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Analysis of kinetic isotope effects for nonadiabatic reactions
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Factors influencing the rates of quantum mechanical particle transfer reactions in many-body
systems are discussed. The investigations are carried out on a simple model for a proton transfer
reaction that captures generic features seen in more realistic models of condensed phase systems.
The model involves a bistable quantum oscillator coupled to a one-dimensional double-well reaction
coordinate, which is in turn coupled to a bath of harmonic oscillators. Reactive-flux correlation
functions that involve quantum-classical Liouville dynamics for chemical species operators and
quantum equilibrium sampling are used to estimate the reaction rates. Approximate analytical
expressions for the quantum equilibrium structure are derived. Reaction rates are shown to be
influenced significantly by both the quantum equilibrium structure and nonadiabatic dynamics.
Nonadiabatic dynamical effects are found to play the major role in determining the magnitude of the
kinetic isotope effect for the model transfer reaction. © 2006 American Institute of Physics..
�DOI: 10.1063/1.2336778�
I. INTRODUCTION

Quantum mechanical reaction rates can be determined
by evaluating time correlation functions of the fluxes of re-
actant and product chemical species.1,2 The computation of
such correlation functions involves sampling initial condi-
tions from quantum equilibrium distributions and quantum
time evolution of chemical species operators. Both the equi-
librium and dynamical parts of the calculation present chal-
lenges for applications to condensed phase systems and a
number of computational schemes have been proposed to
compute the structure and dynamics.3–22

One of the signatures of quantum effects on the value of
the reaction rate constant is the magnitude of the kinetic
isotope effect. For instance, quantum effects on proton trans-
fer rates in chemical and biological systems have been estab-
lished through experimental measurements of the isotope ef-
fect when the proton is replaced by the deuteron.23–25 The
magnitude of the isotope effect is determined by contribu-
tions arising from the equilibrium structure, as reflected in
the transition state theory value of the rate constant, and in
dynamical effects that lead to deviations from transition state
theory. The effect of nonadiabatic dynamics on the magni-
tude of the isotope effect has been a matter of some debate
for realistic models of condensed phase proton transfer
reactions.26–34

In order to explore some of these issues, we consider a
model of a strongly bonded proton transfer reaction where
the protonic degree of freedom is directly coupled to a single
bath coordinate that serves as the reaction coordinate for the
reaction. This reaction coordinate is, in turn, coupled to a
harmonic many-body bath. This model, while highly ideal-
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ized, captures generic features of real proton transfer reac-
tions where functions of bath coordinates, such as the solvent
polarization, can be used to monitor the progress of the re-
action. For this simple model we can examine the various
contributions to the isotope effect coming from equilibrium,
adiabatic, and nonadiabatic effects.

In many circumstances quantum rates may be strongly
nonadiabatic so that a description of the dynamics involving
evolution on a single adiabatic surface is not adequate for an
accurate estimation of the rate constant. Our description of
the quantum dynamics is based on quantum-classical Liou-
ville evolution35–37 and we derive approximations to the
quantum equilibrium structure that incorporate nonadiabatic
effects.38–42

The paper is organized as follows: Section II gives the
quantum-classical expression for the reaction rate coefficient
on which our simulations are based and describes the simple
quantum particle transfer model. The results of the calcula-
tions and a discussion of various contributions to the kinetic
isotope effect are presented in Sec. III, while the concluding
remarks are given in Sec. IV. The Appendix contains details
of the derivation of the expression for the spectral density
function that enters the reactive-flux correlation expression
for the rate.

II. RATE COEFFICIENT AND MODEL SYSTEM

Our investigations are based on an expression40 for the
time-dependent rate coefficient of a general interconversion
reaction A�B whose progress can be monitored through a
reaction coordinate ��R�, which is a function of the bath

43
coordinates:
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Z�

2
�

�
R� +
Z�

2
�e−��/2�Ĥ�R −
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Here the bath phase space variables are denoted by X

= �R , P�, ZQ=Tre−�Ĥ and nA
eqZQ are the total and reactant par-

tition functions, respectively, while 	 denotes the coordinate
space dimension and � is the inverse temperature. The spe-

cies operator that characterizes the B metastable state is N̂B

=
���R�−�‡�, where 
 is the Heaviside function. The meta-
stable A species is defined in an analogous manner. The di-
viding surface that separates metastable A and B species is
located at ��R�=�‡. The evolution of the species variable

NB
����X , t� is determined by the quantum-classical evolution

operator.35 The rate constant k can be determined from the
plateau value of k�t�.44 This rate coefficient expression was
obtained by starting from the quantum mechanical expres-
sion for the reaction rate, making use of a partial Wigner
representation of the system and taking the quantum-
classical limit of the dynamics while retaining the full quan-
tum equilibrium structure in the spectral density function
WA.39,40 In the adiabatic limit, the rate coefficient reduces to
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where the evolution of NB,ad
�� �X , t� is confined to single adia-

batic surfaces and transitions between these surfaces are not
allowed.

The partial Wigner transform of the Hamiltonian Ĥ of

the system, ĤW= P2 /2M + ĥW�R�, where ĥW�R� is the quan-
tum subsystem Hamiltonian in the field of fixed bath par-
ticles, enters in the above formulation of the rate coefficient.
Equation �1� is written in an adiabatic basis. The adiabatic
eigenstates ��� ;R�� are the solutions of the eigenvalue prob-

lem ĥW�R��� ;R�=E��R��� ;R�, where �E�� are the adiabatic
energies. The partially Wigner-transformed Hamiltonian of

our model system is given by
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It describes a quantum system with Hamiltonian Ĥ= Ĥsn

+ Ĥb�n� composed of two bilinearly coupled nonlinear oscil-
lators with coordinate and momentum operators �r̂ , p̂� and

�R̂0 , P̂0� whose Hamiltonian is Ĥsn, and a harmonic bath that
is bilinearly coupled to the R0 oscillator whose Hamiltonian

in the field of the R0 coordinate is Ĥb�n�.
We take �r̂ , p̂� to represent the position and momentum

operators of the proton with mass mH. The potential energy
of the proton is given by a double-well form that mimics the
interaction of a proton in a strongly hydrogen bonded
complex:

VP�r� = D��1 − e−d�r+r0��2 + �1 − e−d�r−r0��2� − 2D . �5�

The two minima correspond to the metastable A and B states
in the absence of coupling to the bath �see Fig. 1�. This
potential function can be generalized easily to treat asym-
metric cases. The parameters D=7, d=1.3, and r0=1 were
chosen to correspond to a strong hydrogen bond.

The coupling of the R0 oscillator to the proton is given
by ����R0�r̂, where ���R0�=�0�R0 and �0� is a constant. The
quartic oscillator with potential Vn�R0�=AR0

4 /4−BR0
2 /2 is bi-

linearly coupled to 	−1 independent one-dimensional har-
monic oscillators. The harmonic bath potential including the
coupling to the quartic oscillator is given by Vb�n��Rb ;R0�
= 1 � 2� j=1

	−1Mj
 j
2�Rj −cj
 j

−2Mj
−1R0�2, where 
 j and Mj are the

frequency and mass of the jth oscillator, respectively. The
bilinear coupling is characterized by an Ohmic spectral den-
sity depending on the Kondo parameter �K.45 In this model
we see that transitions between the two metastable wells of
the R0 quartic oscillator induce hops in the protonic sub-
system that, in turn, influence the R0 dynamics. Such cou-
pling mimics the influence of solvent degrees of freedom on
proton transfer in the condensed phase.

The Hamiltonian �4� may be written in the subsystem
basis �����, which is obtained by solving the Schrödinger

equation for the isolated proton, ĤP���=�����, where ĤP

ˆ 2 ˆ ˆ

FIG. 1. Potential energy along the protonic coordinate r. The energies of the
ground ��1� and first excited ��2� states of the proton are shown.
= p /2mH+VP�r�. In order to solve this eigenvalue problem,
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the wave function ��� is expanded in a set of normalized
basis functions, ���=�ici���i�, which are chosen to be the
solutions of the quantum harmonic oscillator,

�i�r� = �r��i� = �2nn ! ���−1/2b1/2Hn�b�r − r0��

�exp�− b2�r − r0�2/2� , �6�

where n is an integer, Hn�x� is a Hermite polynomial, and the
index i on the basis function represents a pair of values
�n ,r0�. We use a total of 16 basis functions, consisting of two
sets of eight functions �n=0, . . . ,7� with b=2. One set is
centered at r0=1, and the other set at r0=−1, the minima of
the wells in the protonic potential. This leads to the standard
eigenvalue problem, Hc=Sc�, where H is the Hamiltonian

matrix with elements, Hij = ��i��̂P�� j�, and S is the overlap
matrix with elements, Sij = ��i �� j�. The matrix elements �Hij�
and �Sij� are evaluated numerically. The coefficients �ci��
satisfy the normalization condition, �ijci�Sijcj�=1. The ei-
genvalue problem is then solved to obtain ���� and �����,
from which we choose the lowest two states �����= �1� , �2� to
form the basis for representing the system Hamiltonian.

The adiabatic states are obtained by diagonalization of
the two-level Hamiltonian in the subsystem basis.46 The cor-
responding adiabatic energies are given by

E��R� = E�
sn�R0� + Vb�n��Rb;R0� , �7�

where

E�
sn�R0� = Vn�R0� � ��2 + ��R0�2. �8�

Here, ��R0�=�0R0, �0=��0�1�r̂�2�, and �= ��2−�1� /2. The
factor �0� is used to scale the magnitude of the coupling be-
tween the quantum particle and R0 coordinate while the fac-
tor �1�r̂�2� is computed explicitly in order to correctly deter-
mine the relative magnitudes of the coupling for the proton
and deuteron. The sign in Eq. �8� is negative for the ground
state and positive for the excited state. For convenience, we
have shifted the adiabatic energies by −��1+�2� /2.

Sampling initial conditions for the calculation of the rate
coefficient in Eq. �1� requires a knowledge of the spectral
density function WA. Since the expression for WA derived
previously40 was restricted to weakly nonadiabatic systems, a
more general expression for this quantity is needed. In com-
mon with many treatments of spin-boson-type systems, the
derivation assumes that the imaginary time propagator is

separable into system and bath parts,6 exp �−�Ĥ�
�exp �−�Ĥsn�exp �−�Ĥb�n��. A symmetric decomposition of

the propagator e−�Ĥsn =e−�ĥsn/2e−�P̂2/�2M�e−�ĥsn/2+O��3� is
then used in the evaluation of the matrix elements. This ap-
proximation is useful for the treatment of condensed phase
systems at high temperatures. The details of the calculation
under these conditions for a general quantum subsystem and
bath are given in the Appendix.

For the model system under study, R0 is the only coor-
dinate that directly couples to the protonic subsystem and we
choose ��R�=R0 as the reaction coordinate and �‡=R0

‡=0 for
this symmetric system. In order to mimic situations where
the proton transfer occurs in a solvent of massive molecules

we consider a limiting situation where the bath degrees of
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freedom �R0 oscillator and harmonic bath� are treated classi-
cally but the protonic system is treated quantum mechani-
cally in WA. This limiting form of the general expression for
WA is also given in the Appendix. For our two-level system,
the result is

WA
����X,

i��

2
	 =

P0

M0
��R0�

e−�H��X�

�2���	ZQ
��1 + D������ + O���� .

�9�

Here H��X�= P2 /2M +E��R� and the partition function is
ZQ��1/2���	���dX exp�−�H��X�� in the high temperature
limit. The functions D� and O��� contribute to the diagonal
and off-diagonal terms, respectively, in the equilibrium spec-
tral density.

The functions D� and O��� can be evaluated by numeri-
cal integration as discussed in the Appendix. They can also
be determined analytically for high temperatures and weak
enough coupling �see the Appendix� and the resulting forms
provide insight into their structure. The diagonal contribution
is given by

D� =
1

4�
��0

Td12�0��2�1 − e��/2�E�
sn�0��3, �10�

with d12�0�=�0 / �2�� the nonadiabatic coupling matrix ele-
ment at R0=0 and �0

T= �2���2 /M0�1/2 the thermal de Broglie
wavelength corresponding to the R0 degree of freedom. The
off-diagonal contribution is

O��� =
i

4�
��0d����0��e−��/4��E

��
sn �0�+E�

sn�0��

��e−��/4�E
��
sn �0� − e−��/4�E�
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where �0=2�� / P0 is the de Broglie wavelength of the R0

degree of freedom. Note that Eq. �11� satisfies the symmetry
relation O���=O���. From these expressions we see that the
magnitudes of D� and O��� depend on two factors: the first
involves the change in the adiabatic wave function with R0

over distances corresponding to �0
T and �0 for D� and O���,

respectively, while the second involves the adiabatic energy
evaluated at R0=0. Note that E�

sn�0�= ��. The sign of D� is
positive for the ground state ��=1� and negative for the ex-
cited state ��=2�. Thus, the magnitude of the ground-state
contribution to the rate is increased due to this term while
that of the excited-state contribution is decreased.

III. RESULTS

Using the expressions given in Sec. II, we calculated
�P=0.51 for the proton transfer and �D=0.21 for the
deuteron transfer. Two sets of parameters for �0 were used:
�0

P=2.64 and �0
D=2.74 for �0�=4, and �0

P=10.56 and �0
D

=10.96 for �0�=16. We set A=0.5 and B=1 in the quartic

potential Vn�R0�. We chose �=0.5 to be consistent with the
high temperature approximations made. The number of os-
cillators in the harmonic bath is 100 �making 	=101� and the
Kondo parameter is �K=2. All other parameters in the Ohmic
spectral density are the same as in earlier studies.46 The
above parameters and our simulation results are reported in

46
the dimensionless units defined previously. We used the
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sequential short-time propagation algorithm in conjunction
with the momentum jump approximation and a bound on the
observable in order to simulate the quantum-classical dy-
namics of the system. The details of these methods are given
elsewhere.34,47 The initial positions and momenta of the
quartic oscillator and bath were sampled from distributions
determined by Eq. �9�.

In Fig. 2, we compare the adiabatic free energy
curves for the model proton and deuteron systems.
The free energy W��R0� is defined as Pue−�W��R0�

=�dRbe−�E��R� /���dRe−�E��R�, where Pu is the uniform
probability density of R0 and the integration in the numerator
is over all harmonic bath coordinates Rb. For our
model system W��R0� takes the simple form

W��R0�=Vn�R0����2+��R0�. The ground-state free energy
curves are bistable while the excited-state curves have a
single minimum with an avoided crossing at R0=0. Since
�P��D, the energy gap between the ground and excited
adiabatic curves at the barrier top is larger for the proton than
for the deuteron. Also, the deuteron barrier is slightly sharper
than that for the proton because �0

D��0
H. Consequently, the

deuteron has a larger nonadiabatic coupling matrix element
d12�0� than the proton.

The mechanism for the quantum particle transfer can be
inferred from an examination of Fig. 3 where we plot the
ground-state adiabatic evolution of the reaction coordinate
R0 for the proton transfer �upper panel� and the ground-state
expectation values of the positions of the proton and deu-
teron versus R0 �lower panel�. The expectation value of the
position of the quantum particle on the ground adiabatic state
is given by �r�= �1;R0�r̂�1;R0�. The upper panel shows that
the R0 time series has the form of an activated rate process
for passage between two metastable values of R0 correspond-
ing to the free energy minima. The lower panel shows that

FIG. 2. Free energy curves of the ground �solid lines� and excited �dashed
lines� adiabatic states vs the reaction coordinate R0 for the model proton
�left� and deuteron �right�. In the top pair �0�=4 and in the bottom pair
�0�=16.
the quantum particle transfer �as monitored by �r�� takes

Downloaded 06 Sep 2006 to 142.150.225.29. Redistribution subject to
place only for a narrow window of R0 values centered around
the barrier top. We see that the deuteron transfer occurs over
a somewhat narrower window of R0 values than that for the
proton transfer, consistent with its sharper free energy bar-
rier. The results in this figure indicate that the quantum par-
ticle remains localized in the reactant or product states for a
wide range of R0 values near the metastable states; however,
once R0 attains values in a small region near the barrier top,
quantum particle transfer rapidly occurs. This mechanism is
analogous to that seen for a more realistic model of proton
transfer in a phenol-amine complex26 where the transfer
event is monitored by the solvent polarization. The plot of
�r� versus the solvent polarization �E�R� has a form similar
to that in the lower panel of Fig. 3. �cf. Fig. 2 in Ref. 34�.

In Fig. 4, we compare the time-dependent rate coeffi-
cients calculated using Eq. �1� for both the proton and deu-

FIG. 3. �Upper panel� Time series of R0�t� for protonic adiabatic dynamics
on the ground-state surface. �Lower panel� Plots of the mean positions �r� of
the proton and deuteron as a function of R0. Here �0�=4.

FIG. 4. Adiabatic �dashed lines� and nonadiabatic �solid lines� time-
dependent rate coefficients calculated using Eq. �1� for �0�=4 for the proton
�upper curve in each pair� and deuteron �lower curve in each pair� transfer

reactions.
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teron transfer reactions for �0�=4. The spectral density func-
tion was evaluated by performing the integral in Eq. �A7�
numerically. For this coupling strength, the analytical and
numerical results are indistinguishable. We find kP=9.62
�10−3 while kD=4.94�10−3. The adiabatic rate coefficients
are also displayed in this figure. The damped oscillatory
character of the time-dependent rate coefficients arises from
the dynamics on the excited-state surface. For adiabatic dy-
namics, where the oscillations are pronounced, the simula-
tions were carried out for times longer than those shown in
the figure and the rate constants were determined by back
extrapolation to t=0.2 The rate constants determined in this
way are kP

ad=1.26�10−2 and kD
ad=1.10�10−2. As expected,

proton transfer rate constants are higher than those for deu-
teron transfer. The incorporation of nonadiabatic effects
leads to a larger disparity between the proton and deuteron
rate constants, although the effects are not large.

In Fig. 5, we again plot the adiabatic and nonadiabatic
rate coefficients for the proton and deuteron but now for the
stronger coupling of �0�=16. The rate constants extracted
from the plateau values in this figure are kP=9.51�10−7,
kP

ad=1.42�10−6, kD=1.78�10−7, and kD
ad=6.35�10−7.

The kinetic isotope effect �KIE� is defined as the ratio of
the proton to deuteron rate constants, KIE=kP /kD, and is
often used to gauge the importance of quantum effects on
reaction rates. The KIE arises from various components in
the reactive-flux correlation function expression for the reac-
tion rate, including the initial value of k�t�, which yields the
transition state theory �TST� expression for the rate, as well
as adiabatic and nonadiabatic effects that lead to recrossing
of the barrier region and lower the rate. Since we use a
classical description of the bath variables, the initial value of
the time-dependent rate coefficient is nonzero and can be
used to define the TST rate constant, k�0+�=kTST, arising
from the one-way flux of R0 at the barrier top. At the weaker
coupling of �0�=4, the KIEs are not large and the various
estimates of the KIE coming from kTST, kad, and the full
nonadiabatic rate constant k are KIE�TST�=1.11, KIE�ad�
=1.15, and KIE=1.95, respectively. For the stronger cou-
pling of �0�=16, the corresponding KIEs are larger:

FIG. 5. Adiabatic �dashed lines� and nonadiabatic �solid lines� time-
dependent rate coefficients calculated using Eq. �1� for �0�=16 for the proton
�top pair of curves� and deuteron �bottom pair of curves� transfer reactions.
KIE�TST�=1.86, KIE�ad�=2.24, and KIE=5.34. In particu-
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lar, for this stronger coupling case we see that TST underes-
timates the isotope effect by almost a factor of 3 and the
adiabatic dynamics gives a poor estimate of this quantity.

It is interesting to examine how the various terms in the
spectral density function WA in Eq. �9� contribute to the re-
action rate and the KIE. The first factor on the right-hand
side of Eq. �9� is the diagonal contribution coming from the
flux of R0 at the barrier top times the probability of being at
the barrier top when the system is in state �. The second
factor is the off-diagonal contribution. In Fig. 6, we show the
decomposition of the rate coefficients for the proton and deu-
teron transfer reactions into their diagonal �ground and ex-
cited state� and off-diagonal components. As we can see, the
major contribution comes from the ground- and excited-state
diagonal terms for both the proton and deuteron transfers.
The off-diagonal contributions are very small for both trans-
fer reactions and will not be considered further.

The diagonal excited-state contributions merit additional
discussion. If the system is confined to the excited adiabatic
state, there is no well-defined rate process since the free en-
ergy curve is monostable with a minimum at a position cor-
responding to the ground-state barrier top. For adiabatic dy-
namics kad�t� will exhibit rapid oscillatory decay to zero and
the excited-state adiabatic dynamics will not contribute to
the plateau value that determines the reaction rate. When
nonadiabatic transitions are allowed, k can have a nonzero
value since the system can make transitions to the ground
state and evolve to one of two ground-state metastable wells.
Oscillatory recrossing of the excited-state dividing surface
gives rise to sign changes in the excited-state component.
Trajectories that start at the barrier top with a negative mo-
mentum, involving two nonadiabatic transitions that take the
system from the excited state to the ground state via the
mean surface, and recross the dividing surface once, leading
to a stable product, give rise to a negative excited-state con-
tribution to the rate. We plot such a trajectory in Fig. 7,
where one can observe two nonadiabatic transitions that in-
duce momentum jumps before one recrossing on the excited-

FIG. 6. Diagonal and off-diagonal contributions to the time-dependent rate
coefficients calculated using Eq. �1� for �0�=16 for the proton �left� and
deuteron �right� transfer reactions. The ground- and excited-state diagonal
contributions are displayed as solid and dashed lines, respectively, while the
off-diagonal contributions are given as dotted lines.
state surface. Note that in the case of the deuteron transfer
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the contribution of the excited state nearly cancels that of the
ground state, leading to a significant decrease in the rate.

Next, we consider the influence of the diagonal term D�

in WA on the rate and the KIE. For this purpose it is conve-
nient to rewrite the expression for the rate coefficient
�neglecting the off-diagonal contribution� as

k�t� = �
�

�1 + D��NB

���X,t�
P0

M0
��R0��

�

=�1 +
1

k0�t���

D�NB

���X,t�
P0

M0
��R0��

�

	k0�t�

� D�t�k0�t� ,

where k0�t�=���NB
���X , t���R0�P0 /M0�� and the angular

brackets are defined as �¯��=�dX¯e−�H� /���dX e−�H�.
From its definition, we see that the rate coefficient k0�t� is
obtained using equilibrium sampling from the Boltzmann
factor determined by the adiabatic energy. The deviation of
the factor D�t� from unity measures the importance of proton
or deuteron quantum equilibrium effects beyond those incor-
porated in the sampling from adiabatic states. In Fig. 8 we
plot D�t� for �0�=16, and observe rate-enhancing corrections
of 43% and 63% in the values of k0�t� for the proton and
deuteron transfers, respectively. The large increase in DD�t�
near t=2 is caused by the fact that kD

0 �t� is small near this
time value �see Fig. 5�.

From the definition of the KIE, we can write

FIG. 7. A phase space plot of a trajectory that gives rise to a negative
excited-state contribution to the reaction rate. The starting point of the tra-
jectory is indicated by a solid square and the trajectory consists of excited
state �thick solid line�, ground state �thin solid line�, and mean surface
�overlapping solid circles� evolution segments. The momentum jumps lead-
ing to and from the mean surface evolution segment are indicated by dotted
lines. The arrows indicate the flow of the trajectory in phase space. The
vertical dashed line indicates the location of the dividing surface.

FIG. 8. Plots of the correction factor D�t� for both the proton and deuteron

transfers.
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KIE = lim
t→�

�DP�t�
DD�t�	� kP

0 �t�
kD

0 �t�
	 . �12�

The first factor corrects the KIE determined from sampling
initial conditions from the adiabatic states. From the figure
we see that the asymptotic ratio DP /DD=0.88. We calculated
the values of D� to be D1

P=0.15, D2
P=−0.17, D1

D=0.052, and
D2

D=−0.071. Note that both D1 and D2 increase the rate since
the ground- and excited-state contributions are positive and
negative, respectively. Although the magnitudes of D1

P and
D2

P are larger than those of D1
D and D2

D, respectively, it turns
out that the ground- and excited-state contributions to D are
larger for the deuteron transfer than for the proton transfer.
The second factor was calculated to be kP

0 /kD
0 =6.08, which is

similar to the full nonadiabatic value of KIE=5.34. There-
fore, while DP /DD influences the kinetic isotope effect, the
dominant contribution comes from kP

0 /kD
0 for this set of

parameters.

IV. CONCLUSIONS

The simulations in this paper showed that the quantum
equilibrium structure must be properly accounted for in any
approximations to the spectral density function WA for sys-
tems that exhibit nonadiabatic effects. Computations of the
reactive-flux correlation function expressions for the rate will
be inaccurate if equilibrium sampling is based solely on the
Boltzmann factor depending on adiabatic states. However,
for our simple proton transfer model, the kinetic isotope ef-
fect is not strongly influenced by the higher order nonadia-
batic corrections to the spectral density function. Instead, the
predominant corrections to the transition state theory kinetic
isotope effect are due to dynamical nonadiabatic effects.
Adiabatic dynamics provides a poor estimate of the isotope
effect for our model system.

The techniques developed in this paper may be general-
ized and applied to more realistic models of condensed phase
proton transfer reactions. Despite the use of more compli-
cated reaction coordinates, such as the solvent polarization,
the derivation of an approximate form of the spectral density
function can be carried out. Calculations on these more real-
istic models using quantum-classical Liouville dynamics in
conjunction with quantum spectral density sampling could
then be carried out to determine if the conclusions based on
this simple model are more generally valid.
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APPENDIX: DERIVATION OF THE SPECTRAL DENSITY
FUNCTION

In this Appendix we derive Eq. �9� starting from
the general formula for the spectral density function in
Eq. �2�. Assuming the factorization of the imaginary time

propagator exp �−�Ĥ��exp �−�Ĥsn�exp �−�Ĥb�n�� as in
6,42,48,49
other studies, we can rewrite Eq. �2� as
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WA
����X,

i��

2
	 =

1

ZQ
�sn

����X0��b�Xb;R0� , �A1�

where

�sn
����X0� =

i

2�M0
� dZ0dZ�0���Z�0�e−�i/��P0·Z0���;R0�

�
R0 +
Z0

2
�e−��/2�Ĥsn�−

Z�0

2
�

�
Z�0

2
�e−��/2�Ĥsn�R0 −

Z0

2
���;R0� �A2�

and

�b�Xb;R0� =
1

�2���	−1� dZbe−�i/��Pb·Zb
Rb +
Zb

2
�e−�Ĥb�n�

��Rb −
Zb

2
� . �A3�

The exact quantum mechanical expression for �b�Xb ;R0� is
known for a bath of independent harmonic oscillators.42 To

compute �sn
����X0�, we use a symmetric decomposition of the
propagator,

carrying out the integration over Z0 in Eq. �A7�.
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e−�Ĥsn = e−�ĥsn/2e−�P̂2/�2M�e−�ĥsn/2 + O��3� , �A4�

which is valid for the high temperatures of interest in this
study. In this approximation the imaginary time propagator
in Eq. �A2� can be computed to give

��1;R1��R2�e−�Ĥsn�R3���2;R4�

=� a

�
e−a�R2 − R3�2 �

�3�4

e−��/2�E�3
�R2�−��/2�E�4

�R3�

���1;R1��3;�R2���3;R2��4;�R3���4;R3��2;�R4� ,

�A5�

where a�M0 / �2��2�. To arrive at this expression, we used

the representation of ĥsn in the adiabatic basis to obtain

e−�ĥsn�R0�=���� ;R0�e−�E�
sn�R0��� ;R0�. In accord with the ap-

proximation in Eq. �A4�, we treat the reaction coordinate
classically by making the following high temperature ap-
proximation:

lim
a→�

�4a/�e−4aR0
2

= ��R0� . �A6�

This approximation is valid when � is small enough or M0 is
large enough to make the width of exp�−4aR0

2� narrow com-
pared to the width of the free energy barrier. Substituting
relation �A5� into Eq. �A2� for the two propagators, integrat-

ing over Z�0, and then using Eq. �A6�, we obtain
�sn
����X0� =

i

2M0�
� a

�
��R0� � dZ0e−�i/��P0·Z0e−aZ0

2 �
�1�4

e−��/4�E�1

sn �Z0/2�−��/4�E�4

sn �−Z0/2�
��;0��1;
Z0

2 �
�4;−
Z0

2
��;0�

���
�2

e−��/2�Ea2

sn�0�2aZ0
�1;
Z0

2
��2;0�
�2;0��4;−

Z0

2 � +
1

2 �
�2�3

d�2�3
�0��e−��/4�E�2

sn �0�

− e−��/4�E�3

sn �0��2
�1;
Z0

2
��2;0�
�3;0��4;−

Z0

2 �� . �A7�
The density function �sn
����X0� can be formally rewritten with

its diagonal D� and off-diagonal O��� elements as

�sn
����X0� = �sn,cl

� �X0���1 + D������ + O����1 − ������ ,

�A8�

where �sn,cl
� �X0� denotes the following conventional flux den-

sity function with the Boltzmann factor determined by the
adiabatic energy:

�sn,cl
� �X0� =

1

2��

P0

M0
��R0�e−��/2M0�P0

2−�E�
sn�0�. �A9�

The functions D� and O��� can be computed by numerically
Approximate analytical expressions of D� and O��� are
useful to provide physical insights into these variables. We
expand the overlap matrix elements and adiabatic energies
E� to linear order in Z0:


��;0��1;
Z0

2
� � ����1

+
1

2
d���1

�0�Z0, �A10�

e−��/4�E�
sn�Z0/2� � e−��/4�E�

sn�0��1 −
�

8

�

�R0
E�

sn�R0�Z0�
R0=0

.

�A11�

The truncation to linear order in Z0 is valid for high tempera-
tures since the factor exp�−aZ0

2� restricts the integrand in Eq.
�A7� to small values of Z0. Then, Eq. �A7� can be integrated

over Z0 analytically to give
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�sn
����X0� =

1

2��
��R0�

P0

M0
e−��/2M0�P0

2�e−�E�
sn�0����� +

d����0�
2 � i�

P0
−

�2�2

8M0

��E��
sn �R0� − E�

sn�R0��

�R0
�

R0=0


e−��/4��E
��
sn �0�+E�

sn�0��

��e−��/4�E
��
sn �0� − e−��/4�E�

sn�0��2 − � ��2

4M0
�
�2

d���2
�0�d�2��0��e−��/4�E

��
sn �0� − e−��/4�E�2

sn �0���e−��/4�E�
sn�0� − e−��/4�E�2

sn �0��

��e−��/2�E�
sn�0� + e−��/2�E

��
sn �0� − e−��/4�E�2

sn �0��e−��/4�E�
sn�0� + e−��/4�E

��
sn �0���
 . �A12�
This equation consists of three terms: The first term is diag-
onal ���=�� and involves a Boltzmann factor depending
on the adiabatic energies. The second term is off-diagonal
������ and is proportional to the nonadiabatic coupling ma-
trix element between states �� and �. The third term arises
from nonadiabatic coupling to an additional state �2 and, in
general, can be off-diagonal or diagonal. For a two-level sys-
tem it is diagonal. Such a term of order d2 contributes when
nonadiabatic effects are important. Our earlier derivation40,41

did not have this term. For proton transfer reactions the
nonadiabatic coupling can often be strong and this term
should be taken into account. For the symmetric two-level
model under study, we can take advantage of the fact that
�E�

sn�R0� / ��R0�R0=0=0 and E1
sn�0�=−E2

sn�0� �as can be seen
from Eq. �8�� to simplify Eq. �A12� further. Combining with
the classical analog of �b�Xb ;R0� for a harmonic bath,

�b
cl�Xb;0� = �

j

�
 j

2�
e−��/2Mj�Pj

2−��/2�Mj
j
2Rj

2
, �A13�

we have the desired Eq. �9� and the approximate analytical
expressions of D� and O��� as Eqs. �10� and �11�,
respectively.
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