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Abstract

A mixed quantum-classical approach where the environment is treated classically and the reactive degrees of freedom are
considered to be quantum mechanical can be used to describe many chemical reactions, such as proton and electron transfe
processes. We present reactive flux correlation function expressions for the rate constants of nonadiabatic chemical reactions
occurring in quantum-classical systems. By means of a two-state model coupled to a classical bath, we illustrate an efficient
method of computation, based on a sequential short step propagation, which is applicable to quantum systems interacting with
general classical condensed phase environments.
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1. Introduction In this article we consider the computation of
the rates of nonadiabatic chemical reactions using a
] ) _ surface-hopping scheme that simulates the solution to
The computation of reaction rates in condensed the guantum-classical Liouville equation. We begin
phase systems presents a number of challenges fokyith an outline of quantum-classical dynamjgg and
simulation. Often rate processes are activated eventsthe derivation of reactive-flux correlation expressions
requiring methods to sample rarely visited regions of for rate constants that include nonadiabatic effits
configuration space. If the reaction has a quantum The main focus of this work is on the use of the se-
character, as in electron or proton transfer processes,quential short-time propagation algoritij@ for the
one must deal with the fact that several quantum simulation of the reaction rate. The use of this algo-
states can participate in the reactive event, introducing rithm allows us to obtain results with much greater
new effects that must be accounted for in simulation computational efficiency than those reported previ-
scheme¢1]. ously [3] using a direct computation of the Dyson
series for the quantum-classical evolution. We present
the results of a calculation on a model system com-
* Corresponding author. prising a reactive two-level system coupled to a large
E-mail address: rkapral@gatto.chem.utoronto.(R. Kapral). bath of harmonic oscillators.
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2. Quantum-classical nonadiabatic rate constants ing system. We consider a reacting system comprising
a two-level system directly coupled to a classical non-

Consider a quantum system in a classical bath de- linear oscillator with mas#/p and phase space coor-

scribed by the time-independent Hamiltonian opera- dinates(Rg, Pg), which is in turn coupled to a bath of

tor, Hw (R, P) = P?/(2M) + p?/(2m) + Vw(§, R), independent harmonic oscillators. The system Hamil-

which is the sum of the classical kinetic energy tonian in the diabatic representation is

P2/2M, a quantum kinetic energy operatpr/2m

and a potential energy operatdiy (4, R). The sub-  H— (+hV0R0 —h$2 )

script W is used to indicate that the quantum-classical —h§2  —hyoRo

description can be derived from a fully quantum N p2
one by means of a partial Wigner transform. The + (Zﬁ + Vb(R)>I, (2)
guantum-classical Liouville equation for the density j=0""
matrix py Is where
8,6w(R, P,t) . N ~ ~
— 8 = —iLwpw () =—(Hw, pw(®)). (1) N )
! ) Vi (R) = Vu(Ro) + Y _ (M5 /2)
The quantum-classical Liouville operatdl is defined j=1
i - i = 2
|intgrmsAofthe quantum chssmaJ b[ackth, Aw) % (Rj —CjRO/(Mj(U§)) .
#[Hw, Awl—(1/2)({Hw, A} —{A, Hw}), where, for
any operatorsdy and By, [Aw, Bw] is the com- The nonlinear oscillator has a quartic potential en-
n e il £l . _ 4 2 .
mutator and{Aw, By} is the Poisson bracket. The €rgy function, V,(Ro) = aRy/4 — bRg/2. The lin-
quantum-classical Liouville equatiofl) can be de- €& coupling to the two-level system is given by

rived from the quantum Liouville equation by per- —/1¥oRo =7y (Ro). The classical nonlinear oscilla-
forming a partial Wigner transform on the bath degrees {Or is bilinearly coupled, in turn, to a bath ¥ in-
of freedom in scaled variables. dependent harmonic oscillators labelgd= 1, ...,
An expression for the reaction rate can be derived V With massesM; and frequenciesv;. The bi-
by considering the quantum-classical system subject IN€ar coupling between the quartic oscillator and
to external time-dependent affinities that couple to mi- harmonic bath is characterized by an Ohmic spec-
croscopic variablegy; that characterize the chemical tral density. See Refd6,7] for details and Ref[3]
species. The chemical rate law follows from the cal- for specific parameter values. We use the notation
culation of the non-equilibrium average by evaluating (R.P) = (Ro. R1.....Ry. Po, P1,.... Py) for the
the density matrix to linear order in the affinities. Fol- Point in the 2N + 1)-dimensional phase space of
lowing the standard development of linear response the model. We report results in dimensionless vari-
theory, the response function obtained from such an @blesR; = (Mjwc/mMY?R;, P; = (hMjwo) 2 P;,
analysis can be related to the linear phenomenologi- 8 = fiw. = hw./kpT andz = tw.. The results pre-
cal Onsager coefficients that characterize the transportsented below are for a system with= 100 harmonic
processeg5] (in this case the chemical relaxation) oscillators in the bath (unless otherwise noted) and
in the system. In simulations it is convenient to con- dimensionless parameter valuesnax = 3 (the cut-
sider the time-dependent Onsager coefficients, from off frequency in the Ohmic spectral density)= 4,
which the true phenomenological coefficients may be 2 =0.2,0=1,a =3,b=1.8008 and3 = 6.
determined from the plateau value of this expression,  The adiabatic eigenstates and eigenvalues in terms
should such a plateau exist. of which the calculations were carried out were ob-
tained by diagonalization of the two-level system
Hamiltonian (2). When the harmonic oscillator co-
3. Nonadiabatic chemical reaction model ordinates are integrated out, the ground state adia-
batic free energy has a double-well form while the
We now turn to the use of this formalism and com- excited state adiabatic free energy has a single mini-
pute the rate constant for a model nonadiabatic react- mum with an avoided crossing & = 0. Thus, there
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are two metastable state$,and B, when the system
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exq_ﬂEa’a])/z + (1 - exq_ﬁEa’a])/Eaa’)i where

is on the ground state surface but passage betweerthe nonadiabatic coupling matrix elementdg, =

these states can be influenced by nonadiabatic transi-

tions to the excited stat&;. We may write operators
that define the chemiAcaI species variableshas =
11; Rg)@(Ro)(1; Rol, Np = |1; Ro)®(—Ro)(1; Rol,
andN¢ = |2; Ro)(2; Ro|, where® (£Ryp) is the Heav-
iside function selecting the right or left wells and
|1; Ro){I; Ro| is a projector onto the adiabatic state
IT; Ro).

Given this picture, the chemical reactions= J,
(I #J = A, B,C), characterized by the transition
probabilitiesk; ;, occur among the three species. Only
two of the three reactions are independent. We may
formulate the irreversible thermodynamics for this

(a; Rold/d Rola’; Rp). The diagonal and off-diagonal
contributions to the density matrix lead to a decompo-
sition of the time-dependent rate coefficient as the sum
of two contributionsk 5 (t) = k% , (t) + kS 5(¢). For
example, the contribution coming from the diagonal
part of the density matrix is given by

k) =—(n) "

P
x/dePNg,l(R,P,t)a(Ro) 2 i

ﬁopWe'

4
Eq. (4) has the same form as the classical reactive flux
formula except that the time evolution must be carried

case in terms of two independent species and the corre-0Ut Using quantum-classical dynamics.

sponding affinities. We may identify the phenomeno-
logical coefficients ag;; = (k;; — 8,1)i5". We have

the reIationsLAA(ﬁiq)‘l =kaa—1=—(kap+kac),
which describes the net decay of speciés and
La@Sh™ = kap, with similar relations forLgp
andL 4. In view of the symmetry of the model there
are only two independent rate constants which may
be expressed in terms of the two Onsager coefficients
Laa and L. Specializing the general expressions
for the Onsager coefficients to this reactive case we
have BL;j(t) = =T [dRAP Xwi()(XwJ, Pwe),
where x; = N; — (N;). This is a microscopic ex-
pression for the time-dependent Onsager coefficient in
terms of a quantum-classical progress varighie (¢)

and the quantum-classical bracket of the progress vari-
able at time zero with the stationary density matrix.
To simplify the notation we drop th& subscript on
species variables. To calculalg 4 (75) "t = kap we

use the adiabatic basis and have

kap() =—(pig) "
x 3 [ dRAP g Oa vl @)

with a similar expression fats¢(¢).
To calculate the rate coefficients, we must evalu-

ate the quantum-classical brackets and use the form

of the equilibrium density matrix which, to order
h, is given by [5] p8% ~ P ¥S8u — i f3¢ (1 —
Suar), With o0 = Z5 L exp(—BHE,) whereZg is the

We
partition function andf%® = Po - duw p'0* (B(L +

4. Computation of therate constant

In the adiabatic basis the quantum-classical Li-
ouville operator has matrix elementsqj, gg

(0na + I Laa)Sapdarp — Jaa' pp = 1L0yupSarp —

Joa! B’ where wyq' (R) = [Eq(R) — Eo/(R)]/h is

the quantum frequency andj, = (P/M) - 3/0R +
(1/2)(F% + F%) - 9/9P, is the classical Liouville
operator that involves the mean of the Hellmann—
Feynman forces corresponding to the adiabatic states
a and o’. The operatorJ,. gg is responsible for
nonadiabatic transitions and corresponding bath mo-
mentum changes and has the form

Jaa g’

(P/M) - dop(1+ (Sup/2) - (3/3P))Serp
—(P/M) - d;‘,ﬂ,(1+ (Syip/2) - (3/0P))dugp.

where Ses = AEqp(R)dap(L - dap) ™t
AEup(R) = Eq(R) — Eg(R).

In order to construct, a formulation of the dynamics
in terms of surface-hopping trajectories, we divide the
time intervalt into N segments of length&s; =¢; —
tj_1 so that

with

(&)
opag.aN

2

(@10)),.... (@y—10)y_q) J=1

N

LGt~
1_[(9' (tj—t; 1))0{./_10[}71’0”“/_.

J

®)
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Fig. 1. Transmission coefﬁciewf/iB(t) versust from nonadiabatic
dynamics coming fronk;‘iB including up ton = 2 quantum tran-
sitions (lower curve). For comparison, the upper curve shows the
adiabatic transmission coefficient.

If At is sufficiently small, in each time interval the
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5. Conclusion

The simulation results demonstrate that nonadi-
abatic rate constants can be computed within the
quantum-classical Liouville equation framework. The
short-time sequential algorithm yielded results with
greater computational efficiency than those obtained
earlier using a different algorithm that simulates the
individual contributions in the Dyson expansion of
the solution of the quantum-classical Liouville equa-
tion. In the activated rate process we investigated here,
most nonadiabatic transitions occur in the vicinity of
the free energy barrier top where trajectories originate.
The short-time sequential algorithm is able to capture
this dynamics. The full description of nonadiabatic ef-
fects for this reaction model requires a knowledge of
the rates for theA = B, B = C and A = C micro-

system may either stay on the same energy surface orgcqpic transition processes. The nonadiabatic reactive
make a transition to a new state. The sequential short- fiy formalism and simulation schemes developed ear-
time algorithm may be implemented easily. The total |ier and applied to the model reactive system here
time of the calculation is divided into a fixed num-  provide a basis for investigating nonadiabatic effects

ber of time slices, the most natural choice being to on chemical reactions in realistic models of physical
take the molecular dynamics integration time step systems.

as the length of the slice. Thus, one obtains adiabatic
propagation of the phase space coordinates for a sin-

gle time step together with the corresponding phase References
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