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Quantum-classical Liouville theory is used to simulate the dynamics of systems containing conical
intersections. In particular quantum dynamical effects on the electronic population transfer and
coherence in a quantum subsystem that arise from the presence of an environment are studied. The
environment, in turn, is partitioned into an immediate environment representing, say, local
molecular vibrations, and a bath representing other degrees of freedom. Population transfer may be
enhanced or suppressed, depending on the relative values of the characteristic frequencies of the
immediate environment and bath. Electronic decoherence and the destruction of geometric phase
effects were observed for bath frequencies that are large relative to the molecular vibrations. The
dynamics at higher dimensional conical intersections was found to be very sensitive to the
environmental coupling. When a single collective solvent coordinate couples directly to the
electronic subsystem, the characteristic frequency of the new coordinate, relative to that of the
nuclear vibrational modes, has a strong effect on the population dynamics. The results also serve as
a test of the QCL dynamical scheme for future applications to more detailed molecular descriptions
of condensed phase environments for conical intersection dynamics. © 2010 American Institute of
Physics. �doi:10.1063/1.3475773�

I. INTRODUCTION

Conical intersections exist within the potential energy
landscapes of many molecular systems.1–4 Although systems
containing conical intersections �CIs� have been studied with
increasing intensity for more than 70 years,5 the nature of the
passage of a many-body quantum system through a CI con-
tinues to be a challenging problem. The fact that an acces-
sible CI provides a route to ultrafast interstate transfer on the
femtosecond time-scale is of particular importance in chem-
istry. The presence of a CI has been associated with mecha-
nistic aspects of nonradiative decay scenarios such as photo-
induced internal conversion and various other charge transfer
processes.3,4,6–15

As an evolving quantum system encounters a region of
phase space containing a CI, the nonadiabatic �electron-
nuclear� coupling becomes extremely important; in fact, at
the CI point, the nonadiabatic coupling matrix elements
diverge,16 and the Born-Oppenheimer approximation5,17

breaks down entirely. The strong coupling generated near the
CI mixes the electronic states and creates quantum coher-
ence.

The effect of an environment on quantum coherence is
an interesting problem that has relevance for quantum dy-
namics near a CI in condensed phase or complex molecular
systems. Since the simulation of the full quantum dynamics
of very large many-body systems is not yet feasible, approxi-
mate schemes that are numerically tractable and are able to
capture the influence of the environment on the electronic

dynamics in these systems have been utilized. Recent studies
employing a variety of Markovian and non-Markovian ap-
proximate evolution equations have revealed various aspects
of the relaxation process from an excited state.18–20 For ex-
ample, a Redfield equation analysis18 of the effects of vibra-
tional damping on electronic decay has shown that there are
two major time-scales associated with this process: an initial
fast decay of electronic population occurring within less than
100 fs where the majority of the electronic population is
transferred, followed by a slower relaxation lasting approxi-
mately 1 ps during which vibrational relaxation takes place.
Other work on CI systems using the multiconfiguration time-
dependent Hartree �MCTDH� method has reproduced spectra
for molecules such as pyrazine21 and provided benchmark
data for CIs in general environments,22 which suggest that
very few environmental modes are responsible for the initial
decay process, while many more modes may participate in
the longer time behavior. Full multiple spawning has been
used to investigate isomerization dynamics of large mol-
ecules near conical intersections.3

In this paper we employ the quantum-classical Liouville
�QCL� equation to investigate environmental effects on elec-
tronic population transfer. This evolution equation is exact
for any quantum subsystem bilinearly coupled to a harmonic
bath and provides an accurate description of the dynamics of
a quantum subsystem interacting with a general molecular
environment whose dynamics can be described by classical
mechanics in the absence of coupling to the quantum sub-
system. The QCL equation has been derived in various ways
�see Ref. 23 for a review with references to the literature on
this topic�; in particular, it can be derived from a lineariza-
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tion approximation to the path integral representation of the
full quantum dynamics.24,25 The models for conical intersec-
tions and their environments used in this study are simple but
allow us to extract some general features of how the envi-
ronment influences the dynamics. No changes to the simula-
tion algorithm are needed for the exploration of more com-
plex and realistic condensed phase environments.

In Sec. II the molecular models involving conical inter-
sections which form the basis for this study are described.
These models incorporate the various physical effects that
can be induced by an external environment, such as elec-
tronic and vibrational dephasing and relaxation.18,19,26–30 The
QCL equation and the method used to simulate it are pre-
sented in Sec. III. The results of simulations of the QCL
dynamics near conical intersection are given in Sec. IV,
while the conclusions of the investigation are summarized in
Sec. V.

II. CONICAL INTERSECTION MODELS

We study a number of models that can be used to explore
dynamics near conical intersections in molecular systems.
We adopt a quantum-classical description where part of the
system is treated quantum mechanically and the remainder is
treated using classical mechanics. The systems under inves-
tigation can be partitioned into a subsystem and bath. The
subsystem can be partitioned further into a quantum sub-
system and its immediate classical environment. In the mod-
els presented below, the quantum subsystem will consist of
electronic degrees of freedom of a molecule, the immediate
classical environment consists of vibrational or other nuclear
degrees of freedom of the molecule, and the bath is the con-
densed phase solvent in which the dynamics takes place. We
treat the immediate environment and the bath classically. Be-
low we use a notation where Rs and Rb denote coordinates of
the immediate environment and bath, and R= �Rs ,Rb� are the
coordinates of the entire environment, immediate environ-
ment plus bath.

A. Two-state-two-mode model

A simple two-level-two-mode quantum model for the
coupled vibronic states of a linear ABA triatomic molecule
has been constructed by Ferretti, Lami, and Villiani26,30 in
their exact quantum dynamics study of the CI problem. The
nuclei of this symmetric linear molecule are described using
two vibrational degrees of freedom: a symmetric stretch, X,
the so-called tuning coordinate and an antisymmetric stretch,
Y, known as the coupling coordinate. The Ferretti–Lami–
Villiani �FLV� electronic Hamiltonian matrix in the diabatic
basis that enters in our quantum-classical description is

Hs�Rs,Ps� = � PX
2

2MX
+

PY
2

2MY
�I + h�Rs� , �1�

where the diagonal matrix elements of h are

h00�Rs� = 1
2 MX�X

2�X − X1�2 + 1
2 MY�Y

2Y2,

h11�Rs� = 1
2 MX�X

2�X − X2�2 + 1
2 MY�Y

2Y2 + � , �2�

and the off-diagonal diabatic coupling matrix elements are

h01�Rs� = h10�Rs� = �Ye−��X − X3�2
e−�Y2

. �3�

In these equations Rs= �X ,Y�, while Ps= �PX , PY�, �MX ,MY�,
and ��X ,�Y� are the momenta, masses, and frequencies cor-
responding to the X and Y degrees of freedom.

The potential functions describe two shifted two-
dimensional parabolic electronic surfaces with an antisym-
metric localized coupling. The two diabatic surfaces have
minima at �X1 ,0� and �X2 ,0�, respectively, and are degener-
ate at a single point �X3 ,0�. The electronic coupling �Eq. �3��
is localized to the region of the intersection by a Gaussian
cutoff function which vanishes at large distances from the
coupling region and is antisymmetric in the coupling coordi-
nate. The conical intersection coincides with the minimum of
the upper diabatic potential surface and is intermediate be-
tween a sloped and a peaked crossing.31 The subsystem adia-
batic energies are defined by the eigenvalue problem,

ĥ�Rs��� ;Rs	=E��Rs��� ;Rs	, and the adiabatic Born–
Oppenheimer energy surfaces, E��Rs�, are plotted in Fig. 1,
which shows the conical intersection between the two sur-
faces.

The linear vibronic model �LVM�32,33 is identical in
structure to the FLV model but simpler in that it involves
linear diabatic coupling terms �h01=h10=�Y�. While the di-
abatic coupling term in the FLV model is localized in the
region of the degeneracy, it is global in the LVM model.
Electronic structure13,14 and dynamics19,20 studies suggest
that a localized form for the coupling is more physically
relevant in general, as well as the particular case of charge
transfer processes. Although the FLV model was originally
posited with a small molecule in mind, it has wider physical
appeal; in fact this model is similar in form to more complex
molecular models which can be treated in terms of coupling
and tuning modes. For example, this simple model could be
used to capture the essential physical features of charge
transfer processes through a conical intersection, between
identical moieties in biphenyl-type compounds where the
two rings are held at 90° by steric interactions.34

The FLV model may be generalized to include coupling
to a heat bath by imagining that each of the stretching coor-
dinates experience a further bilinear coupling to identical,
but independent, sets of harmonic oscillators. Thus we may
include the effect of dissipation on the system in our QCL
description. The total Hamiltonian matrix takes the form

FIG. 1. Plot of the FLV adiabatic electronic energy surfaces for �=0.02. The
other parameters in the FLV model are �X=0.001, �Y =0.003 87, MX

=20 000, MY =6667, �=3, �=1.5, X1=4, X2=X3=3, and �=0.01, all in
atomic units.
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H�R,P� = Hs�Rs,Ps� + �

j

NB Pj
2

2Mj
+

Mj� j
2

2
�Rj −

cj

Mj� j
2X�2

+ 

l

NB Pl
2

2Ml
+

1

2
Ml�l

2�Rl −
cl

Ml�l
2Y�2�I . �4�

The coordinates and momenta of each bath oscillator
with mass Mj are �Rj , Pj�, and NB is the number of oscilla-
tors. The coupling constants and frequencies, cj and � j, are
chosen to correspond with those of a harmonic bath with an
Ohmic spectral density. For this generalized model the sub-
system free energies correspond to the adiabatic potential
surfaces of the original FLV model. The degree of dissipation
or damping by the bath of the vibrational degrees of freedom
is controlled by the Kondo parameter, �, in the Ohmic spec-
tral density.35 In the simulation results presented below we
have chosen small to intermediate values of this parameter,
such that the effects of damping are important, but that the
vibrational system is not highly damped. Although we have
limited the scope of our calculations to the Ohmic spectral
density here, one may choose any appropriate spectral den-
sity to characterize the bath without changing the structure of
the above model.

B. Avoided crossing model

By dropping the linear factor in the diabatic coupling
term in FLV model, we return to the case of an avoided
crossing, where the degeneracy in the diabatic basis is lifted
by the transformation to the adiabatic basis. Although the
avoided crossing may not necessarily pose the same steep
theoretical challenges as the conical intersection, later we
shall find it useful for the purpose of comparison. A two-
dimensional avoided crossing �AC� model may then be de-
fined in the diabatic basis exactly as per the FLV model with
the exception of the diabatic coupling, where we make the
substitution

h01
AC�Rs� = �e−��X − X3�2/�2

e−�Y2/�2
. �5�

The new parameter � is a measure of the size of the localized
coupling region.

C. Two-state-three-mode model

In the generalized FLV model the harmonic bath acts as
an unstructured dissipative environment for the quantum
subsystem and its immediate environment. In some circum-
stances, such as quantum processes involving charge transfer
in polar media, the solvent can participate in a more intimate
way in the dynamics.27 If the two quantum states of the
subsystem have markedly different charge distributions, sol-
vent orientational degrees of freedom can lead to selective
solvation of the different charge transfer states and the sol-
vent dynamics then may play an essential role in the quan-
tum dynamics. Often the such solvent effects are captured in
a global solvent polarization coordinate that couples to the
subsystem degrees of freedom.27,28,36

As mentioned previously, the simple FLV model can
capture some essential features of an intramolecular charge

transfer process involving a conical intersection, given a suit-
able interpretation for the tuning and coupling modes. Since
such charge transfer processes in a polar medium involve
coupling to the solvent polarization, we may introduce a po-
larizationlike coordinate in order to mimic such effects. The
effect of this new coordinate, Z, is to shift and modulate the
subsystem free energy surfaces in a manner similar to that in
more realistic models of charge transfer conical intersection
dynamics in polar solvents.

In this model the Hamiltonian takes the form

H�R,P� = � PX
2

2MX
+

PY
2

2MY
+

PZ
2

2MZ
�I + h�R� , �6�

where Rs= �X ,Y� and R= �X ,Y ,Z�, with the matrix elements
of h given explicitly by

h00�R� = h00�X,Y� + 1
2 MZ�Z

2Z2,

h11�R� = h11�X,Y� + 1
2 MZ�Z

2�1 − Z�2 + �Z. �7�

The off-diagonal matrix elements are identical to those of the
FLV model and are given by Eq. �3�. Clearly, we have ap-
propriated the FLV vibronic system and coupled it with a
third polarizationlike “solvent” coordinate; for convenience
it shall be referred to as the XYZ model. The new polariza-
tionlike coordinate couples slightly differently to each diaba-
tic state; depending on the quantum state of the subsystem
the solvent coordinate favors different equilibrium nuclear
configurations and thus can cause fluctuations in the energy
gap of the subsystem over the course of the dynamics. The
XYZ model aims to describe a host of environmental effects
on a molecular subsystem containing a conical intersection;
the environment induces fluctuations in the adiabatic energy
gap giving rise to electronic dephasing and provides vibra-
tional dissipation and dephasing. The addition of the solvent
coordinate to the two-dimensional model generates a new
nonadiabatic coupling term, and the set of conical intersec-
tions in the model corresponds to a linear seam of points in
the �X ,Z�-plane at Y =0.

The polarizationlike coordinate Z represents a single col-
lective coordinate of the many-body solvent. The remaining
solvent degrees of freedom, which are assumed to be only
weakly coupled to the tuning and coupling coordinates, act
as a dissipative bath for the solvent polarization. Thus, this
model may be generalized to account for this effect by cou-
pling the polarization coordinate Z to a harmonic bath,

H�R,P� = � PX
2

2MX
+

PY
2

2MY
+

PZ
2

2MZ
�I + h�R�

+ �

j

NB Pj
2

2Mj
+

Mj� j
2

2
�Rj −

cj

Mj� j
2Z�2�I . �8�

Note that in the above expression the bath modes are now
coupled indirectly to the subsystem vibrational coordinates
�X ,Y� via the solvent coordinate �Z�, whereas in the gener-
alized FLV model �4� the bath couples directly to these
modes.
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III. QUANTUM-CLASSICAL DYNAMICS

The dynamics of the aforementioned model systems will
be investigated using the quantum-classical Liouville �QCL�
equation. This equation can be represented in any convenient
basis and the simulation algorithm for the dynamics depends
on the choice of basis.37 In the adiabatic basis this equation
takes the form38

�

�t
	W

����R,P,t� = − i

���

L���,���	W
����R,P,t� , �9�

where the QCL operator is

iL���,��� = �i���� + iL����
��
���� − J���,���. �10�

Here the subscript W indicates that the equation was derived
by considering a partial Wigner transform over the environ-
mental degrees of freedom. The structure of L given above
consists of two distinct components. �i� Classical propaga-
tion described by iL���,

iL��� =
P

M
·

�

�R
+

1

2
�FW

� + FW
��� ·

�

�P
, �11�

which involves the Hellmann–Feynman forces, FW
� =

−�� ;R�� V̂W�q̂ ,R� /�R�� ;R	. If ���� evolution occurs on
the mean of two adiabatic surfaces and is accompanied by
quantum mechanical phase oscillations with frequency
����= �E�−E��� /��E�� /�. �ii� Nonadiabatic transitions are
described by the operator J,

J���,��� = −
P

M
· d���1 +

1

2
S�� ·

�

�P
�
����

−
P

M
· d����

� �1 +
1

2
S����

� ·
�

�P
�
��, �12�

where S��=E��d����P /M� ·d���−1 and d��

= �� ;R�� /�R�� ;R	 is the nonadiabatic coupling matrix ele-
ment. In this formalism nonadiabatic transitions change the
quantum state of the subsystem. The momentum derivatives
in J account for the energy transfers to and from the classi-
cal degrees of freedom which accompany the change of state
in the quantum subsystem.

We are primarily interested in the computation of ob-
servables, such as electronic state populations or coherences,
as a function of time. The expression for the expectation

value of a general observable B̂W�R , P� is

B�t� = Tr� dRdPB̂W�R,P�	̂W�R,P,t�

= Tr� dRdPB̂W�R,P,t�	̂W�R,P�

= 

���
 dRdPBW

����R,P,t�	W
����R,P� , �13�

where Tr� denotes a trace over the states of the quantum
subsystem.

Such average values may be simulated by QCL dynam-
ics using a Trotter-based algorithm.39 To compute the aver-

age values in Eq. �13� using this scheme, the environmental
phase space points are sampled from distributions deter-

mined from 	W
����R , P� and the quantum states are sampled

from a uniform distribution. The time evolution of the opera-
tor is simulated by a molecular dynamics-Monte Carlo algo-
rithm. The quantum-classical propagator is written as a prod-
uct of short time classical evolution segments separated by
quantum transitions described by the J operator. The action
of this operator is evaluated in the momentum-jump approxi-
mation, and the nonadiabatic events are sampled by a Monte
Carlo method. Filtering of the observable is employed in the
Monte Carlo estimate of the observable. Full details of the
algorithm are described in Refs. 39 and 40.

It was noted earlier that the nonadiabatic coupling matrix
elements diverge at the CI so it may seem that an adiabatic
basis is not the optimal choice for simulation. In the Trotter-
based algorithm these coupling elements appear in bounded
trigonometric functions. Very large values of the coupling
that arise in a very small neighborhood of the CI do lead to
oscillations in the observable that make sampling more dif-
ficult for such phase space points. However, since average
values like those in Eq. �13� are being computed and only
very small fraction of the ensemble of trajectories used to
simulate the average experience such variations, expectation
values can be computed reliably as the data below will dem-
onstrate.

Since the QCL equation is exact for any quantum system
bilinearly coupled to harmonic degrees of freedom, it is ex-
act for spin-boson-type models. The FLV model and its vari-
ants provide a more stringent test of the QCL theory since
the Gaussian cutoff on h01 produces an infinite set of higher-
order terms in the full quantum propagator, which are treated
approximately in the QCL theory. In contrast, the QCL equa-
tion is exact for the LVM, and the short time dynamics of
this model has been studied.11

IV. DYNAMICS SIMULATIONS

We consider the dynamics of these systems starting from
an initial state corresponding to a Gaussian wave packet on
the excited state adiabatic surface. We assume Feynman–
Vernon-type initial conditions where the initial density may
be decomposed into electronic subsystem and environmental
�vibrational and bath� components, 	̂W�R , P�= 	̂s	W

�vib�

��Rs�	W
�b��Rb , Pb�. The initial vibrational states are chosen to

be Gaussian wave packets. For the two-mode models we
have

�vib��Rs� =
1

���X�Y

e−�X − X0�2/�X
2
e−Y2/�Y

2
, �14�

while for the three-mode model we have

�vib��Rs� =
1

��3/2�X�Y�Z

e−�X − X0�2/�X
2

� e−Y2/�Y
2
e−�Z − Z0�2/�Z

2
. �15�

These initial wave packets are then Wigner transformed,
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	W
�vib��Rs,Ps� = �2���−N dzeiPs·z/���vib��Rs −

z

2
�

� �vib��Rs +
z

2
� , �16�

in order to obtain the initial densities.
The harmonic bath is described by an Ohmic spectral

density,35

J��� = �

j=1

NB

cj
2/�2Mj� j�
�� − � j� , �17�

where cj = ����0Mj�1/2� j, � j =−�c ln�1− j�0 /�c�, and �0

=�c�1−e−�max/�c� /NB. The oscillator baths are assumed to
initially be in thermal equilibrium, and we adopt the quan-
tum bath distribution function,41

	W
�b��R,P� = �

j

tanh��� j/2�
�

exp�−
2tanh��� j/2�

� j

� �Pj�
2

2
+

� j
2Rj�

2

2
�� , �18�

where �Rj� , Pj��= �Rj − �cj /� j
2�X , Pj�. The classical heat bath is

characterized by three parameters: the frequency �c, the
Kondo parameter �, and the dimensionless reciprocal tem-
perature �=��c /kBT. The frequency �c determines the peak
and width of the Ohmic spectral density and defines the char-
acteristic time-scale of the bath dynamics. The Kondo pa-
rameter determines the amplitude of the spectral density and
the coupling strengths to the nuclear coordinates. The effects
of finite temperature in this model arise in the widths of the
initial distributions for the coordinates and momenta of the
bath. In the simulations presented here, NB=100 for each set
of oscillators, and �max=3�c. We have chosen � at room
temperature corresponding to T=300 K.

The adiabatic ground and excited state populations, PS0
and PS1

, respectively, are given by

PS��
�t� = Tr� dRdPP̂S��

�Rs�	̂W�R,P�

= 

���
 dRdPPS��

����R,P,t�	W
����R,P� , �19�

which has the same form as the expectation value for a gen-
eral operator considered in Eq. �13�. The projector onto the

adiabatic state �� is P̂S��
�Rs�= ��� ;Rs	��� ;Rs� and PS��

����Rs�
=
���
����. We shall also compute other quantities such as
the reduced subsystem densities,

	s
���Rs,t� = dPsdRbdPb	W

���R,P,t� , �20�

and the electronic coherence,

	s
01�t� = dRdP	W

01�R,P,t� . �21�

A. Population dynamics

The ground state population after the system has made a
single pass through the CI region, PS0

�t=50 fs�, and is
shown in Fig. 2 as a function of the coupling strength � for
the simple gas phase FLV model. The QCL equation results
are compared with exact quantum dynamics,26 and the
Landau–Zener approximation. The results in this figure indi-
cate that QCL dynamics provides a good approximation to
the full quantum dynamics. It is numerically exact at low �
and is a good approximation to the exact results over the full
range of �. It is able to describe the trends seen in PS0

�t
=50 fs� versus � better than the simple Landau–Zener esti-
mate.

The effect of a bath on the population dynamics can be
seen in Fig. 3, which plots the population of the adiabatic
ground state as a function of time for the generalized FLV
model for a range of dimensionless bath frequencies, �c,
with fixed low values of the Kondo parameter and coupling
strength. �Here and in the remainder of this section, �c and
�Z are reported in units of �X, i.e., ��c→�c /�X, �Z

→�Z /�X�, since the bath frequency relative to that of the
oscillator determines the character of the dynamics.� For low
electronic coupling strength and weak damping, we see that
the system experiences greater population transfer to the
ground state when a bath is present than when it is absent.

0 0.02 0.04 0.06 0.08
γ (a.u.)

0.7

0.8

0.9

1

P
S

0

(t
=

5
0

fs
)

Exact quantum
QCL - Adiabtic Basis
Landau-Zener

FIG. 2. Adiabatic ground state population after the system has made a single
pass through the CI region PS0

�t=50 fs� vs � for the gas phase FLV model.

FIG. 3. Ground adiabatic state population PS0
�t� vs time for X0=2, �

=0.01, �=0.1, and a range of different bath characteristic frequencies, �c,
reported in units of �X. The solid squares are the exact quantum results for
the gas phase model. Note that QCL dynamics is in close accord with the
exact gas phase results over the entire time range.
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Such enhancement of population transfer due to interaction
with an environment has been observed in earlier studies of
environmental effects on dynamics near a conical
intersection.18,20 This enhancement effect is seen for all but
the highest characteristic frequency reported in Fig. 3. The
population transfer is suppressed for bath frequencies that are
significantly higher than the nuclear vibration frequencies.
�For reference the oscillator frequencies in the original FLV
model26 in dimensional units are �X=219 cm−1 and �Y

=850 cm−1.�
The population transfer to the ground state is enhanced

for a range of low coupling strengths and for bath frequen-
cies from 0.2 to 4. However, for these bath frequencies, the
population transfer is a decreasing function of �, which
somewhat follows the shape of the bath-free curve. For mod-
erate coupling strengths ���0.02�, in Fig. 4 we see that the
population transfer is suppressed for all but the smallest bath
frequencies simulated. When the bath dynamics becomes
very fast relative to that of the subsystem ��c=23�, the popu-
lation transfer is heavily suppressed for all �� ,�� studied. In
this case the transfer ratio is relatively insensitive to the elec-
tronic coupling strength.

For the AC model, the population transfer to the ground
state monotonically decreases as a function of the electronic
coupling strength. These results are also shown in Fig. 4.
Clearly this behavior is different than in the conical intersec-
tion model, where the population transfer increases for
higher coupling strengths. The population transfer also de-
cays as a function of � in the case of a moderately fast bath
�Fig. 4�; however, the population transfer decreases less
steeply as a function of � than for the gas phase AC model.
This effect is similar to that seen in the generalized FLV
conical intersection model, where for low coupling strength
the population transfer is higher than the gas phase case for
moderate bath frequencies.

It is also interesting to compare the results obtained us-
ing QCL dynamics with the well-known surface-hopping dy-
namics method, based on Tully’s fewest-switches
algorithm.42 Figure 5 shows that in the gas phase the QCL
and surface-hopping results agree at low electronic coupling
strengths but differ substantially at large coupling strengths.

For cases where the bath is present the surface-hopping and
QCL results are in closer accord, even for large coupling
strengths even though discrepancies exist in all parameter
ranges studied. The fact that results show better overall
agreement with bath present may be an indication that the
bath provides a mechanism for decoherence so that a simple
surface-hopping scheme may be more easily justified.

Next, we consider the three-mode XYZ model in the
case that the coupling to the solvent coordinate is
considerable.27,36 We investigate a range of solvent frequen-
cies, �Z; in the contrasting cases of a fast or slow solvent,
shown in Fig. 6, we see that the population transfer profile in
the three-mode model is quite sensitive to the frequency of
the Z oscillator. In the case of a sluggish Z coordinate the
transition is almost completely suppressed over the initial
portion of the dynamics. As �Z becomes comparable to the
nuclear vibrational frequencies the ultrafast transition does
indeed occur. However, if the solvent coordinate is subse-
quently coupled to a dissipative heat bath with a relatively
fast characteristic frequency ��c=7�, the transition is
strongly suppressed over the initial portion of the dynamics.

B. Purity and electronic coherence

The effects of decoherence by the bath can be seen by
examining the purity, Tr�	̂s�t�2, shown in Fig. 7, or the off-

FIG. 4. Ground adiabatic state populations PS0
�t=50 fs� vs � with �=0.1,

for a range of different bath characteristic frequencies, �c, in units of �X.
FLV model �solid symbols and lines�, gas phase �squares�, �c=0.2 �circles�,
�c=1 �up-triangles�, �c=4 �diamonds�, and �c=23 �down-triangles�. AC
model �open symbols, dotted lines�, gas phase �squares�, and �c=2 �circles�.
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diagonal element of the quantum subsystem density matrix
	s

01�t�, shown in Fig. 8. As one might expect from the popu-
lation transfer results, there is an increase in the purity after
a single pass through the intersection for most characteristic
bath frequencies when the electronic coupling is weak due to
the enhanced transfer to the ground state. However, once the
bath dynamics becomes much faster than that of the sub-
system, the purity decays monotonically with time �cf. re-
sults for �c=23�. It is also evident that, by increasing the
characteristic frequency of the bath, the envelope of coher-
ence oscillations, which are induced during motion through
the region of the conical intersection, decays more rapidly.

It has been shown in other model studies19,20 that a nar-
row avoided crossing may cause the system to evolve in a
manner somewhat similar to that for a true conical intersec-
tion. This situation may be investigated by narrowing the
diabatic coupling function, i.e., by reducing the value of � in
Eq. �5�. One can see from Fig. 8 for the bath-free system
with the original coupling width ��=1, regular width� that
the evolution of the electronic coherence does not resemble
that for the FLV system. In contrast, it is evident that when a
bath is present, or the width of the coupling is reduced ��
= 1

2 , half-width�, the coherence indeed resembles that of the
FLV system. However, the quantum coherence generated in

the avoided crossing system is more sensitive to the presence
of the bath than in the case of its conical intersection coun-
terpart.

C. Geometric phase

One important consequence of the presence of a conical
intersection on the potential energy landscape is the emer-
gence of a geometric �Berry� phase.43,44 In the FLV model
the evidence of a Berry phase in the system arises as a nodal
structure in the subsystem excited state density projected
along the Y-coordinate.26,45 The reproduction of this delicate
quantum phenomenon provides an important challenge to
any approximate theory and its accompanying simulation al-
gorithm. At low coupling strengths, this effect manifests as a
single node in the excited state density at Y =0, a feature that
is well reproduced by the QCL simulations in the adiabatic
basis. For larger values of � this interference pattern be-
comes more complicated. The Landau–Zener approximation
and surface-hopping dynamics42 schemes are incapable of
reproducing this structure.26 Earlier QCL calculations in the
force basis were able to capture aspects of this delicate
feature.46 As shown in Fig. 9, the Trotter-based QCL simu-
lations are indeed able to reproduce this feature. In addition,
Fig. 9 shows the gradual destruction of this node as the bath
frequency increases in the generalized FLV model.

It is also interesting to see if nodal structure, or other
interference phenomena, arises as consequence of the geo-
metric phase in the other models considered in this paper. In
particular, in the three-mode model there is a seam of inter-
sections, as opposed to a conical intersection at a single point
in configuration space. A significant shift in the interference
pattern is expected for this model and, indeed, we see in Fig.
10 that there is no node at Y =0 in the subsystem excited
state coordinate distribution after the system has passed
through the CI region. While no node due the geometric
phase effect is expected for the AC model, we find that a
minimum appears at Y =0 when the electronic coupling re-
gion is made more narrow �cf. Fig. 10�.

V. CONCLUSION

Recent research on the dynamics of systems with conical
intersections, which has been driven by the ubiquity and im-

FIG. 7. Purity, Tr�	̂s�t�2, of the quantum subsystem as a function of time, for
several characteristic bath frequencies, for �=0.01.

FIG. 8. Evolution of the electronic coherence as a function of time. Left
panel: FLV model results; gas phase �full line�, �c=2 �dotted line�, and
�c=23 �dotted-dashed line�. Right panel: ACM with �=1; gas phase �heavy
line�, �c=2 �heavy dotted line�, and �=1 /2 gas phase �thin line� and �c

=2 �thin dotted line�. In all cases �=0.01 and for cases with the bath present
�=1.

FIG. 9. Destruction of the node in the subsystem reduced density along the
Y coordinate, as a function of �c, in units of �X, from QCL simulations.

084502-7 Environmental effects on electronic dynamics J. Chem. Phys. 133, 084502 �2010�

Downloaded 02 Sep 2010 to 142.150.190.39. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



portance of CI phenomena in chemical systems, has in-
creased greatly since the early work on this topic. The quan-
tum coherence generated in CI quantum dynamics can serve
as a paradigm for our fundamental understanding of other
coherently coupled systems.

The results of investigations of the effects of an external
environment on the electronic dynamics in model molecular
systems containing conical intersections and avoided cross-
ings described in this paper have shown that the population
transfer may be enhanced or suppressed, depending on the
relative values of the characteristic frequencies of the sub-
system and environment. Electronic decoherence and the de-
struction of geometric phase effects were observed as the
external degrees of freedom became fast relative to the mo-
lecular vibrations. The environmental effects come into play
in various forms.1–4 The molecular vibrational degrees of
freedom act as bath on the electronic degrees of freedom; in
addition, other solvent degrees of freedom also play the role
of a dissipative environment that influences the population
dynamics. The models studied in this paper have allowed us
to consider some aspects of the distinctive features that arise
from different bath characteristics as seen, for example, in
the comparisons between the FLV and XYZ model results
where the bath descriptions have different characteristics.

In accord with earlier work,20 we also found that the
dynamics at a narrow avoided crossing may mimic some
aspects of the dynamics near a conical intersection; however,
the dynamics through a CI in the presence of an environment
was shown to behave quite differently from that of an
avoided crossing. Further, the dynamics at higher dimen-
sional CIs was shown to be highly sensitive to the environ-
mental coupling. In the simple case where a single collective
solvent coordinate couples directly to the electronic sub-
system, the characteristic frequency of the new coordinate
�relative to that of the nuclear vibrational modes�, was shown
to have a strong impact on the short time dynamics. In addi-
tion, we showed that the presence of a dissipative environ-
ment may also strongly alter the short time electronic dy-
namics through indirect coupling via the solvent mode.

While the conical intersection models and descriptions
of the environmental degrees of freedom considered here
were simple, our interest is in the description in the dynamics

realistic molecular models for condensed phase systems.
Quantum-classical descriptions of the dynamics provide the
possibility to simulate the evolution of such large many-body
systems when the environmental degrees of freedom can be
treated classically to a good approximation. In this connec-
tion another goal of this investigation was the exploration of
the utility of the QCL equation as the dynamical basis for
condensed phase conical intersection dynamics. The results
presented in the paper showed that QCL dynamics is in good
agreement with the exact quantum results for the gas phase
FLV model and provides a more accurate description than
simple surface-hopping schemes. While the Trotter-based al-
gorithm was used to simulate the dynamics of our model
systems, the same algorithm can be applied directly to simu-
lations where the environment is described at a detailed mo-
lecular level.

Since the simulation method depends on the choice of
basis for the representation of the quantum degrees of free-
dom in the QCL equation, it is likely that other choices, such
as those based on the mapping Hamiltonian method currently
under study,47 may lead to even more effective simulation
algorithms for dynamics near conical intersections that avoid
some of the difficulties associated with Monte Carlo sam-
pling of the quantum transitions.
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