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We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the
order of two operations: Wigner transformation and projection onto adiabatic electronic states. The
analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) ef-
fects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-
then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW)
QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier
transform of double-valued functions. The double-valued character of these functions stems from
the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast,
WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the
full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term
in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic po-
tentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can
capture GP effects in two-state crossing problems using first-principles electronic structure calcu-
lations without prior diabatization or introduction of explicit phase factors. © 2014 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4866366]

I. INTRODUCTION

Molecular electronic adiabatic surfaces often cross form-
ing degenerate manifolds of nuclear configurations with
the topology of conical intersections (CIs).1, 2 CIs are the
most common triggers of radiationless transitions that drive
photo-induced chemistry,1 and transfers of electronic energy
and charge.3–5 Besides facilitating electronic transitions CIs
change the topology of the nuclear subspace: if adiabatic
electronic wave functions are infinitely slowly (adiabatically)
transported around a closed loop that encircles the CI seam,
they acquire an extra (−1) phase. This is the geometric phase
(GP) that makes the electronic wave functions double-valued
functions of nuclear coordinates.6–12 In order to have a single-
valued total electron-nuclear wave function, the nuclear wave
functions have to compensate for sign changes in their elec-
tronic counterparts; hence, a nuclear Schrödinger equation
must be solved with double-valued boundary conditions. The
extra phase causes interference between parts of the nuclear
wave function, which results in different vibronic spectra and
nuclear dynamics as compared to the case without explicit ac-
count for the GP.6, 13–16

The double-valued character of the nuclear wave func-
tions in the adiabatic representation is challenging for numer-
ical simulations. Switching to the diabatic representation17

makes the nuclear diabatic wave function single-valued. How-
ever, the diabatic representation within a finite electronic sub-
space cannot be obtained18 for a general polyatomic system
(Natoms > 2), so one has to resort to approximate diabatiza-

tion schemes.19–27 To remain in the unambiguous adiabatic
representation, Mead and Truhlar28 (MT) proposed to com-
pensate for the GP of individual nuclear states by attaching
an extra phase factor eiλ(R), where λ(R) is a function that in-
creases by π on encircling a closed path around the CI seam.
This approach was successfully implemented29–31 and applied
to many real molecules by Kendrick.32–35 However, the def-
inition of λ(R) is based on a prior location of the CI seam
and its application within the on-the-fly framework is diffi-
cult. An alternative approach to the definition of λ(R) was
suggested by Baer and co-workers.36, 37 They related ∇λ(R)
to the matrix elements of derivative couplings d(1)

12 (R), thus
removing any arbitrariness in the definition of λ(R). How-
ever, this suggestion was challenged by Kendrick, Mead, and
Truhlar38 who found that Baer’s approach inconsistently ne-
glects some terms, and this inconsistency leads one to ques-
tion the validity of the final result. Therefore, accounting for
GP effects for general systems using only results of electronic
structure calculations seems to be challenging within a fully
quantum approach.

In this context, it is interesting that the quantum-classical
Liouville (QCL) formalism39 is able to capture GP effects40, 41

using only adiabatic input: energies and non-adiabatic cou-
plings. The QCL framework uses the Wigner transform (WT)
of the nuclear degrees of freedom (DOF) to arrive at a mixed
quantum-classical description. Derivations of the QCL equa-
tions for non-adiabatic problems using the adiabatic represen-
tation for electronic DOF can proceed along two paths that
differ in the order in which the WT and the projection to
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the adiabatic basis are applied. We will denote by Wigner-
then-Adiabatic (WA)-QCL the approach where the WT is
done first,42 and by Adiabatic-then-Wigner (AW)-QCL the
approach where the adiabatic projection precedes the WT.43, 44

It is not a priori obvious which of the two approaches is
better. Previously, the WA-QCL and AW-QCL approaches
were used to simulate the spin-boson model and no signifi-
cant differences were found.44 In this work we analyze the ef-
ficacy of these approaches to describe the dynamics in a two-
dimensional (2D) linear vibronic coupling (LVC) model. As
has been shown recently,15 the 2D LVC model exhibits promi-
nent GP effects, such as a distinct interference pattern due to
the GP as well as a strong impact of the GP on nuclear dynam-
ics. This model allows us to assess both QCL approaches with
respect to CI-introduced topological features in non-adiabatic
dynamics. Note, however, that both QCL approaches can be
used for general non-adiabatic problems with any number
of electronic states, and the 2D LVC model is only used as
a quantitative illustration of our analysis for the two QCL
approaches.

The paper is organized as follows: first, we briefly il-
lustrate the emergence of double-valued adiabatic electronic
wave functions in the 2D LVC model. Then, we outline the
derivations of the matrix form of the WA-QCL equation start-
ing from the full electron-nuclear density matrix42 and the
AW-QCL equation starting from a projection of the Liouville
equation onto an adiabatic electronic basis.43, 44 Comparing
these two approaches we identify a term which is responsible
for GP effects. We conclude our paper with numerical results
and their analysis.

II. GEOMETRIC PHASE IN A TWO-DIMENSIONAL
LINEAR VIBRONIC COUPLING MODEL

The two-dimensional LVC is a prototype for systems
containing a CI and exhibiting nontrivial GP effects. The
electron-nuclear Hamiltonian of the model is

Ĥ = T̂N12 +
(

V̂11 V̂12

V̂12 V̂22

)
, (1)

where T̂N = − ¯2

2 (∂2/∂x2 + ∂2/∂y2) is the nuclear kinetic en-
ergy operator, V̂11 and V̂22 are the diabatic potentials repre-
sented by identical 2D parabolas shifted in the x-direction by
a and coupled by the V̂12 potential:

V̂11 = ω2

2

[(
x + a

2

)2
+ y2

]
, V̂12 = cy, (2)

V̂22 = ω2

2

[(
x − a

2

)2
+ y2

]
. (3)

Electronic DOF are represented as position-independent dia-
batic states |1〉 and |2〉 in a two-dimensional electronic sub-
space.

Transformation to the adiabatic representation is made by
diagonalizing the potential matrix in Eq. (1) by means of the

unitary transformation U,

U(θ ) =
(

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

)
, (4)

where θ is a mixing angle between the diabatic states, and the
factor 1

2 is introduced for convenience. The adiabatic elec-
tronic wave functions are related to the columns of U as∣∣ψadi

1

〉 = cos
θ

2
|1〉 + sin

θ

2
|2〉 , (5)

∣∣ψadi
2

〉 = − sin
θ

2
|1〉 + cos

θ

2
|2〉 . (6)

The angle θ is determined by the matrix elements of the dia-
batic Hamiltonian (1) as

θ = arctan
2 V12

V11 − V22
, (7)

and changes by 2π for any closed path in the nuclear
(x, y) subspace that encircles the CI point. Considering that
U (2π ) = −12, both adiabatic wave functions |ψadi

i 〉 acquire
an extra ( − ) sign, which is a consequence of the GP. To have
a single-valued total wave function,

|�〉 = ∣∣χ adi
1

〉 ∣∣ψadi
1

〉 + ∣∣χ adi
2

〉 ∣∣ψadi
2

〉
, (8)

a sign change must be also imposed on the adiabatic nuclear
wave functions |χ adi

1,2〉.
This consideration can be extended to the total density

operator ρ̂ = |�〉 〈�|, which is also a single-valued function
of the nuclear (x, y) coordinates. In contrast, the nuclear den-
sity matrix in the adiabatic representation,

X̂αα′ = 〈
ψadi

α

∣∣ ρ̂ ∣∣ψadi
α′

〉 = ∣∣χ adi
α

〉 〈
χ adi

α′
∣∣ , (9)

is a complicated object due to the double-value boundary con-
ditions imposed on |χ adi

α 〉 and 〈χ adi
α′ |.

To model dynamics of the nuclear adiabatic densities X̂
we solve the corresponding Liouville equation

i¯
∂X̂
∂t

= [Ĥadi, X̂]. (10)

Here, the Hamiltonian Ĥadi is obtained by projecting the elec-
tronic DOF in Hamiltonian (1) onto the |ψadi

1,2〉 subspace:

Ĥadi =
(

T̂N + τ̂ 11 + Ŵ− τ̂ 12

τ̂ 21 T̂N + τ̂ 22 + Ŵ+

)
, (11)

where

τ̂ ij = −¯2

[〈
ψadi

i

∣∣∇ψadi
j

〉 · ∇ + 1

2

〈
ψadi

i

∣∣∇2ψadi
j

〉]

≡ −¯2

[
d(1)

ij · ∇ + 1

2
d

(2)
ij

]
, (12)

with ∇ = (∂/∂x, ∂/∂y). The non-adiabatic couplings, d(1)
ij and

d
(2)
ij , are the vector and scalar derivative coupling matrix ele-

ments, and Ŵ± are the matrix elements of the adiabatic po-

tential Ŵ = UV̂U
†
:

Ŵ± = V̂11 + V̂22

2
± 1

2

√
(V̂11 − V̂22)2 + 4V̂ 2

12. (13)
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FIG. 1. The solutions of Eq. (10) with double- and single-valued boundary
conditions (BC). The initial wavepacket is a simple Gaussian located in the
left well; P is the fraction of the wavepacket located in the left well. The
model parameters are ω = 2, a = 3, c = 4.

Equation (10) has to be solved by imposing double-value
boundary conditions for X̂αα′ due to the presence of the non-
trivial GP. Single-valued boundary conditions lead to a com-
pletely different dynamics as shown in Fig. 1.

To avoid GP complications in this model one can simu-
late dynamics for the diabatic nuclear density

ρ̂αα′ = 〈α | ρ̂ | α′〉 = ∣∣χdia
α

〉 〈
χdia

α′
∣∣ , (14)

by solving the corresponding Liouville equation

i¯
∂ρ̂

∂t
= [Ĥ, ρ̂]. (15)

Of course, this diabatic path cannot be strictly followed for
real molecules where the diabatic representation is not rigor-
ously defined. But in this work we will use the diabatic rep-
resentation to generate the exact quantum dynamics for our
model problem.

III. QUANTUM-CLASSICAL LIOUVILLE FORMALISM

In what follows we review the main steps of the WA-
QCL42 and AW-QCL43, 44 derivations to see the consequences
of the double-valued character of the adiabatic electronic
states in both approaches. We consider only a single set of
nuclear coordinates associated with a particle of mass M
to simplify our discussion and to remain close to that in
Sec. II; generalization to include additional nuclear coordi-
nates is straightforward.

A. Wigner-then-adiabatic path

In line with Ref. 42 we start with the WT of the
nuclear DOF in the Liouville equation for the total den-
sity matrix in the coordinate representation ρ̂(r, R, r′, R′)
= �∗(r, R)�(r′, R′),

i¯
∂ρ̂W

∂t
= (Ĥ ρ̂)W − (ρ̂Ĥ )W . (16)

Here, we use the Wigner representation for operators

ÂW (Rc, P) =
∫ 〈

Rc + s
2

∣∣∣ Â ∣∣∣Rc − s
2

〉
e− i

¯
s·Pds, (17)

where Rc = (R + R′)/2 is the position of the “coordinate cen-
troid,” s = R − R′, and P is a parameter that can be associated
with the classical momentum in the classical limit. Operator
products (ÂB̂)W can be transformed further using the Wigner-
Moyal operator45 e−i¯�̂/2 as

(ÂB̂)W = ÂWe−i¯�̂/2B̂W , (18)

where �̂ is the Poisson bracket operator �̂ = ←−∇ P · −→∇ Rc

− ←−∇ Rc
· −→∇ P, and the arrows indicate the directions in which

the differential operators act. Using identity (18) the Wigner-
transformed Liouville equation becomes

i¯
∂ρ̂W

∂t
= ĤWe−i¯�̂/2ρ̂W − ρ̂W e−i¯�̂/2ĤW . (19)

The �̂ operator acts only on the nuclear DOF, thus, to in-
troduce a semi-classical description of nuclear dynamics we
expand the exponent in a Taylor series46 and keep only terms
linear in ¯:

i¯
∂ρ̂W

∂t
= ĤW (1 − i¯�̂/2)ρ̂W

−ρ̂W (1 − i¯�̂/2)ĤW . (20)

The partially Wigner-transformed HW derived from Eq. (1) is
quadratic in R and P, hence, the Wigner-transformed Liou-
ville equation (20) is exact for our model case.

Both the Wigner-transformed density matrix ρ̂W and
Hamiltonian ĤW in Eq. (20) are still quantum operators in
the electronic subspace. Let us project the electronic DOF on
the adiabatic electronic eigenfunctions |ψadi

α (Rc)〉:

i¯
∂ρ̂αα′

W

∂t
= 〈

ψadi
α

∣∣ ĤW

(
1 − i¯

2
�̂

)
ρ̂W

∣∣ψadi
α′

〉

− 〈
ψadi

α

∣∣ ρ̂W

(
1 − i¯

2
�̂

)
ĤW

∣∣ψadi
α′

〉
. (21)

Note that the number of electronic states |ψadi
α (Rc)〉 consid-

ered in both QCL approaches is not restricted. Inserting the
resolution-of-the-identity operator in the electronic subspace
Î = ∑

β |ψadi
β (Rc)〉 〈ψadi

β (Rc)| between the operator products,
we express Eq. (21) in terms of operator matrices defined as
AW ≡ 〈ψadi

α |ÂW |ψadi
α′ 〉:

∂ρW

∂t
= − i

¯
[HW, ρW ] − 1

2

(
HW�̂ρW − ρW�̂HW

)
+1

2

(
[D, HW ] · ∇PρW + ∇PρW · [D, HW ]

)

− P
M

· [D, ρW ], (22)

where D is the matrix of the vector derivative couplings d(1)
αβ .

Equation (22) accounts for mutual interactions between the
electronic and nuclear DOF. Note that all Wigner-transformed
operators depend on a single nuclear coordinate Rc, and
even though the adiabatic functions |ψadi

α (Rc)〉 are double-
valued, the diagonal density matrix elements 〈ψadi

α |ρ̂W |ψadi
α 〉
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are all single-valued functions of Rc. As for the off-diagonal
elements 〈ψadi

α |ρ̂W |ψadi
β 〉 (coherences), in general, they are

double-valued functions, because the GP related sign flip of
the bra and ket components may not be simultaneous for any
closed contour in the Rc subspace. An example of such situ-
ation is a three-state model where two electronic states |ψadi

1,2〉
have a CI, and the third state |ψadi

3 〉 has an avoided crossing
with the first two states. In this example, the matrix elements
〈ψadi

α |ρ̂W |ψadi
3 〉

α=1,2 are double-valued functions because the
sign change in 〈ψadi

1,2| is not compensated by that in |ψadi
3 〉 on

encircling the CI. Thus, generally, Eq. (22) must be simulated
with double-valued boundary conditions for the off-diagonal
elements. However, for problems where the parametric de-
pendence of all adiabatic states leads to the same GP change
after encircling any closed contour all matrix elements in
Eq. (22) are single-valued functions, and Eq. (22) does not
need double-valued boundary conditions. Our 2D LVC model
is an example where the latter condition is satisfied because
both functions |ψadi

1 (Rc)〉 and |ψadi
2 (Rc)〉 either change their

sign or do not depending on whether the CI point is enclosed
by the contour. At any case, all quantities in Eq. (22) are well
defined mathematically, and their physical interpretation is
well-known.42

B. Adiabatic-then-Wigner path

We start by projecting the Liouville equation onto the adi-
abatic electronic basis |ψadi

α 〉 to obtain

i¯
∂X̂αα′

∂t
=

∑
β

(
Ĥ adi

αβ X̂βα′ − X̂αβ Ĥ adi
βα′

)
, (23)

where Ĥ adi
αβ and X̂αβ are multi-state generalizations of the two-

state adiabatic Hamiltonian (11) and nuclear density (9). Ap-
plying the WT to Eq. (23) we obtain

i¯
∂XW

∂t
= Hadi

W e−i¯�̂/2XW − XWe−i¯�̂/2Hadi
W . (24)

For the double-valued adiabatic densities X̂αα′ the WT,

Xαα′
W =

∫ 〈
Rc + s

2

∣∣∣∣ X̂αα′

∣∣∣∣ Rc − s
2

〉
e− i

¯
s·Pds, (25)

is not well defined, because, as is shown in the Appendix,
this operation is equivalent to the Fourier transform (FT) of
a double-valued function. Unless special care is taken at this
step the double-valued character of the X̂αα′ density will be
lost. Here, we follow previous derivations43, 44 of the AW-
QCL equation, noting that it is inconsistent with subtleties
arising from a nontrivial GP.

The Wigner-transformed adiabatic Hamiltonian Hadi
W in

Eq. (24) differs from the HW matrix only by the WT of the
non-adiabatic coupling operators τ̂ αβ [see Eq. (12)],

Hadi
W = HW + τW, (26)

where the τW matrix has elements

τ αα′
W = −i¯

P
M

· d(1)
αα′ + ¯2

2M

(
∇Rc

· d(1)
αα′ − d

(2)
αα′

)
. (27)

The last term in the parentheses defines a positive-definite ma-
trix K with elements

Kαα′ = ¯2

2M

(
∇ · d(1)

αα′ − d
(2)
αα′

)
= ¯2

2M

〈∇ψadi
α

∣∣∇ψadi
α′

〉
. (28)

The explicit form of the adiabatic Hamiltonian obtained from
Eqs. (26)–(28) is

Hadi
W = HW − i¯

P
M

· D + ¯2K. (29)

Expanding the Wigner-Moyal exponent in the Taylor series
and keeping only first order terms in ¯ in Eq. (24) we obtain
the AW-QCL equation,

∂XW

∂t
= − i

¯
[HW, XW ] − 1

2
(HW�̂XW − XW�̂HW )

− P
M

· [D, XW ]. (30)

It is important to note that Eq. (30) is no longer an exact evo-
lution equation for the quantum dynamics of our 2D LVC
model. This is in contrast to Eq. (20) which is fully equivalent
to the quantum Liouville equation for this model. The differ-
ence stems from two sources: First, the adiabatic Hamiltonian
[Eq. (29)] is not a quadratic function of the nuclear coordi-
nates, and consequently the truncation of the Wigner–Moyal
exponent is no longer exact. Second, the AW-QCL deriva-
tion ignores the double-valued character of the nuclear den-
sity, which results in Eq. (30) that corresponds to the evo-
lution of a nuclear density with the incorrect (single-valued)
boundary conditions. Comparing Eqs. (22) and (30) reveals
that both sources of the difference between the AW-QCL
and WA-QCL approaches can be related to the third term in
Eq. (22). Since this term accounts for direct changes in the nu-
clear momenta as a result of coupling to the electronic DOF,
one might expect significant influence of this term on the nu-
clear dynamics. Moreover, as we shall see below, neglecting
this term leads to loss of GP related features in the nuclear
dynamics.

IV. NUMERICAL SIMULATIONS

To quantify the difference between the WA-QCL and
AW-QCL approaches and to assess the relative importance of
GP effects we apply the general N-state QCL formalism to
the non-adiabatic dynamics of the 2D LVC model. In contrast
to more general models,40, 41 the use of the 2D LVC model
allows us to compare the two different Wigner based meth-
ods in settings where GP effects can be unambiguously as-
sociated with a single term in the WA-QCL equation. Our
choice of initial conditions and the model parameters aims
to minimize differences between the WA-QCL and AW-QCL
approaches that are related to the omission of the higher order
quantum contributions in AW-QCL. We employ the following
set of parameters for the 2D LVC model [Eqs. (1)–(3)]: ω = 2,
a = 1, c = 4, M = 1. The initial density is taken as a product
of two Gaussian wave packets centred at the minimum of the
|1〉 diabatic surface (−a/2, 0) with widths σ = √

2/ω and an
initial momentum (5/2, 0) (motion towards the positive x val-
ues). This setup results in a relatively high initial energy and
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(P) for the 2D LVC model simulated with different methods.

reduction of quantum tunnelling. We consider four different
approaches to non-adiabatic dynamics: (a) quantum diabatic
[Eq. (15)], (b) quantum adiabatic without GP [Eq. (10)], (c)
WA-QCL, (d) AW-QCL. We investigate two properties: the
time evolution of the fraction of the nuclear density remain-
ing in the region x < 0 (Fig. 2), and the 2D nuclear adiabatic
density at a given time (Fig. 3). The former is an integral prop-
erty, which illustrates differences in dynamics, while the latter
zooms into these differences at a given time.

As expected, the WA-QCL dynamics is very close to that
of the full quantum dynamics (see Fig. 2); the differences
are due mainly to rather modest convergence of the WA-QCL
density with respect to the number of classical trajectories in
the employed Trotter-based simulation algorithm47 and use of
the “momentum jump” approximation42 for the last two terms
in Eq. (22). Both approaches predict almost full transfer of
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FIG. 3. Snapshots of the square root of the probability density at t = 1.6 a.u.
for the 2D LVC model dynamics: (a) fully quantum (diabatic), (b) quantum
adiabatic (no GP), (c) WA-QCL, (d) AW-QCL.
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FIG. 4. Total density of two Gaussian wave packets g1 and g2 in cases of
(gold) constructive interference, (red) destructive interference, (green) no in-
terference.

the density from the initial x < 0 region to the x > 0 region
in a time of 1.3 a.u. with some degree of recurrence at later
times. By contrast, the quantum adiabatic dynamics exhibits
less prominent population transfer. Results of AW-QCL differ
from those of the other methods, which means that effects
from the Wigner-Moyal exponent truncation are still com-
parable to GP effects. To elucidate the differences between
the methods we present the two-dimensional nuclear density
at t = 1.6 a.u. (Fig. 3). The fully quantum model with GP
[Fig. 3(a)] and the WA-QCL model [Fig. 3(c)] develop a
nodal line in the region x > 0. This prominent feature is com-
pletely absent in the quantum adiabatic dynamics [Fig. 3(b)]
and, thus, can be seen as a manifestation of the GP.13, 16, 40, 48

Moreover, the adiabatic model predicts completely spurious
constructive interference between parts of the wave packet
that skirt the CI point from opposite sides, giving rise to a
peak in the nuclear density at x ≈ 2.5 a.u. [see Fig. 3(b)]. The
AW-QCL density is somewhat between those from both quan-
tum models: it has a visible dip along the y = 0 line, however,
this dip is not as pronounced as for the models accounting for
the GP. The AW-QCL density profile suggests that this ap-
proach does not produce any nuclear interference. To support
this assertion we considered different relations between two
spatially separated Gaussian wave packets. Figure 4 shows
that in the absence of interference the total density may have
a central minimum, which, however, is not as deep as in the
case of destructive interference. This result also indicates that
electronic transitions constitute the dominant quantum effect
in the AW-QCL dynamics, while quantum nuclear interfer-
ence within each electronic state is negligible.

V. CONCLUSIONS

The analysis of the QCL dynamics for the 2D LVC model
presented above showed that the WA-QCL equation is the
only approach where complications arising from a non-trivial
GP in the adiabatic representation do not make formalism ill-
defined. In situations when the GP behavior of the electronic
adiabatic states involved in the dynamics is similar (e.g., CI
of two electronic states), the WA-QCL approach can treat
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GP effects exactly without imposing double-valued boundary
conditions. In contrast, the AW-QCL approach involves the
WT integral of the adiabatic density operator with a double-
valued kernel. Practically, this transformation is equivalent to
the Fourier transformation of a double-valued function, which
is not a well-defined procedure. Yet, if one proceeds with
the Fourier transformation ignoring the double-valued char-
acter of the quantum density, the resulting AW-QCL equa-
tion describes the quantum density with the incorrect single-
valued boundary conditions. Thus, the AW-QCL approach is
plagued by the same problems as the quantum dynamics in
the adiabatic representation without including the GP (see
Fig. 1).

Interestingly, the AW-QCL and WA-QCL equations dif-
fer only by one term. This term is responsible for differences
associated with the Moyal–Wigner exponent truncation in dif-
ferent representations and GP effects. Further separation of
the GP-related terms from those corresponding to the Moyal–
Wigner exponent truncation does not seem to be feasible.
However, this analysis suggests why the previous numerical
assessment44 of the two approaches did not find a significant
difference between results for the spin-boson model where GP
effects are absent.

It is worth noting that in contrast to the quantum adia-
batic picture, where the GP appears in the form of non-trivial
boundary conditions, the WA-QCL approach confronts the
problem of the GP in a different way. In the quantum adia-
batic representation, GP effects can be seen as a result of de-
structive interference between components of a wave-packet
arriving via different paths with respect to the CI point. This
destructive interference can be only observed if the double-
valued boundary conditions on the nuclear density compo-
nents are imposed. In the Wigner-then-adiabatic representa-
tion for a two electronic state problem all nuclear density
components are single-valued quantities. Therefore, GP ef-
fects do not have their origin in the destructive interference of
nuclear trajectories but rather are produced by non-adiabatic
transitions for each nuclear trajectory. For a general multi-
level system, the WT maps similar GP behavior of different
electronic states into the third term of the WA-QCL dynam-
ical equation (22). Thus, the only components that are left
with the double-valued boundary conditions are coherences of
electronic states that have different GP behaviors. An interest-
ing question for future investigation is whether the trajectory
based techniques used to simulate Eq. (22) will be able to han-
dle the double-valued character of the coherences in general
multi-level systems owing to the space locality of a propa-
gated object?

Although for a two-state problem the WA-QCL and MT28

treatments produce similar results using adiabatic potentials
and non-adiabatic couplings, it should be noted that they ac-
count for GP effects differently. This can be easily seen by
considering a single electronic state version of Eq. (22) that
describes classical dynamics of nuclear DOF on a given elec-
tronic potential without any GP terms, which inevitably ap-
pear in the MT treatment. Thus, GP effects in the MT ap-
proach can be accounted for using dynamics on a single
adiabatic surface, while in the WA-QCL framework they re-
quire propagation on at least two electronic surfaces.

All quantities that are required to perform WA-QCL dy-
namics, such as the adiabatic potentials and the derivative
couplings, are readily available from first-principles quantum
chemistry calculations. Thus, the WA-QCL formalism natu-
rally accounts for GP effects in two electronic state crossing
problems with on-the-fly quantum chemistry calculations.
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APPENDIX: WIGNER TRANSFORMATION
OF ADIABATIC NUCLEAR DENSITIES

Here we consider the WT of the adiabatic densities,

Xαα′
W (P; Rc) =

∫ 〈
Rc + s

2

∣∣∣∣ X̂αα′

∣∣∣∣ Rc − s
2

〉
e− i

¯
s·Pds

=
∫

χα

(
Rc + s

2

)∗
χα′

(
Rc − s

2

)
e− i

¯
s·Pds

=
∫

fαα′ (s; Rc)e− i
¯

s·Pds. (A1)

Equation (A1) illustrates that the WT can be formulated as the
FT of the s variable for functions fαα′ (s; Rc). In what follows
we will show that for the 2D LVC model the fαα′ (s; Rc) are
double-valued functions of the s variable, and therefore, the
FT in Eq. (A1) is not well defined.

Even for our model we do not have an ex-
act analytical representation of the fαα′ (s; Rc) func-
tions, but we know that the total density function
ρ̂ = ∑

αα′ |ψadi
α′ (Rc − s/2)〉 fαα′ (s; Rc) 〈ψadi

α (Rc + s/2)| is
always a single-valued function. Thus, if fαα′ (s; Rc) are
double-valued then |ψadi

α′ (Rc − s/2)〉 〈ψadi
α (Rc + s/2)| must

be too, and vice versa. Hence, we will show that the elec-
tronic components |ψadi

α′ (Rc − s/2)〉 〈ψadi
α (Rc + s/2)| are

double-valued functions of the s parameter. This is not a
trivial check because the double-valued characters of the bra
and ket components can potentially compensate each other.
We will demonstrate by explicit construction that there exist
at least some closed contours for the s parameter which, for a

FIG. 5. Two contours z±s of Eq. (A2): the red contour (z−s) encircles the CI
point, and the blue contour (z+s) does not. Parameters were set to zc = xc

+ iyc = 1, d = 10, r = 9.
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FIG. 6. θ -φ relation for the contours on Fig. 5: the red (blue) dots follow
the contour that encircles (does not encircle) the CI point. Parameters of the
Hamiltonian (1) are chosen so that θ = arctan(y/x).

fixed Rc, causes only |ψadi
α′ (Rc − s/2)〉 or 〈ψadi

α (Rc + s/2)| to
change its sign.

For the 2D LVC model the functions |ψadi
α′ (Rc − s/2)〉

and 〈ψadi
α (Rc + s/2)| are defined by Eqs. (5) and (6). To con-

struct desired contours we fixed Rc = (xc, yc) and obtained
the (x, y) coordinates of the Rc − s/2 and Rc + s/2 contours
by taking the real and imaginary parts of

z±s = zc ± (d + reiφ)/2. (A2)

Figure 5 shows that this choice generates two contours
which are topologically different with respect to the CI point.
Thus, the contour that encompasses the CI produces a change
in the mixing angle θ [Eq. (7)] by 2π , while moving along the
other contour returns θ to its initial value (see Fig. 6).

Adiabatic transport along these contours will lead to
a sign change in all products of the electronic compo-
nents |ψadi

α′ (Rc − s/2)〉 〈ψadi
α (Rc + s/2)|, and, thus, this con-

cludes our illustration of the double-valued character of the
fαα′ (s; Rc) functions.
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