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Abstract

A mixed quantum-classical approach where the environment is treated classically and the reactive degrees of fre
considered to be quantum mechanical can be used to describe many chemical reactions, such as proton and elect
processes. We present reactive flux correlation function expressions for the rate constants of nonadiabatic chemica
occurring in quantum-classical systems. By means of a two-state model coupled to a classical bath, we illustrate an
method of computation, based on a sequential short step propagation, which is applicable to quantum systems intera
general classical condensed phase environments.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The computation of reaction rates in conden
phase systems presents a number of challenge
simulation. Often rate processes are activated ev
requiring methods to sample rarely visited regions
configuration space. If the reaction has a quan
character, as in electron or proton transfer proces
one must deal with the fact that several quant
states can participate in the reactive event, introduc
new effects that must be accounted for in simulat
schemes[1].
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In this article we consider the computation
the rates of nonadiabatic chemical reactions usin
surface-hopping scheme that simulates the solutio
the quantum-classical Liouville equation. We beg
with an outline of quantum-classical dynamics[2] and
the derivation of reactive-flux correlation expressio
for rate constants that include nonadiabatic effects[3].
The main focus of this work is on the use of the
quential short-time propagation algorithm[4] for the
simulation of the reaction rate. The use of this alg
rithm allows us to obtain results with much grea
computational efficiency than those reported pre
ously [3] using a direct computation of the Dyso
series for the quantum-classical evolution. We pres
the results of a calculation on a model system co
prising a reactive two-level system coupled to a la
bath of harmonic oscillators.
.
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2. Quantum-classical nonadiabatic rate constants

Consider a quantum system in a classical bath
scribed by the time-independent Hamiltonian ope
tor, ĤW (R,P ) = P 2/(2M) + p̂2/(2m) + V̂W (q̂,R),
which is the sum of the classical kinetic ener
P 2/2M , a quantum kinetic energy operatorp̂2/2m

and a potential energy operatorV̂W (q̂,R). The sub-
scriptW is used to indicate that the quantum-class
description can be derived from a fully quantu
one by means of a partial Wigner transform. T
quantum-classical Liouville equation for the dens
matrix ρ̂W is

(1)
∂ρ̂W (R,P, t)

∂t
= −iLW ρ̂W (t) = −(

ĤW , ρ̂W (t)
)
.

The quantum-classical Liouville operator iL̂ is defined
in terms of the quantum-classical bracket(ĤW , ÂW ) =
i
h̄
[ĤW , ÂW ]− (1/2)({ĤW , Â}− {Â, ĤW }), where, for

any operatorsÂW and B̂W , [ÂW , B̂W ] is the com-
mutator and{ÂW , B̂W } is the Poisson bracket. Th
quantum-classical Liouville equation(1) can be de-
rived from the quantum Liouville equation by pe
forming a partial Wigner transform on the bath degr
of freedom in scaled variables.

An expression for the reaction rate can be deri
by considering the quantum-classical system sub
to external time-dependent affinities that couple to
croscopic variableŝχWi that characterize the chemic
species. The chemical rate law follows from the c
culation of the non-equilibrium average by evaluat
the density matrix to linear order in the affinities. Fo
lowing the standard development of linear respo
theory, the response function obtained from such
analysis can be related to the linear phenomenol
cal Onsager coefficients that characterize the trans
processes[5] (in this case the chemical relaxatio
in the system. In simulations it is convenient to co
sider the time-dependent Onsager coefficients, f
which the true phenomenological coefficients may
determined from the plateau value of this express
should such a plateau exist.

3. Nonadiabatic chemical reaction model

We now turn to the use of this formalism and co
pute the rate constant for a model nonadiabatic re
ing system. We consider a reacting system compris
a two-level system directly coupled to a classical n
linear oscillator with massM0 and phase space coo
dinates(R0,P0), which is in turn coupled to a bath o
independent harmonic oscillators. The system Ham
tonian in the diabatic representation is

H =
(+h̄γ0R0 −h̄Ω

−h̄Ω −h̄γ0R0

)

(2)+
(

N∑
j=0

P 2
j

2Mj

+ Vb(R)

)
I,

where

Vb(R) = Vn(R0) +
N∑

j=1

(
Mjω

2
j /2

)

× (
Rj − cjR0/

(
Mjω

2
j

))2
.

The nonlinear oscillator has a quartic potential
ergy function,Vn(R0) = aR4

0/4 − bR2
0/2. The lin-

ear coupling to the two-level system is given
−h̄γ0R0 = h̄γ (R0). The classical nonlinear oscilla
tor is bilinearly coupled, in turn, to a bath ofN in-
dependent harmonic oscillators labeledj = 1, . . . ,

N with massesMj and frequenciesωj . The bi-
linear coupling between the quartic oscillator a
harmonic bath is characterized by an Ohmic sp
tral density. See Refs.[6,7] for details and Ref.[3]
for specific parameter values. We use the nota
(R,P ) = (R0,R1, . . . ,RN,P0,P1, . . . ,PN) for the
point in the 2(N + 1)-dimensional phase space
the model. We report results in dimensionless v
ablesR̃j = (Mjωc/h̄)1/2Rj , P̃j = (h̄Mjωc)

−1/2Pj ,
β̃ = h̄ωcβ = h̄ωc/kBT and t̃ = tωc. The results pre
sented below are for a system withN = 100 harmonic
oscillators in the bath (unless otherwise noted)
dimensionless parameter values:ωmax = 3 (the cut-
off frequency in the Ohmic spectral density),ξ = 4,
Ω = 0.2, γ0 = 1, a = 3, b = 1.8008 andβ = 6.

The adiabatic eigenstates and eigenvalues in te
of which the calculations were carried out were o
tained by diagonalization of the two-level syste
Hamiltonian (2). When the harmonic oscillator co
ordinates are integrated out, the ground state a
batic free energy has a double-well form while t
excited state adiabatic free energy has a single m
mum with an avoided crossing atR = 0. Thus, there
0
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are two metastable states,A andB, when the system
is on the ground state surface but passage betw
these states can be influenced by nonadiabatic tra
tions to the excited state,C. We may write operator
that define the chemical species variables asN̂A =
|1;R0〉Θ(R0)〈1;R0|, N̂B = |1;R0〉Θ(−R0)〈1;R0|,
andN̂C = |2;R0〉〈2;R0|, whereΘ(±R0) is the Heav-
iside function selecting the right or left wells an
|I ;R0〉〈I ;R0| is a projector onto the adiabatic sta
|I ;R0〉.

Given this picture, the chemical reactionsI � J ,
(I �= J = A,B,C), characterized by the transitio
probabilitieskIJ , occur among the three species. O
two of the three reactions are independent. We m
formulate the irreversible thermodynamics for th
case in terms of two independent species and the c
sponding affinities. We may identify the phenomen
logical coefficients asLIJ = (kJI − δJI )n̄

eq
J . We have

the relationsLAA(n̄
eq
A )−1 = kAA −1= −(kAB +kAC),

which describes the net decay of speciesA, and
LBA(n̄

eq
A )−1 = kAB , with similar relations forLBB

andLAB . In view of the symmetry of the model the
are only two independent rate constants which m
be expressed in terms of the two Onsager coeffici
LAA and LBA. Specializing the general expressio
for the Onsager coefficients to this reactive case
have βLIJ (t) = −Tr′

∫
dR dP χ̂WI (t)(χ̂WJ , ρ̂We),

where χ̂I = N̂I − 〈N̂I 〉. This is a microscopic ex
pression for the time-dependent Onsager coefficien
terms of a quantum-classical progress variableχ̂W,I (t)

and the quantum-classical bracket of the progress v
able at time zero with the stationary density matr
To simplify the notation we drop theW subscript on
species variables. To calculateLBA(n̄

eq
A )−1 = kAB we

use the adiabatic basis and have

kAB(t) = −(
βn̄

eq
A

)−1

(3)×
∑
αα′

∫
dR dP χα′α

B (t)(χ̂A, ρ̂We)αα′ ,

with a similar expression forkAC(t).
To calculate the rate coefficients, we must eva

ate the quantum-classical brackets and use the
of the equilibrium density matrix which, to orde
h̄, is given by [5] ραα′

We ≈ ρ
(0)α
We δαα′ − if αα′

We (1 −
δαα′), with ρ

(0)α
We = Z−1

0 exp(−βHα
W) whereZ0 is the

partition function andf αα′ = P · d ′ρ(0)α
(β(1 +
We 0 αα We
exp[−βEα′α])/2 + (1 − exp[−βEα′α])/Eαα′), where
the nonadiabatic coupling matrix element isdαα′ =
〈α;R0|∂/∂R0|α′;R0〉. The diagonal and off-diagona
contributions to the density matrix lead to a decom
sition of the time-dependent rate coefficient as the s
of two contributions:kAB(t) = kd

AB(t) + ko
AB(t). For

example, the contribution coming from the diago
part of the density matrix is given by

kd
AB(t) = −(

n
eq
A

)−1

(4)

×
∫

dR dP N11
B (R,P, t)δ(R0)

P0

M0
ρ11

We.

Eq.(4) has the same form as the classical reactive
formula except that the time evolution must be carr
out using quantum-classical dynamics.

4. Computation of the rate constant

In the adiabatic basis the quantum-classical
ouville operator has matrix elements, iLαα′,ββ ′ =
(iωαα′ + iLαα′)δαβδα′β ′ − Jαα′,ββ ′ ≡ iL0

αα′δαβδα′β ′ −
Jαα′,ββ ′ , where ωαα′(R) = [Eα(R) − Eα′(R)]/h̄ is
the quantum frequency and iLαα′ = (P/M) · ∂/∂R +
(1/2)(Fα

W + Fα′
W ) · ∂/∂P , is the classical Liouville

operator that involves the mean of the Hellman
Feynman forces corresponding to the adiabatic st
α and α′. The operatorJαα′,ββ ′ is responsible for
nonadiabatic transitions and corresponding bath
mentum changes and has the form

Jαα′,ββ ′

= −(P/M) · dαβ

(
1+ (Sαβ/2) · (∂/∂P )

)
δα′β ′

− (P/M) · d∗
α′β ′

(
1+ (S∗

α′β ′/2) · (∂/∂P )
)
δαβ,

where Sαβ = �Eαβ(R)dαβ( P
M

· dαβ)−1 with
�Eαβ(R) = Eα(R) − Eβ(R).

In order to construct, a formulation of the dynam
in terms of surface-hopping trajectories, we divide
time intervalt into N segments of lengths�tj = tj −
tj−1 so that(
eiLt

)
α0α

′
0,αNα′

N

(5)

=
∑

(α1α
′
1),...,(αN−1α

′
N−1)

N∏
j=1

(
eiL(tj −tj−1)

)
αj−1α

′
j−1,αj α′

j
.
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Fig. 1. Transmission coefficientκd
AB

(t) versust from nonadiabatic

dynamics coming fromkd
AB

including up ton = 2 quantum tran-
sitions (lower curve). For comparison, the upper curve shows
adiabatic transmission coefficient.

If �t is sufficiently small, in each time interval th
system may either stay on the same energy surfac
make a transition to a new state. The sequential sh
time algorithm may be implemented easily. The to
time of the calculation is divided into a fixed num
ber of time slices, the most natural choice being
take the molecular dynamics integration time step�t

as the length of the slice. Thus, one obtains adiab
propagation of the phase space coordinates for a
gle time step together with the corresponding ph
factor W . At the end of each time step the prob
bilities, Π = |P · d/M|�t(1 + |P · d/M|�t)−1 and
Σ = 1 − Π are respectively used for acceptance
rejection of a quantum transition. In the simulatio
reported below we used the momentum-jump appr
imation to evaluateJ [8].

We computed the adiabatic time dependent tra
mission coefficientκAB(t) = kAB(t)/kT ST

AB versus
time for several values ofN . For N > 100 no fur-
ther change in the value of the transmission coeffic
is observed and, therefore,N = 100 was used in th
simulations reported here. InFig. 1 we showκAB(t).
One can see that the transmission coefficient evo
rapidly to a slowly decaying “plateau” value whic
when extrapolated tot = 0, determines the rate con
stant. Nonadiabatic effects modify the value of t
transmission coefficient by only a small amount
the chosen model parameters although there are
nificant differences at short times.
5. Conclusion

The simulation results demonstrate that nona
abatic rate constants can be computed within
quantum-classical Liouville equation framework. T
short-time sequential algorithm yielded results w
greater computational efficiency than those obtai
earlier using a different algorithm that simulates
individual contributions in the Dyson expansion
the solution of the quantum-classical Liouville equ
tion. In the activated rate process we investigated h
most nonadiabatic transitions occur in the vicinity
the free energy barrier top where trajectories origin
The short-time sequential algorithm is able to capt
this dynamics. The full description of nonadiabatic
fects for this reaction model requires a knowledge
the rates for theA � B, B � C andA � C micro-
scopic transition processes. The nonadiabatic rea
flux formalism and simulation schemes developed e
lier and applied to the model reactive system h
provide a basis for investigating nonadiabatic effe
on chemical reactions in realistic models of physi
systems.
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