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Proton and deuteron transfer reactions in a hydrogen-bonded complex dissolved in a polar solution
are studied using quantum-classical Liouville dynamics. Reactive-flux correlation functions that
involve quantum-classical Liouville dynamics for species operators and quantum equilibrium
sampling are used to calculate the rate constants. Adiabatic and nonadiabatic reaction rates are
computed, compared, and analyzed. Large variations of the kinetic isotope effect �KIE� for this
reaction have been observed in the literature, which depend on the nature of the approximate
calculation used to estimate the proton and deuteron transfer rates. Our estimate of the KIE lies at
the low end of the range of previously observed values, suggesting a rather small KIE for this
reaction. © 2008 American Institute of Physics. �DOI: 10.1063/1.2907847�

I. INTRODUCTION

Proton transfer reactions occurring in the condensed
phase play an important role in many chemical and biologi-
cal processes.1–4 Knowledge of their rates is therefore neces-
sary for an understanding of the time scales encountered in
these processes. Under many conditions the thermal de Bro-
glie wavelength of the proton is comparable to the distance
over which it transfers. Thus, a quantum mechanical rate
theory which correctly describes the reactive dynamics of the
proton and its coupling to an environment is required.

Since condensed phase proton transfers often take place
in complex environments with very large numbers of degrees
of freedom, full quantum mechanical descriptions are not
computationally feasible. However, since the particles com-
prising the environment are often heavy, they can be mod-
eled to a high degree of accuracy by classical mechanics. In
this case, mixed quantum-classical formalisms5–8 that com-
bine a quantum mechanical treatment of the proton with a
classical description of the environment provide practical
ways of studying proton transfer processes. Mean field9–11

and surface-hopping12–15 schemes have been constructed in
this spirit. The retention of quantum coherence is a limitation
of such algorithms, and approximate methods have been de-
veloped to incorporate decoherence effects.16–18 The ap-
proach adopted in this article, which naturally takes decoher-
ence into account,19 is based on the quantum-classical
Liouville equation,8,20–29 which specifies the evolution of the
density matrix for a quantum mechanical subsystem coupled
to a classical environment.

Quantum mechanical rates of condensed phase reactions
can be determined by evaluating time correlation functions
of the fluxes of reactant and product chemical species.30,31

The computation of such correlation functions involves sam-

pling initial conditions from quantum equilibrium distribu-
tions and quantum time evolution of chemical species opera-
tors. Both the equilibrium and dynamical parts of the
calculation present challenges for applications to condensed
phase systems and a number of computational schemes have
been proposed to compute the structure and dynamics.12,32–51

Our description of the quantum dynamics is based on
quantum-classical Liouville evolution20,52 and on approxima-
tions to the quantum equilibrium structure which incorporate
nonadiabatic effects.51,53–56

In this work, we study an intermolecular proton transfer
reaction in a bulk polar solvent of the form AH−B�A−

−H+B. The model under study, which was constructed by
Azzouz and Borgis,57 describes a hydrogen-bonded phenol
�A� trimethylamine �B� complex dissolved in methyl chlo-
ride. The proton transfer rate constant and kinetic isotope
effect �KIE� have been computed for this model using a wide
variety of techniques.16,57–63 The specific forms of the inter-
action potentials, parameter values used, and the remaining
details of the model can be found in Refs. 16, 64, and 65. In
a previous work, we calculated the proton transfer rate con-
stant for this model with the AB distance constrained at
RAB=2.7 Å. Here we consider the more general situation in
which the complex vibrates and calculate the corresponding
rate constant and KIE.

The article is organized as follows: Section II presents
the expression for the time dependent reaction rate coeffi-
cient that forms the basis for the simulations. Section III
outlines the techniques used to simulate the quantum-
classical Liouville evolution of the species variable, de-
scribes the rare event sampling scheme used in the evalua-
tion of the rate, and illustrates the method used to obtain the
free energy surfaces. The main results of the study are pre-
sented in Sec. IV. The results are briefly discussed in Sec. V.
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The Appendix contains details of the derivation of the spec-
tral density function, which enters into the expression for the
rate constant.

II. QUANTUM-CLASSICAL RATE THEORY

The rate constant calculations are based on an expression
for the time dependent rate coefficient of the proton transfer
reaction A�B

kAB�t� =
1

nA
eq�

�
�

����

�2 − ������ dX

�Re�NB
����X,t�WA

����X,
i��

2
	
 , �1�

which is written in terms of a partial Wigner representation
of the bath degrees of freedom and a representation of the
protonic degrees of freedom in adiabatic states.54 Here the
bath phase space variables �coordinates and momenta, re-
spectively� are denoted by X= �R , P�, nA

eq is the equilibrium
density of species A and �=1 /kBT is the inverse tempera-
ture. In this partial Wigner transform representation,66 the

Hamiltonian Ĥ of the system is ĤW= P2 /2M + ĥ�R�, where

ĥ�R� is the protonic Hamiltonian in the field of fixed bath
particles with mass M. The adiabatic basis states ��� ;R� are

the solutions of the eigenvalue problem ĥ�R��� ;R
=E��R��� ;R, where �E�� are the adiabatic energies. In this

expression for the rate coefficient, NB
����X , t� is the time

evolved species B �product� operator, while WA
����X , i�� /2�

is the spectral density function that contains all information
on the quantum equilibrium structure.

The solvent polarization reaction coordinate67,68

��R� � �E�R� = �
i,a

zae� 1

�Ri
a − s�

−
1

�Ri
a − s��

	 �2�

is used to monitor the progress of the proton transfer reac-
tion. Here zae�e=1.602�10−19 C� is the charge on atom a, s
and s� are the two positions of the proton within the AHB
complex that correspond to the stable covalent and ionic con-
figurations, respectively, and the sums run over all solvent
molecules i and atoms a. Given this reaction coordinate, the
species operator that characterizes the B metastable state is

N̂B=	���R�−�‡�, where 	 is the Heaviside function. The
metastable A species is defined in an analogous manner. The
dividing surface that separates the A and B species is located
at ��R�=�‡. The time evolution of the species operator is
assumed to be governed by quantum-classical Liouville
dynamics.

The calculation of the quantum equilibrium structure,
although a difficult problem, is far more tractable than that of
the quantum time evolution of a many-body system. The
mathematical details and approximations which enter into
the calculation of the spectral density function are given in
the Appendix. In the limit of high temperature, the result is

WA
���X,i��/2� =

1

�2
�������R� − �‡�e−�H��R�

�� P

M
· �R��R� + D��R�� , �3�

where � denotes the coordinate space dimension and D��R�
is

D��R� =
��2

2 �
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The nonadiabatic coupling matrix element, d����R�, is de-
fined below Eq. �A10� in the Appendix. When ����, the

term NB
���WA

��� yields a negligible contribution to the rate
coefficient. Due to the nature of the species operator

�N̂B�W�R�=	���R�−�‡�, the off-diagonal matrix element of

the observable, NB
����R , t�, is zero initially and remains very

small �compared to its diagonal counterpart� for all times.

Thus, when WA
��� is multiplied by a very small number, the

product will also be very small. Hence, we can safely drop
the off-diagonal part of the rate coefficient from the formula.
At low temperatures, other approximations to the equilib-
rium spectral density function must be considered.

Substituting Eq. �3� into Eq. �2�, we obtain the expres-
sion for the rate coefficient used in our computations

kAB�t� =
1

nA
eq�2
���ZQ

�
�
� dXNB

��X,t�

�� P

M
· �R��R� + D��R������R� − �‡�e−�H��X�,

�5�

where it can be shown that

nA
eq = �1/�2
���ZQ���� dX	��‡ − ��R��e−�H��X�

and ZQ= �1 / �2
�������dXe−�H��X� in the high temperature
limit. Equation �5� provides a well-defined formula involving
sampling from the barrier top. If the time scale of the chemi-
cal reaction is much longer than that of the microscopic dy-
namics, one can extract the rate constant kAB from the plateau
value of kAB�t�. When nonadiabatic effects are important, the
term D��R� �which is of order �d����

2� contributes signifi-
cantly to the rate coefficient. However, in the limit of weak
nonadiabatic coupling �i.e., when �d���� is very small�, the
first term in Eq. �3� dominates and the expression for the rate
coefficient reduces to the simpler form

kAB�t� =
1

nA
eq�2
���ZQ

�
�
� dXNB

��X,t�

�
P

M
· �R��R�����R� − �‡�e−�H��X�. �6�
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III. COMPUTATIONAL METHODOLOGY

The adiabatic evolution of the species variable, NB
��X , t�,

in Eq. �6� was carried out by solving the time independent
Schrödinger equation of the proton for fixed values of the
classical bath coordinates. Using Newton’s equations of mo-
tion, the classical bath coordinates were evolved on the
ground state adiabatic potential energy surface. The details of
the solution are given in Ref. 64. These classical equations of
motion were integrated using the velocity Verlet, SHAKE

�Ref. 69�, and RATTLE �Ref. 70� algorithms with a time step
of 1 fs to yield a new bath configuration.

The nonadiabatic evolution of the species variable in Eq.
�5� is governed by the quantum-classical Liouville
equation.20 We used the sequential short-time propagation
algorithm to solve this equation in conjunction with the mo-
mentum jump approximation. The details of these methods
are given elsewhere.64,71 In addition, we placed a filter on the
species variable such that if its magnitude exceeds some
threshold, the value of the species variable is set equal to the
threshold value. The purpose of this filter is to prevent the
excessive accumulation of weight factors at long times,
which magnifies the “sign problem” associated with an os-
cillatory integrand. Within the regime that the filter is effec-
tive �i.e., regime in which the product of the weight factors is
not excessively large�, the threshold value was increased un-
til the value of the observable converged within statistical
uncertainty. In simple spin-boson models, for which our
quantum-classical dynamics algorithm has been shown71 to
reproduce exact quantum results,37,72,73 it has been confirmed
that the expectation value obtained using this approximation
agrees with the exact one at long times.74

Since our molecular dynamics simulations are carried
out in Cartesian coordinates with intramolecular bond con-
straints, constraint forces must be applied to the molecules in
conjunction with the nonadiabatic coupling forces. This is
required so that the adjusted velocities do not have any com-
ponents along the intramolecular bonds. For a rigid diatomic
molecule, the adjusted velocities can be calculated according
to

vi� = vi +
h

Mi
d̃̂��

i , �7�

where h is the quantity in square brackets given in Eq. �36�

of Ref. 64 �with d̂��
i replaced by d̃̂��

i � and d̃̂��
i � d̂��

i −�ijR̂ij

�the hat denotes a normalized vector�. Here the subscripts i

and j label the atoms in the diatomic molecule and R̂ij is the
unit bond vector between them. In order to determine �ij, we
need to satisfy the following constraint:

̇ij = R̂ij · �vi� − v j�� = 0, �8�

where ij =Rij
2 −dij

2 with dij being the desired constrained dis-
tance. After substituting Eq. �7� into the constraint and noting

that R̂ij · �vi−v j�=0, we obtain

�ij = R̂ij · � d̂��
i

Mi
−

d̂��
j

Mj
	�� 1

Mi
+

1

Mj
	 . �9�

This scheme was used in Ref. 64. Another description of
constraints in the context of Dirac brackets is given in Ref.
75 and the relation between these methods remains to be
established.

A. Rare event sampling scheme

In order to describe the rare event sampling scheme, we
consider the computation of the adiabatic rate coefficient us-
ing Eq. �6� and restricting the sum to one adiabatic state. The
adiabatic rate coefficient can be written in the form

kad�t� =
��̇�0�	���t� − �‡�����0� − �‡�

nA
eqnB

eq . �10�

For nonadiabatic dynamics, the same rare-event sampling
scheme is used but the time evolution of the species operator
is carried out using full quantum-classical dynamics. The
angular brackets �¯ are defined as

�¯ �
� dX ¯ e−�H1

� dXe−�H1
, �11�

where the ground-state adiabatic Hamiltonian is H1

=�iPi
2 /2Mi+E1�R�. The ensemble average needed to com-

pute the rate coefficient is conditioned on the reaction coor-
dinate being on the �=�‡ dividing surface. For highly acti-
vated rate processes, this would pose a problem since the
system would rarely visit the barrier top. To circumvent this
difficulty, the conditional average can be computed using a
“blue moon” ensemble76 of initial configurations in which
the value of the reaction coordinate is fixed at the barrier top
value �i.e., ��R�=�‡�. Using this ensemble, the expression for
kad�t� takes the form

kad�t� = � �D−1/2�̇�0�	���t� − �†��‡

�D−1/2�‡
	�P1��‡�

nA
eqnB

eq 	 , �12�

where �. . .�‡ denotes an average over the �-constrained en-
semble and P1��‡� is the probability density of the system
being in the ground adiabatic state and the reaction coordi-
nate being on the �=�‡ dividing surface. The factor D−1/2

�not to be confused with D� in Eq. �4�� removes the bias
introduced by the blue moon sampling and its general form
is given in Eq. �21� of Ref. 77. Its specific form for the
proton transfer system under investigation is given by

D = �
i
� 1

MCH3

� ��

�Ri,CH3

	2

+
1

MCl
� ��

�Ri,Cl
	2

− �� 1

MCH3

�r̂i
rel ·

��

�Ri,CH3

	 −
1

MCl
�r̂i

rel ·
��

�Ri,Cl
	
2�

+ �
�=A,B

1

M�
� ��

�R�
	2

, �13�

where the index i runs over solvent molecules, r̂i
rel is the unit
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bond vector for molecule i, and �=MCH3
MCl / �MCH3

+MCl�.
The details related to the computation of the first factor in
Eq. �12� are given in Ref. 64.

B. Free energy calculation

The numerator of the second factor of Eq. �12� is related
to the free energy at the barrier top. Without restriction to the
ground adiabatic state we have

P����� =
� dX����R� − ���e−�H�

��� dXe−�H�

=
� dX����R� − ���e−�H�

� dXe−�H�

� dXe−�H�

��� dXe−�H�

� P�������p�, �14�

where P������� is the conditional probability density of ��
given that the system is in quantum state � and p� is the
probability that the system is in state �. The free energy
along a reaction coordinate ��R�, W�����, corresponding to
an adiabatic surface � with Hamiltonian H�= P2 /2M
+E��R� is given by �using an additive constant�64

�W����� = − ln
P�������

Pu
− ln

p�

p1
, �15�

where Pu= ���d��e−�W������−1is the uniform probability den-
sity of �� and

p�

p1
=

� dXe−��E�−E1�e−�H1

� dXe−�H1
. �16�

This factor is related to the relative probability that the sys-
tem is in state �, regardless of the value of �, and can be
determined from a long adiabatic trajectory on the ground
state surface.

Averages of any function f���R��, �f���R���, �such as
those in the second factor of Eq. �12�� are computed by nu-
merical integration of the free energy corresponding to an
adiabatic surface �,

�f���R��� =� d��f����e−�W�����Pu. �17�

IV. RESULTS

The protonic and deuteronic free energy profiles, con-
structed by binning �=�E in long �2.5 ns� adiabatic dynam-
ics trajectories on the ground and first excited state surfaces,
are shown in Fig. 1. Both sets of ground state curves have
sharply defined barrier regions and approximately harmonic
stable wells. Here, �E‡=0.0138eC /Å is the value of �E at
the transition state. It is evident from the plots that the mini-
mum of the �ionic� product state is lower in free energy than
that of the �covalent� reactant state as a result of the stabiliz-
ing effect of the polar solvent. Thus, the complex spends
more time in the ionic configuration than in the covalent
configuration, whereas in the gas phase it is primarily found

in the covalent configuration. The equilibrium constant, Keq

=ni
eq /nc

eq, is �1.9. In contrast, the free energy in the first
excited state has a single-well structure.

Several differences between the protonic and deuteronic
free energy curves are worth noting. They differ with respect
to the forward and reverse barrier heights, and the energy
gap between the ground and excited state surfaces at �E‡

=0.0138eC /Å as follows: �W1
f =2.09 kT, �W1

r =2.88 kT,
and �W12=1.41 kT for the proton transfer, and �W1

f

=2.31 kT, �W1
r =3.23 kT, and �W12=1.29 kT for the deu-

teron transfer. As expected, the barrier heights for the deu-
teron transfer are larger since the deuteron is heavier than the
proton. Also, since �W12 is smaller for the deuteron, the
nonadiabatic coupling at the barrier top will on average be
stronger for the deuteron than for the proton.

A. Adiabatic rate coefficient

In Fig. 2, we show the time dependent adiabatic rate
coefficients kad�t� �from Eq. �10�� for the proton and deuteron
transfer reactions. The results were obtained from averages
over 16 000 trajectories. After a sharp fall from the transition
state theory value in a few tenths of a picosecond, one ob-
serves a slower decay to a plateau, characteristic of the

FIG. 1. �Color online� Ground and excited state free energy ��W� profiles
along the �E coordinate for the proton and deuteron transfer reactions.

FIG. 2. �Color online� Adiabatic rate coefficients for the proton and deu-
teron transfer reactions as a function of time.
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charge transfer process. To eliminate the slow decay of kad�t�
to zero on the time scale of the charge transfer process, we
introduced absorbing boundaries in the trajectories at the
well minima of the free energy potential. The proton and
deuteron transfer rate constants obtained from the plateau of
kad�t� are kP

ad=0.158 ps−1 and kD
ad=0.121 ps−1, respectively,

giving rise to a kinetic isotope effect of KIEad=kP
ad /kD

ad=1.3.
The transmission coefficients for the proton and deuteron
transfers were estimated to be �P

ad=0.60 and �D
ad=0.62,

respectively.

B. Nonadiabatic rate coefficient

Coupling between the solvent motions and the quantum
protonic degree of freedom can induce quantum transitions
among the protonic adiabatic states. In this case the dynam-
ics is no longer confined to the ground state surface and a
full nonadiabatic treatment of the reaction dynamics is
necessary.

To obtain insight into the nature of the nonadiabatic dy-
namics of the proton and deuteron transfer reactions, we
have examined the nonadiabatic coupling strength,
��P /M�d12�R��, which determines the probability of a nona-
diabatic transition from the ground to the first excited adia-
batic state, at phase space configurations drawn from a long
adiabatic trajectory on the ground state surface. In Fig. 3, we
see that the deuteron system attains higher values of the
nonadiabatic coupling than the proton system in the barrier-
top region �0.01eC /Å��E�0.016eC /Å�, where the likeli-
hood of a nonadiabatic transition is highest. This suggests
that the deuteron transfer will be more nonadiabatic than the
proton transfer. This is consistent with the fact that there is a
smaller mass scale disparity between the deuteron and the
other particles in the system than in the case of the proton.

We now turn to the results of the time dependent nona-
diabatic rate coefficient k�t� calculated using Eq. �5� �where
k�t�=kAB�t� /nB

eq�. Given that nonadiabatic transitions pre-
dominantly occur only in the vicinity of the barrier top, we
have used the window 0.01eC /Å��E�0.016eC /Å around
the barrier top �E‡=0.0138eC /Å, outside which nonadia-
batic transitions are not allowed in the simulations. It is use-
ful to decompose the rate coefficient into its ground ��=1�

and excited ��=2� state contributions. The ground state pro-
ton transfer rate coefficient kP

1 �t� �for which trajectories with
six nonadiabatic transitions were found to be sufficient for
convergence� was obtained from an average over 20 000 tra-
jectories. From the long time decay of kP

1 �t� shown in Fig. 4,
a rate constant of kP

1 =0.163 ps−1 was extracted. This result is
over two times larger than that obtained in our previous
study of this model which fixed RAB, indicating that the vi-
bration of the AB complex significantly enhances the proton
transfer rate. The contribution from the first excited state was
determined to have a negligible effect on the overall rate
constant. The transmission coefficient was estimated to be
�P�0.65.

The ground state contribution to the deuteron transfer
rate coefficient kD

1 �t� �for which trajectories with eight nona-
diabatic transitions were found to be sufficient for conver-
gence� was obtained from an average over 30 000 trajecto-
ries. From the long time decay of kD

1 �t� shown in Fig. 4, a
value of kD

1 =0.093 ps−1 was extracted. Again, the first ex-
cited state contribution was determined to have a negligible
effect on the overall rate constant. The transmission coeffi-
cient was estimated to be �D�0.47. Based on the ground
state contributions to the proton and deuteron transfer rate
constants, the kinetic isotope effect is KIE=1.8, although
accounting for the statistical uncertainty in our simulation
results, the KIE may be as large as 4.

References 61 and 63 contain comprehensive tables that
compare the rate constants and kinetic isotope effects for this
model system calculated with various approaches. The rate
constants vary by over two orders of magnitude depending
on which computational method was used. Our proton trans-
fer rate constant is in best agreement with the surface-
hopping results of Kim and Hammes-Schiffer,62 the semi-
classical variational transition state theory with
multidimensional tunneling results of McRae et al.61 and the
quantum transition state theory results of Yamamoto and
Miller.63 However, our deuteron transfer rate constant is al-
most a factor of 2–5 times larger than the previously largest
rate constant obtained in Ref. 62.

The kinetic isotope effects for this model vary widely
across the different methods �ranging from 3.9 to 47�, due

FIG. 3. �Color online� ��P /M�d12� vs �E for the proton and deuteron
systems. FIG. 4. �Color online� Ground state contributions to the time dependent

nonadiabatic rate coefficient for the proton and deuteron transfer reactions.
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mainly to the large variation in the deuteron transfer rate.
Our kinetic isotope effect is on the low end of the range of
the previously calculated values. Unfortunately, there is no
absolute benchmark for the value of the KIE that can be used
for comparison. The previously calculated estimates of the
KIE were based on a variety of methods including quantum
transition state theory �QTST�,63 quantum-classical surface-
hopping molecular dynamics16,62 and generalized Langevin
equation approaches.59–61 The QTST approaches obtain deu-
teron transfer rates that are lower than our result by about an
order of magnitude. Since quantum transition state effects
are accounted for by our spectral density function, such a
large decrease in the rate from this effect would have been
reflected in the D� factor �see Eq. �4��, which signals the
importance of quantum equilibrium dispersion in the reaction
coordinate. While more accurate expressions for the spectral
density can in principle be constructed and used in our cal-
culations, the magnitude of D� was observed to be very
small, suggesting that our quantum equilibrium sampling is
adequate.

The difficulty in identifying the sources of discrepancy
between the various methods lies in the fact that they have
disparate theoretical origins and utilize different approxima-
tions to the full quantum dynamics. Of all these methods, the
surface-hopping approach is most closely related in spirit
and implementation to ours, but it still differs significantly in
that mean-surface dynamics is absent and quantum coher-
ence effects are treated differently. Our value for the KIE is
also closest and within statistical uncertainty to that obtained
using surface-hopping molecular dynamics, which yielded a
KIE of 4.7�1.5.62

A number of factors make the deuteron transfer rate dif-
ficult to estimate. We observed bath configurations with large
nonadiabatic coupling strengths for the deuteron transfer, but
these configurations were rare and, most of the time, the
protonic nonadiabatic couplings were higher, as shown in
Fig. 3. These rare configurations are difficult to sample and,
as a result, make the accurate sampling of nonadiabatic tran-
sitions difficult. If we were better able to sample these rare
events, it is possible that we would observe a further de-
crease in the deuteronic rate. The error bars in our calcula-
tions were estimated by block averaging using a reasonable
number of blocks to obtain a reliable estimate of the error in
the mean. However, filtering can introduce a systematic error
in the result. While we have carried out tests to measure the
effectiveness of the filter in reducing fluctuations without
compromising the result, the use of a filter adds some uncer-
tainty to our rate coefficient values. Within our statistical
uncertainty, we predict a relatively small value of the KIE for
this model.

V. CONCLUSIONS

Rates of quantum mechanical reactive processes occur-
ring in the condensed phase are difficult to compute because
full quantum dynamical simulations of many-body systems
are not feasible for large many body systems. Our simula-
tions employ reactive-flux correlation function expressions
that retain the quantum equilibrium structure of the system

and adopt a mixed quantum-classical Liouville description of
the dynamics. In contrast to other investigations, we have
chosen the solvent polarization to monitor the progress of the
reaction. This reaction coordinate was shown to track the
proton transfers between ionic and covalent species in the
phenol-amine complex, indicating that the solvent plays an
essential role in this quantum charge transfer process.64

When coupling between the quantum and classical de-
grees of freedom induces transitions between the adiabatic
states, the adiabatic approximation breaks down and nona-
diabatic dynamics must be implemented. For the model sys-
tem considered here, our simulations yield a proton transfer
rate constant that is in good agreement with values obtained
by several other approaches. The deuteron transfer rate con-
stant that we calculated is larger than that obtained in other
approaches, suggesting that the reaction may not be as sen-
sitive to isotopic substitution as observed in some previous
studies. Nonadiabatic dynamical effects led to an increase in
the isotope effect. Although the proton transfer rate constant
was not significantly affected by nonadiabatic dynamics, the
deuteron transfer rate constant was reduced. This is consis-
tent with the results in Fig. 3. This increase in the isotope
effect due to nonadiabatic effects was also observed in pre-
vious studies.16,51,62
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APPENDIX: DERIVATION OF THE SPECTRAL DENSITY
FUNCTION

In this Appendix, we derive Eq. �3� starting from the
general formula for the spectral density function

WA
����X,i��/2� =

1

�2
��2�ZQ
� dX�

P�

M
· �R���R��

�����R�� − �‡�� dZdZ�e−�i/���P·Z+P�Z��

����;R��R +
Z

2
�e−��/2�Ĥ�R� −

Z�

2


��R� +
Z�

2
�e−��/2�Ĥ�R −

Z

2
��;R . �A1�

Equation �A1� can be simplified by performing integrations
over all P� variables to obtain
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The imaginary time propagators in WA
����X , i�� /2� can, in principle, be computed using quantum path integral methods32 or

approximations such as linearization methods.43,49,78,79 Next, we show how one may construct approximate analytical expres-
sions for this quantity, which are used to obtain the numerical results.

To proceed with the analytical calculation, we first partition the Hamiltonian into bath kinetic plus remainder terms as

Ĥ= P̂2 /2M + ĥ. Approximating the propagator as e−�Ĥ=e−�ĥ/2e−�P̂2/2Me−�ĥ/2+O��3� �which is valid at high temperatures�, we

can then evaluate the imaginary time propagators to obtain the following expression for WA
����X , i�� /2�,
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To arrive at this expression, we used the fact that

�R�e−�P2/4M�R� =� M


��2e−M�R − R��2/��2
, �A4�

and a representation of ĥ in the adiabatic basis,

e−�ĥ�R� = �
�

��;Re−�E��R���;R� . �A5�

Upon integrating Eq. �A3� over Z�, we obtain
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A classical treatment of the environmental coordinates is obtained by taking the limit

lim
�→0

� 2Mk

��2

e−�2Mk/��2��Rk − Rk��2

= ��Rk − Rk�� . �A7�

In this limit Eq. �A6� simplifies to
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An approximate analytical expression may be obtained
by expanding the overlap matrix elements and adiabatic en-
ergies E� to linear order in Z,
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where d���1
�R�= ��� ;R��R��1 ;R. The truncation to linear

order in Z is valid for high temperatures since the factor

exp−�Mk/2��2�Zk
2

restricts the integrand in Eq. �A8� to small
values of Zk. Finally, Eq. �A8� with �=�� can be integrated
over Z analytically to give Eq. �3�.
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