation (6) can be written in integral form as

ρW (p, P, r, R, t) = e−i(L�+Lh)tρW (p, P, r, R, 0) +

+

t∫
0

dt′ e−i(L�+Lh)(t−t′)

∫
ds K(s, P, r, R)ρW (p− s, P, r, R, t′).

This equation may be iterated to obtain a formal solution for ρW (p, P, r, R, t) which
can, in principle, be computed by evaluating classical trajectory segments interspersed by
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jumps in the momentum variables. Such a procedure may be useful for one-dimensional
quantum subsystems embedded in a classical baths when the quantum subsystem has
many closely spaced energy levels. However, the kernel in Eq. (6) is highly oscillatory
and techniques for the solution of the integral equation need to be developed. Thus, so
far no simulations of the quantum-classical Wigner – Liouville equation have been carried
out using this method so its utility remains to be tested. Nevertheless, the equation may
prove useful as a starting point for approximate solutions to quantum-classical dynamics,
especially for cases when the subsystem spectrum is dense.

Although trajectory based methods for the solution of the quantum-classical Wigner –
Liouville equation may have limited utility, if the quantum-classical Liouville equation
in the adiabatic basis can be simulated from an ensemble of surface-hopping trajecto-
ries. The adiabatic states are the solution of the eigenvalue problem, ĥW (R)|α;R〉 =
= Eα(R)|α;R〉, where the Hamiltonian for the system with fixed values of the bath

coordinates is ĥW (R) =
p̂2

2m
+ V̂ (q̂, R). Note that the Wigner transformed Hamilto-

nian of the entire system is just the sum of the classical kinetic energy of the bath plus

ĥW (R), ĤW (R,P ) =
P 2

2M
+ ĥW (R). Taking matrix elements of Eq. (3) and letting

ραα′

W (R,P ) = 〈α;R|ρ̂W (R,P )|α′;R〉, we obtain

∂ραα′

W (R,P, t)
∂t

=
∑
ββ′

−iLαα′,ββ′ρββ′

W (R,P, t), (7)

where the matrix elements of iL are

−iLαα′,ββ′ = (−iωαα′ − iLαα′)δαβδα′β′ + Jαα′,ββ′ ,

with ωαα′ =
Eα − Eα′

�
and

Jαα′,ββ′ = − P
M
dαβ

(
1 +

1
2
Sαβ

∂

∂P

)
δα′β′ − P

M
d∗α′β′

(
1 +

1
2
S∗

α′β′
∂

∂P

)
δαβ .

The quantity Sαβ is defined as

Sαβ = (Eα − Eβ)dαβ

(
P

M
dαβ

)−1

.

This representation in the adiabatic basis is especially instructive for formulating the dy-
namics in terms of surface-hopping trajectories [6].

The solution of the quantum-classical Liouville equation (7) may be found by iteration
to yield a representation of the dynamics as a sequence of terms involving increasing
numbers of nonadiabatic transitions [6],

ρ
α0α′

0
W (R,P, t) = e

−iL0
α0α′

0
t
ρ

α0α′
0

W (R,P ) +

+
∞∑

n=1

∑
(α1α′

1)...(αnα′
n)

t0∫
0

dt1

t1∫
0

dt2 . . .

tn−1∫
0

dtn ×

×
n∏

k=1

[
e
−iL0

αk−1α′
k−1

(tk−1−tk)
Jαk−1α′

k−1,αkα′
k

]
×

×e−iL0
αnα′

n
tnρ

αnα′
n

W (R,P, 0) .
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The successive terms in the series correspond to increasing numbers of nonadiabatic
transitions. The first term that describes simple adiabatic dynamics. For example, the
quantum-classical approximation to the population in state α at phase point (R,P ) at
time t is given by a sum of terms starting with adiabatic evolution on state α. Single
nonadiabatic contributions appear next where transitions to states β, β �= α, occur at
times t′ intermediate between t and 0. Transitions are accompanied by continuous
momentum changes in the environment specified by the term in J involving a momentum
derivative. Since a single quantum transition takes place this contribution to ραα

W (R,P, t)
must arise from an off-diagonal density matrix element, ραβ

W at time 0. During the portion
of the evolution segment from t′ to 0, the classical environmental phase space coordinates
are propagated on the mean of the two α and β adiabatic surfaces and a phase factor
Wαβ contributes to the population in state α.

Efficient algorithms [8] to compute quantum-classical evolution based on these for-
mulas have been constructed and used to determine mean values of observables [13] and
chemical reaction rates [14].

5. Conclusion. Several forms of the quantum-classical Liouville equation were con-
sidered in this paper. These forms differ in the manner in which the quantum subsystem is
represented. If one starts with a Wigner representation of the entire system, quantum sub-
system plus bath, and takes the quantum-classical limit, the quantum-classical Wigner –
Liouville equation is obtained. This equation may be of use for formal calculations where
a phase space representation of the quantum subsystem is appropriate. It may also prove
useful in studies where the spectrum of the quantum subsystem consists of many closely
spaced levels. Undoing the Wigner representation of the quantum subsystem degrees of
freedom leads to the quantum-classical Liouville equation where the description of the
quantum subsystem is independent of any specific representation. If an adiabatic rep-
resentation is chosen, the solution of the quantum-classical Liouville equation may be
expressed in terms of surface-hopping trajectories.
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