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Mixed quantum-classical methods provide powerful algorithms for the simulation of quantum pro-
cesses in large and complex systems. The forward-backward trajectory solution of the mixed
quantum-classical Liouville equation in the mapping basis [C.-Y. Hsieh and R. Kapral, J. Chem.
Phys. 137, 22A507 (2012)] is one such scheme. It simulates the dynamics via the propagation
of forward and backward trajectories of quantum coherent state variables, and the propagation of
bath trajectories on a mean-field potential determined jointly by the forward and backward tra-
jectories. An analysis of the properties of this solution, numerical tests of its validity and an in-
vestigation of its utility for the study of nonadiabtic quantum processes are given. In addition,
we present an extension of this approximate solution that allows one to systematically improve
the results. This extension, termed the jump forward-backward trajectory solution, is analyzed and
tested in detail and its various implementations are discussed. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4798221]

I. INTRODUCTION

Nonadiabatic processes are important for the description
of many chemical and biological processes such as proton and
electron transfer reactions, vibrational relaxation, quantum re-
action dynamics, photochemical dynamics, and coherent en-
ergy transfer phenomena in biological systems.1 In all these
processes, the dynamics of the system is strongly influenced
by the environment in which it resides; hence, an accurate
prediction of the system’s properties entails the simulation of
the system along with its environment. To avoid the expo-
nential growth in the computational costs of exact quantum
simulations with the number of degrees of freedom, several
mixed quantum-classical,2, 3 and semi-classical4, 5 schemes
have been developed.

Simulation algorithms based on the quantum-classical
Liouville equation (QCLE)3 have been used to study
complex open quantum systems that display nonadiabatic
phenomena.6, 7 Differences among the algorithms often can
be attributed to the basis set used to represent the quantum
system, since the way the quantum degrees of freedom are
propagated depends on basis set representations. Entangled
trajectories8, 9 can be used to simulate the quantum dynamics
in the subsystem basis; surface-hopping-like algorithms10, 11

can be formulated in the adiabatic basis; the force basis,12, 13

obtained from diagonalizing the Hellmann-Feynman force,
yields yet another propagation scheme. Another class of sim-
ple and efficient algorithms14, 15 can be constructed if the sub-
system basis of an N-level quantum system is mapped onto
the single-excitation space of N fictitious harmonic oscilla-
tors. In this mapping representation,16–18 the discrete quan-
tum degrees of freedom are mapped onto continuous vari-
ables, such as the positions and momenta of the fictitious
oscillators. The Poisson bracket mapping equation14, 19, 20 and
the forward-backward trajectory solution (FBTS)15 are two

such mapping-based approximate solution schemes for the
quantum-classical Liouville equation. The forward-backward
trajectory solution, the topic of this paper, is derived from
the forward-backward form21 of the formal solution of the
mapping-transformed quantum-classical Liouville equation.
Since the quantum time evolution operator is expressed in a
coherent state basis, the time evolution of a mixed quantum-
classical system is simulated through the forward and back-
ward trajectory evolution of N coherent state coordinates,
while the bath coordinates evolve under the influence of a
mean potential that depends on these forward and backward
trajectories. In this scheme, the quantum-classical Liouville
dynamics is simulated via an ensemble of independent New-
tonian trajectories.

In this paper, we analyze various aspects of the forward-
backward trajectory solution. As shown earlier,15 this solu-
tion satisfies the differential form of the quantum-classical
Liouville equation and is formally invariant to the form (trace
versus traceless) of the Hamiltonian. To derive such a con-
tinuous trajectory picture, an orthogonality approximation is
made, which assumes that the coherent states connecting var-
ious time segments are orthogonal to each other. Here, we
show that the formal invariance to the form of the Hamilto-
nian is broken due to the use of the orthogonality approxima-
tion. If the system-bath coupling is not a weak perturbation
to the pure bath potential, the use of the trace-form Hamilto-
nian may yield poor results due to the possible presence of
an inverted potential for the bath coordinates. To systemati-
cally improve the forward-backward trajectory solution, we
generalize the simulation scheme by restricting the use of
the orthogonality approximation to only certain time steps.
In the resulting new solution, the forward and backward co-
herent state trajectories experience discontinuous jumps in
the phase space whenever the orthogonality approximation is
not used; hence, the generalized solution is termed the jump
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forward-backward trajectory solution. Sampling of jumps is
carried out by a Monte Carlo procedure. In order to improve
the convergence, the focusing approximation22–24 is used in
order to avoid performing the integrals over intermediate co-
herent state variables.

The outline of the paper is as follows: In Sec. II, we sum-
marize the principal elements of the forward-backward tra-
jectory solution and present its generalization that involves
jumps. The focusing approximation is discussed in Sec. III,
and a simple picture of trajectory dynamics is given to illus-
trate the effects of focusing. In Sec. IV, we present simulation
results on four test models, which are chosen to highlight im-
portant aspects of the algorithms. The conclusions are given
in Sec. V.

II. FORWARD-BACKWARD TRAJECTORY SOLUTION

We consider a quantum subsystem coupled to a bath
where the dynamics is described by the QCLE. The Hamil-
tonian has the form

ĤW (X) = Hb(X) + ĥs + V̂c(R) ≡ Hb(X) + ĥ(R), (1)

where the subscript W refers to a partial Wigner trans-
form over the bath degrees of freedom (DOF). Here, Hb(X)
= P 2/2M + Vb(R) is the bath Hamiltonian with Vb(R) the
bath potential energy, ĥs = p̂2/2m + V̂s is the subsystem
Hamiltonian with p̂ and V̂s the subsystem momentum and po-
tential energy operators, and V̂c(R) is the coupling potential
energy operator. The masses of the subsystem and bath parti-
cles are m and M, respectively.

For a quantum operator B̂W (X), which depends on the
classical phase space variables X = (R,P ) = (R1, R2, . . . ,

RNb
, P1, P2, . . . , PNb

) of the bath, the formal solution of the
QCLE is given by25

B̂W (X, t) = eiL̂t B̂W (X), (2)

where the QCL operator is

iL̂B̂W = i

¯
[ĤW , B̂W ] − 1

2
({ĤW , B̂W } − {B̂W , ĤW }), (3)

[ÂW , B̂W ] = ÂW B̂W − B̂W ÂW is the commutator, and
{ÂW , B̂W } = ∂ÂW

∂R

∂B̂W

∂P
− ∂ÂW

∂P

∂B̂W

∂R
is the Poisson bracket with

respect to X. We may also write the QCL operator as21

iL̂B̂W = i

¯
(
→
H� B̂W − B̂W

←
H�), (4)

which involves the forward and backward evolution operators,

→
H� = ĤW

(
1 + ¯�

2i

)
,

←
H� =

(
1 + ¯�

2i

)
ĤW , (5)

with � the negative of the Poisson bracket operator, � = ←
∇P

· →
∇R − ←

∇R · →
∇P . In this case, the formal solution of the

QCLE can be expressed as

B̂W (X, t) = S(ei
→
H�t/¯B̂W (X)e−i

←
H�t/¯). (6)

The S operator in this form simply specifies the order in
which products of the left and right operators act in order
to be identical with the first form in Eq. (3). In particular, a

general term S((
→
H�)j B̂W (

←
H�)k) in the expansion of the ex-

ponential operators is composed of (j + k)!/j!k! separate terms
each with a pre-factor of j!k!/(j + k)!. Each of these separate

terms corresponds to a specific order in which the
→
H� and

←
H�

operators act on B̂W .

A. Hamiltonian dynamics in the coherent state phase
space of the mapping representation

We suppose that the time evolution of the quantum sub-
system (coupled to the bath) can be accurately described
within a truncated Hilbert space of dimension N. Furthermore,
the subsystem basis {|λ〉} is chosen for the matrix representa-
tions of quantum operators.

In the mapping representation, the state |λ〉 is replaced
by |mλ〉, an eigenfunction of the Hamiltonian for N fictitious
harmonic oscillators,5, 26 having occupation numbers which
are limited to 0 or 1: |λ〉 → |mλ〉 = |01, . . . , 1λ, . . . 0N〉. Cre-
ation and annihilation operators on these states, â

†
λ and âλ,

satisfy the commutation relation [âλ, â
†
λ′ ] = δλ,λ′ . The actions

of these operators on the single-excitation mapping states are
â
†
λ|0〉 = |mλ〉 and âλ|mλ〉 = |0〉, where |0〉 = |01. . . 0N〉 is the

ground state of the mapping basis.
We may then define the mapping version of operators,

B̂m(X), given by B̂m(X) = Bλλ′
W (X)â†

λâλ′ , such that matrix el-
ements of B̂W in the subsystem basis are equal to the ma-
trix elements of the corresponding mapping operator: Bλλ′

W (X)
= 〈λ|B̂W (X)|λ′〉 = 〈mλ|B̂m(X)|mλ′ 〉. (The Einstein summa-
tion convention will be used throughout although sometimes
sums will be explicitly written if there is the possibility of
confusion.) In particular, the mapping Hamiltonian operator
is

Ĥm = Hb(X) + hλλ′
(R)â†

λâλ′ ≡ Hb(X) + ĥm, (7)

where we applied the mapping transformation only on the
part of the Hamiltonian that involves the subsystem DOF in
Eq. (7). The pure bath term, Ĥb(X) in Eq. (1), acts as an iden-
tity operator in the subsystem basis and is mapped onto the
identity operator of the mapping space. The formal solution
in Eq. (6) may be expressed in mapping operators and is given
by

B̂m(X, t) = S(ei
→
Hm

�t/¯B̂m(X)e−i
←
Hm

�t/¯), (8)

where
→
Hm

� is given by
→
Hm

� = Ĥm(1 + ¯�/2i), with an analo-

gous definition for
←
Hm

�.
We now define the coherent states |z〉 in the mapping

space, âλ|z〉 = zλ|z〉 and 〈z|â†
λ = z∗

λ〈z|, where |z〉 = |z1, . . . ,
zN〉 and the eigenvalue is zλ = (qλ + ipλ)/

√
2¯. The vari-

ables q = (q1, . . . , qN) and p = (p1, . . . , pN) are mean co-
ordinates and momenta of the harmonic oscillators in the
state |z〉, respectively; i.e., we have 〈z|q̂λ|z〉 = qλ and 〈z|p̂λ|z〉
= pλ. The coherent states form an overcomplete basis with
the inner produce between any two such states, 〈z|z′〉
= e− 1

2 (|z−z′ |2)−i/2(z·z′∗−z∗·z′). Finally, we remark that the
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coherent states provide the resolution of identity,

1 =
∫

d2z

πN
|z〉〈z|, (9)

where d2z = d(R(z))d(�(z)) = dqdp/(2¯)N.
Following our earlier work,15 we then decompose the for-

ward and backward evolution operators in Eq. (8) into a con-
catenation of M short-time evolutions with �ti = τ and Mτ

= t. In each short-time interval �ti, we introduce two sets of
coherent states, |zi〉 and |z′

i〉, via Eq. (9). After some algebra,
the matrix elements of Eq. (8) can be approximated by

Bλλ′
W (X, t) =

∑
μμ′

∫ M∏
i=1

d2zi

πN

d2z′
i

πN
〈mλ|z1〉〈z′

1|mλ′ 〉

× eiLe(X,z1,z
′
1)�t1 (〈z1(�t1)|z2〉

× eiLe(X,z2,z
′
2)�t2 (〈z2(�t2|z3〉 . . . |zM〉

× eiLe(X,zM,z′
M )�tM (〈zM (�tM |mμ〉

×B
μμ′
W (X)〈mμ′ |z′

M (�tM )〉)
×〈z′

M | . . . |z′
2(�t2)〉)〈z′

2|z′
1(�t1)〉). (10)

Equation (10) is evaluated sequentially, from smallest to
largest times, by taking the bath phase space propagators in
expressions such as eiLe(X,zi ,z

′
i )�ti (· · · ) to act on all quantities

in the parentheses, including other propagators at later times,
�tj > i. The bath phase space propagator reads iLe(X, z, z′)
= P

M
· ∂

∂R
− ∂Ve(X,z,z′)

∂R
· ∂

∂P
with

Ve(X, z, z′) = Vb(R) −
∑

λ

hλλ + hλλ′

2
(z∗

λzλ′ + z′∗
λ z′

λ′),

≡ V0(R) + 1

2
(hλλ′

z∗
λzλ′ + hλλ′

z′∗
λ z′

λ′),

≡ V0(R) + 1

2
(hcl(R, z) + hcl(R, z′)). (11)

In the first two lines, we suppress the R-dependence of the
matrix elements hλλ′

(R). Similar to other QCLE solutions, the
bath dynamics are governed by classical trajectories in the
bath phase space.

To obtain Eq. (10), we also use the fact the coherent state
evolution under a quadratic Hamiltonian ĥm(R) can be ex-
actly evaluated by e−iĥm

�ti
¯ |z〉 = |z(�ti)〉, where the trajec-

tory evolution of zλ is governed by dzλ

dt
= − i

¯
∂hcl (R,z)

∂z∗
λ

. Thus
the quantum subsystem dynamics is governed by segments of
coherent state trajectories (defined by zi and z′

i), which are
not necessarily continuous across the time steps because the
coherent state variables zi and zi + 1 are independent to each
other. By making the orthogonality approximation to the inner
products, 〈zi(ti)|zi + 1〉 ≈ πNδ(zi + 1 − zi(ti)), we construct a
smooth trajectory solution of the quantum dynamics. Further-
more, by scaling the coherent state variables zscaled = z/

√
2,

we also show that the trajectories in the scaled phase space
(X, zscaled, z

′
scaled) are strictly Newtonian trajectories. In the

rest of the paper, we will consistently use scaled coherent state
variables and drop the subscript “scaled.”

In summary, the orthogonality approximation and the
scaling of coherent state variables helps to simplify Eq. (10)

and its interpretation. We have

Bλλ′
W (X, t) =

∑
μμ′

∫
dxdx ′φ(x)φ(x ′)

× 1

¯
(qλ + ipλ)(q ′

λ′ − ip′
λ′)B

μμ′
W (Xt )

× 1

¯
(qμ(t) − ipμ(t))(q ′

μ′(t) + ip′
μ′(t)), (12)

where x = (q, p), dx = dqdp, and φ(x) = (¯)−Ne− ∑
ν (q2

ν +p2
ν )/¯

is the normalized Gaussian distribution function. We have
written this equation in the scaled coherent state variables zλ

= (qλ + ipλ)/¯. The trajectories of Xt, xt, and x ′
t are governed

by Hamilton’s equations,

dqμ

dt
= ∂He(X, x, x ′)

∂pμ

,
dpμ

dt
= −∂He(X, x, x ′)

∂qμ

,

dq ′
μ

dt
= ∂He(X, x, x ′)

∂p′
μ

,
dp′

μ

dt
= −∂He(X, x, x ′)

∂q ′
μ

, (13)

dR

dt
= P

M
,

dP

dt
= −∂He(X, x, x ′)

∂R
,

where He(X, x, x ′) =P 2/2M + V0(R)+ hλλ′
(R)

2¯ (qλqλ′ +pλpλ′

+ q ′
λq

′
λ′ + p′

λp
′
λ′). In the following discussion, we take ¯ = 1

for simplicity.
Similar to the trajectory solution of the Poisson bracket

mapping equation (PBME), the FBTS approximates the
quantum-classical dynamics in terms of an ensemble of in-
dependent Newtonian trajectories. However, the fact that the
quantum-related phase space in the FBTS is twice as large
as the PBME phase space allows more complex evolutions
of these trajectories and more accurate characterization of the
bath potential surface. In Sec. III A, we will discuss the reduc-
tion of FB trajectories to PBME-like trajectories under some
specific conditions.

B. Jump forward-backward trajectory solution

As discussed in Ref. 15, Eq. (10) yields exact QCLE dy-
namics if one does not impose the orthogonality approxima-
tion on the coherent states. However, the large number of in-
termediate variables zi (z′

i) precludes practical computations
of the integrals involving these variables. To extract QCLE
results from FB trajectories, a systematic method is needed
which can make an efficient compromise between computa-
tional costs and convergence. One possible method to achieve
this compromise in a controlled manner is to select a subse-
quence of K time steps {tiv , v = 1, . . . , K} in Eq. (10) and
evaluate the integrals of ziv and z′

iv
explicitly (i.e., without

resorting to the orthogonality approximations). According to
this prescription, the continuous FB trajectories experience K
discontinuous jumps in the (x, x′) phase space.

In practice, this scheme can be carried out in several ways
depending on the selection of the K time steps. In the simplest
case, one may select every (M/K) time steps from a total of M
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steps to fully evaluate the coherent state integrals in Eq. (10),

Bλλ′
W (X, t)

=
∑
μμ′

∑
s0s

′
0...

sK−1s
′
K−1

∫ K∏
v=0

dxvdx ′
vφ(xv)φ(x ′

v)

× (q0λ + ip0λ)(q ′
0λ′ − ip′

0λ′)B
μμ′
W (Xt )

×
{

K∏
v=1

(q(v−1)sv−1 (τv) − ip(v−1)sv−1 (τv))(qvsv
+ ipvsv

)

}

×
{

K∏
v=1

(q ′
(v−1)sv−1

(τv) + ip′
(v−1)sv−1

(τv))(q ′
vsv

− ip′
vsv

)

}

× (qKμ(τK+1) − ipKμ(τK+1))(q ′
Kμ′(τK+1)

+ ip′
Kμ′(τK+1)), (14)

where the subscripts, v and s, refer to the vth time step
and the sth component of q and p vectors, respectively, and
τv = tiv − tiv−1 with ti0 = 0 and tiK+1 = t . To obtain Eq. (14),
we inserted a projection operator P = ∑

s |ms〉〈ms | between
the inner product of two coherent states at every selected time
step, 〈zi(τi+1)|P|zi+1〉. In Appendix A, we show that the in-
sertions of P do not introduce further approximations in this
calculation. It is desirable to insert P every time we introduce
a discontinuous jump to the trajectories, since then φ(xi) and
φ(x ′

i) appear at each time step. Otherwise, displaced Gaus-
sian functions must be considered. The current form of the
equation is also more suitable for introducing the focusing,
an approximation scheme which is discussed in Sec. III.

A stochastic generalization of the fixed-interval selection
method can also be used. We may write

Bλλ′
κ1,...,κL

(X, t)

=
∑
μμ′

′∑
s0s

′
0...

sL−1s
′
L−1

∫ L∏
v=0

dxvdx ′
v

×ψκv
(xv)ψκv

(x ′
v)(q0λ + ip0λ)(q ′

0λ′ − ip′
0λ′)B

μμ′
W (Xt )

×
{ ′∏

v

(q(v−1)sv−1 (τv) − ip(v−1)sv−1 (τv))(qvsv
+ ipvsv

)

}

×
{ ′∏

v

(q ′
(v−1)sv−1

(τv) + ip′
(v−1)sv−1

(τv))(q ′
vsv

− ip′
vsv

)

}

× (qLμ(τL+1) − ipLμ(τL+1))(q ′
Lμ′(τL+1)

+ ip′
Lμ′(τL+1)), (15)

where κv = 0 or 1. A prime (′) is put on the second summa-
tion symbol and the last two product symbols in the equation
to imply that the summations and multiplications only exist
for a pair of sv and s ′

v if κv = 1. Furthermore, we replace the
normalized Gaussian functions φ(xv) with

ψκv
(xv) =

{
δ(xv − xv−1(τv)), κv = 0,

φ(xv), κv = 1.
(16)

The interpretation of Eqs. (15) and (16) is straightforward. We
select L time steps that are J steps apart, i.e., JL = M. For a
given binary sequence of {κ1, . . . , κL}, we fully evaluate the
coherent state integrals at the vJ th time step if κv = 1. For
other selected time steps corresponding to κv = 0, we still
apply the orthogonality approximation to simplify the cal-
culation. Finally, we remark that matrix element of interest,
Bλλ′

W (X, t), can be obtained as an average of all possible bi-
nary sequences of κ ,

Bλλ′
W (X, t) =

∑
κ1,...κL

P{κ}Bλλ′
κ1,...,κL

(X, t), (17)

where P{κ} denotes the discrete probability distribution of a
given binary sequence of {κ1, . . . , κL}. Equation (17) re-
duces to Eq. (14) if one takes J = M/K and P{κv=1} = 1. Also,
Eq. (17) reduces to Eq. (12) if one takes P{κv=0} = 1.

We define the jump forward-backward trajectory solution
(JFBTS) by Eqs. (15)–(17). In particular, we use the bino-
mial distribution for P{κ} in this study. We take the Bernoulli
trial probability p = K

M/J
where K is the average number of

jumps (equivalent to the average number of 1’s in the binary
sequence of κ). Equation (17) also has a simple interpreta-
tion in terms of trajectories if the integrals are evaluated using
Monte Carlo (MC) sampling. During the propagation of a tra-
jectory, a uniformly distributed random number ξ is generated
at every Jth step. If ξ < p, then we introduce a jump; other-
wise, we continue to propagate the continuous trajectory until
the next Jth step.

Finally, we note the close resemblance in structure be-
tween the JFBTS and IPLDM24 (iterative partial linearized
density matrix), a similar generalization scheme that is ap-
plied to the PLDM algorithm in order to improve the results.
The differences between JFBTS and IPLDM can mostly be at-
tributed to the differences between FBTS and PLDM.15, 24, 27

III. FURTHER APPROXIMATION: FOCUSING

In this section, we provide a detailed discussion of the ef-
fects of focusing, an approximation proposed by Bonella and
Coker,22 on the FBTS and JFBTS. Focusing can be defined as
follows: ∫

dx φ(x)
(
q2

λ + p2
λ

)
f (x)

≈
∫

dx δ
(
q2

λ + p2
λ − 1

) ∏
μ =λ

δ(qμ)δ(pμ)

× (
q2

λ + p2
λ

)
f (x), (18)

where f(x) should be at most weakly dependent on x vari-
ables. In order to obtain the approximate integral, one de-
fines the mapping weight ρ(x) = (q2

λ + p2
λ)φ(x), and assumes

that only the maximum points, satisfying the Dirac delta func-
tions in Eq. (18), of this weight contribute significantly to the
integral.

Equation (18) may not seem to be directly related to
any integrals we have presented so far. However, if one con-
siders the integral in Eq. (12) with t ≈ 0, then the inte-
grand

∑
μμ′ B

μμ′
W (Xt )(qμ(t) − ipμ(t))(q ′

μ′(t) + ip′
μ′(t)) can be



134110-5 C.-Y. Hsieh and R. Kapral J. Chem. Phys. 138, 134110 (2013)

approximated by a single term (where μ = λ and μ′ = λ′)
of the summation. Furthermore, near the initial time t = 0,
the integrand Bλλ′

W (Xt ) is weakly dependent on coherent state
variables, and the polynomial factors involving x and x′ can
be approximated by their initial values. Same arguments are
also applicable to Eq. (15). Hence, focusing can approxi-
mate the integrals of Eqs. (12) and (15) fairly well when t is
small or the system-bath coupling is weak; i.e., a separation
of time scale can be assumed. Unfortunately, these assump-
tions are not valid in the long-time limit for most physical
systems.

By using focusing, one avoids the full sampling from the
Gaussians in the MC evaluation of Eqs. (12) and (15). As indi-
cated in many numerical tests,14, 23, 24, 28 focusing often yields
a converged result with at least an order of magnitude fewer
trajectories than that required for a full calculations. How-
ever, when used indiscriminately, focusing might yield poor
results.24

A. Focused initial condition in the FBTS

We suppose that the quantum subsystem is initially in
a single subsystem state |λ〉. This requirement is not as re-
strictive as it might appear, since our formalism does not dic-
tate which particular quantum subsystem basis is to be used.
Therefore, we can often take the initial state of the system to
be a vector in the basis. When focusing28 is applied to the
FBTS, the approximation restricts the initial conditions of the
trajectories to a very narrow region in the phase space speci-
fied by the Dirac delta functions in Eq. (18).

First, we discuss the effects of the focused initial condi-
tions on the forward and backward coherent state trajectories.
In Appendix B, we prove that the backward coherent state
trajectories can be replaced by the forward trajectories in the
FBTS if focused initial conditions are imposed and the re-
quired assumptions (such as the separation of time scales)
are valid. This observation shows that the two sets of tra-
jectories are highly synchronized in the sense explained in
Appendix B. One manifestation of such synchronization is
the reduction of noise in the calculation of the phase factor of
the quantum subsystem density matrix element, ρ

μμ′
s (X, t).

In the full FBTS calculation, such a matrix element is de-
termined by the ensemble average of (qλ + ipλ)(q ′

λ − ip′
λ)

(qμ(t) − ipμ(t))(q ′
μ′(t) + ip′

μ′(t)) according to Eq. (12). How-
ever, in the case of focused initial conditions, one can simply
replace (q′, p′) with (q, p) in the above expression for the en-
semble average. For instance, if one employs the formalism
to compute a diagonal density matrix element, ρμμ(X, t), then
one finds that this replacement yields an exact real number as
required. For the full calculation, one needs to average over a
large number of trajectories to suppress the noisy imaginary
components.

Next we consider the effects of focused initial conditions
on bath trajectories. As mentioned earlier, focusing should be
a valid approximation for an initial short time interval or for a
weak subsystem-bath coupling. We will take this into account
by assuming that spatial derivatives of C(R), which is a col-
umn matrix of eigenvectors of ĥ(R), can be neglected. Under

this assumption, the bath momenta evolve according to

dP

dt
= −∂V0(R)

∂R
− ∂hνν ′

(R)

∂R
(qν(t)qν ′(t) + pν(t)pν ′(t))

= −∂V0(R)

∂R
−

∑
χμμ′νν ′

C−1
χμCμν

∂hνν ′
(R)

∂R
Cν ′μ′C−1

μ′χ

× cos(�ωμμ′ t)
(
q2

χ + p2
χ

)
= −∂V0(R)

∂R
−

∑
μμ′νν ′

C−1
λμ Cμν

∂hνν ′
(R)

∂R
Cν ′μ′C−1

μ′λ

× cos(�ωμμ′ t), (19)

where �ωμμ′ = ωμ − ωμ′ . In writing this equation, as dis-
cussed above, we replaced the backward coherent state vari-
ables with the forward ones. To obtain the second equality,
the equation of motion for the coherent state variables was
integrated to yield analytical expressions for q(t) and p(t).
The final form of this equation was obtained using the fo-
cused initial condition q2

χ + p2
χ = δχλ. In the full calcula-

tion, the system-bath coupling term (the second equality in
the equation) should be averaged over all possible values of∑

χ (q2
χ + p2

χ ) = r with respect to the Gaussian distribution
φ(r).

For situations typical of a scattering problem, where the
quantum subsystem is initialized in the asymptotic region
with Cμν = δμν (i.e., the subsystem basis and the adiabatic
basis coincide), the final form of Eq. (19) reduces to dP/dt

= −∂V0(R)/∂R − ∂hλλ(R)/∂R. This simple bath dynamics
is the adiabatic approximation in the asymptotic region. In
contrast, the full calculation requires summation over a large
number of trajectories such that the interferences among them
leads to the adiabatic approximation. However, in the interac-
tion region of the scattering potential, this adiabatic approxi-
mation is certainly not sufficient. Even though Eq. (19) shows
that focusing includes more than the adiabatic approximation
on the bath dynamics, it simply does not include enough cor-
rections to fully describe the dynamics in the interaction re-
gion in many cases. For instance, in a recent calculations on
a simple avoided crossing model,29 Huo and Coker27 showed
that the correct bath properties cannot be reliably extracted
from focused initial conditions.

B. Iterative focusing in the JFBTS

While focusing is not an essential part of the FBTS, it is
often the only tractable means by which one can obtain a con-
verged JFBTS solution when one needs more than five jumps
in order to obtain the QCLE result. Similar to several iterative
schemes of partially linearized path integral formalisms,23, 24

such as IPLDM, we rely on focusing superior convergence
properties to minimize the increasing number of trajectories
required to produce a stable result.

Comparing Eqs. (12) and (15), the JFBTS essentially
adds a sequence of summations over intermediate quantum
states, si and s ′

i , and integrals over coherent state variables
zi and z′

i on top of Eq. (12). While an exact evaluation
of Eq. (15) is conceptually straightforward, the numerical
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implementation incorporating the focusing approximation is
slightly more complicated. First, we evaluate the sequence
of intermediate summations by an importance sampling MC
calculation. This technique has been adopted in several re-
lated QCLE and linearized path integral algorithms.11, 23, 24

Thus, in each MC run, we randomly select a pair of for-
ward and backward quantum states (si, s

′
i) at every ith jump

instead of summing over all quantum states. The pair selec-
tion is governed by a discrete probability distribution, Psi ,s

′
i

= (q2
si

+ p2
si

)(q ′2
s ′
i
+ p′2

s ′
i
)/Ni with Ni = ∑

si ,s
′
i
(q2

si
+ p2

si
)(q ′2

s ′
i

+ p′2
s ′
i
). This probability distribution is based on the intu-

ition that the selection of the pair indices should be re-
lated to the present distribution of the population weight, (q2

+ p2), over all quantum states. A re-weighting factor, 1/Psi ,s
′
i
,

is added to the MC evaluation whenever such an importance
sampling is made. Once the selection of a pair of quantum
indices is made for the ith jump, we use the focusing approxi-
mation with the condition δ(q2

si
+ p2

si
− 1)δ(q ′2

s ′
i
+ p′2

s ′
i
− 1) to

evaluate the integral over zi and z′
i . In the above focusing con-

dition, we imply that all unspecified components of forward
and backward variables are set to zero.

Now we analyze the effects of iterative focusing on the
trajectories in the JFBTS formalism. First, we provide an in-
tuitive picture of the trajectory evolution when full sampling
over coherent state variables and full summation over quan-
tum states at each intermediate step are performed exactly. At
the initial time, t = 0, we assign initial conditions of qν and pν

for each quantum state |mν〉 by sampling from the Gaussian
φ(x). The trajectories are then propagated with Hamiltonian
dynamics based on Eq. (13). At each time step, we stochas-
tically decide if a jump should be introduced. When a jump
is introduced at time t, we store a snapshot of the trajecto-
ries by saving the polynomial factor (qν(t) ± ipν(t)) for each
ν, where the plus and minus signs are for forward and back-
ward coherent state variables, respectively. Then we discard
the trajectories and re-sample new initial conditions for those
trajectories. We also take a snapshot of the new trajectories
by saving the polynomial factor (qν ∓ ipν) prior to further
propagation. The same process is then be repeated until the
simulated time length has been reached. Due to the interfer-
ences in the full summations of the products of the polyno-
mial factors in Eq. (15), only those trajectories with rather
minimal discontinuities contribute significantly to the final
result.

Next, we describe a rather different evolution of trajec-
tories in the phase space. The combination of the importance
sampling of intermediate quantum state indices and the fo-
cusing approximation for the coherent state integrals yields
a picture involving trajectory collapse whenever a jump is
introduced. In this numerical implementation, each forward
and backward trajectory can only be initialized in the given
pair of quantum states, |msi

〉 and |ms ′
i
〉. Once the initial condi-

tions are assigned to the trajectories, the population weights,
q2

s + p2
s , of the trajectories will gradually shift from the ini-

tial states, |msi
〉 and |ms ′

i
〉, to other states in the forward and

backward phase space, respectively. After some time, the pop-
ulation weights may become more uniformly distributed over
all available states. There will then come a moment where a

jump is introduced, a new pair of quantum indices is selected,
and a new focusing condition is imposed to collapse all tra-
jectories onto the new pair of forward and backward states.

These two rather different pictures of the trajectory evo-
lution make one wonder if iterative focusing applied to the
JFBTS can be trusted. We argue that the result should be re-
liable. Different from the focused initial condition where the
states to be focused onto are fixed, iterative focusing collapses
the forward and backward trajectories into all possible com-
binations of pairs of quantum states. Therefore, if we have a
large enough MC sample, we will eventually obtain collapsed
trajectories re-initialized in all possible quantum states and
recover an ensemble picture that is in accord with that of the
full-sampling case.

IV. SIMULATION RESULTS

We now present the results obtained from simulations of
the FBTS and JFBTS for four models, which are selected to
examine different aspects of the simulation algorithms. In par-
ticular, we use these results to illustrate the following: First,
the differential form of the FBTS has been shown15 to be in-
variant to the following forms of Hamiltonian:

ĤW (x) =
{

Hb(X) + ĥ(R), trace form,

Hb(X) + h(R), traceless form,
(20)

where Hb(X) = Hb(X) + Trs ĥ/N and h(R) = ĥ(R)
− Trs ĥ(R)/N , where Trs denotes the trace over subsys-
tem DOF. The local, infinitesimal time-step analysis can be
extended to a finite-interval time scale if the orthogonality
approximation is not used and, in this case, results using
either form of the Hamiltonian will be identical. However, if
the orthogonality approximation is made, global errors which
depend the form of the Hamiltonian will accumulate. The
traceless version of the Hamiltonian often yields similar or
better results than the trace form, since it is less susceptible
to problems due to inverted potentials. Analysis of the
results of the dual avoided crossing (Tully 2) and the Fenna-
Mathews-Olsen (FMO) models support this conclusion. For
consistency, we will display the Hamiltonian in trace-form
when we introduce the models in this section, although
calculations have been carried using both forms as indicated
below.

Second, we analyze the effects of focused initial con-
ditions on the FBTS. We use results of the Tully 2 model
and spin-boson models to illustrate the trajectory picture de-
scribed in Sec. III. Through these examples, we show that the
Tully 2 and symmetric spin-boson models represent a small
set of special cases where the use of focused initial condi-
tions might yield results similar to those of the full sampling
calculation.

Last, we consider the application of iterative focusing
with JFBTS to alleviate the onerous demands on the very
large number of trajectories required in the full-sampling cal-
culations. From the results on the asymmetric spin-boson and
conical intersection models, we demonstrate the convergence
of the JFBTS to the QCLE solution. Due to the fact that trajec-
tories collapse onto a pair of diabatic surfaces at each jump, it
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turns out that the selection of the subsystem basis (i.e., which
diabatic surfaces are used) in the formalism affects the con-
vergence of the results. We provide general guidance on how
to select an ideal subsystem basis for a JFBTS calculation.

A. Dual avoided crossing model

The subsystem Hamiltonian for the Tully 2 model in the
diabatic basis {|1〉, |2〉} is

ĥ(R) =
[

0 Ce−DR2

Ce−DR2 −Ae−BR2 + E0

]
. (21)

The numerical values of parameters A, B, C, D, E0 and all
other details of this particular model calculation are taken
from Ref. 19. The partially Wigner transformed Hamilto-
nian of this system is HW (X) = P 2/2M + ĥ(R). Note that
the pure bath term contains only the kinetic energy of a sin-
gle bath particle. Initially, the quantum subsystem is in the
state |1〉 and the bath particle is modeled as a Gaussian wave
packet centered at R0 with initial bath momentum P0 directed
towards the interaction region.

Figure 1 shows the asymptotic populations of the quan-
tum subsystem in the two diabatic states as a function of the
initial momentum P0. In this figure, we compare three differ-
ent FBTS results (traceless form, trace form, trace form with
focused initial conditions) with the exact quantum results. At
high momentum, P0 > 35, all different FBTS results converge
to the exact quantum calculation. This convergence is due to
the fact that Gaussian wave packet passes through the inter-
action region of the scattering potential with high velocity,
and the system-bath coupling does not strongly influence the
quantum and bath dynamics. In the low momentum regime,
the system-bath coupling plays a much more crucial role in
the bath dynamics, which in turn influences the quantum dy-
namics. It is clear that the traceless form (light blue curves)
result matches to the exact result the most.

We expect that simulations using the traceless-form of
the Hamiltonian will yield the best results, due to the possible
presence of an inverted potential when the trace-form Hamil-
tonian is used. The fact that the Tully 2 model has no pure bath
potential exacerbates the errors arising from dynamics on an
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FIG. 1. Asymptotic populations of the diabatic state 1 (solid lines and solid
squares) and state 2 (dashed lines and open squares) as functions of the initial
momentum P0 of the incident wave packet.

inverted potential surface. It is interesting that the trace-form
result improves significantly when the focusing approxima-
tion is used. We attribute the success of the focusing approxi-
mation in this case to the validity of the adiabatic approxima-
tion in the low momentum regime (up to roughly P0 = 15).
The probability of finding the quantum subsystem in the adia-
batic ground state at any time is over 90% for initial momenta
up to P0 = 15. Since focused initial conditions describe adia-
batic dynamics and some additional improvements, the much
more accurate low-momentum result (in comparison to the
full sampling calculation with the trace-form Hamiltonian)
can be understood.

Next, we discuss how the FBTS’s formal invariance to
the trace of the Hamiltonian is recovered as we introduce dis-
continuous jumps in the phase space. We studied the conver-
gence of the asymptotic population as a function of the num-
ber of jumps introduced in the JFBTS calculations with both
forms of the Hamiltonian. As expected, we found that both
sets (traceless and trace forms) of results improved and con-
verged to each other. For instance, for the case of P0 = 20,
the trace-form results converge to the exact result shown in
Fig. 1 with 4 jumps. Similarly, the traceless-form results also
converge to the exact result with 2 jumps.

From these results, we see that the traceless-form FBTS
is the preferred algorithm for numerical computations. We
also see the usefulness of focused initial conditions in situ-
ations where the dynamics is weakly nonadiabatic.

B. Spin-boson models

The symmetric (unbiased) and asymmetric (biased) spin-
boson models provide additional insight into the utility of
the algorithms. Since spin-boson models and their general-
izations have been studied extensively in different sub-fields
of physics and chemistry, we focus on an explanation of the
performances of FBTS and JFBTS algorithms in the repro-
duction of exact quantum results.

The partially Wigner transformed Hamiltonian of the
spin-boson model reads

ĤW (X) =
∑

i

(
P 2

i

2Mi

+ 1

2
Miω

2
i R

2
i − ciRiσ̂z

)

+ εσ̂z − �σ̂x, (22)

where Mi and ωi are the mass and frequency of the ith bath os-
cillator, respectively, ci controls the bilinear coupling strength
between the ith oscillator and the two-level quantum sub-
system, � is the coupling strength between the two quan-
tum levels, ε is the bias, and σ̂z(x) is the z(x) Pauli ma-
trix. We assume that the bilinear coupling in the spin-boson
models is characterized the ohmic spectral density, J (ω)
= π

∑
i c

2
i /(2Miωi)δ(ω − ωi), where ci = (ξ�Mj)1/2ωi, ωi

= −ωcln (1 − i�ω/ωc), and �ω = ωc(1 − e−ωmax/ωc )/NB

with ωc the cut-off frequency, NB the number of bath oscilla-
tors, and ξ the Kondo parameter. In all the spin-boson models
considered here, the quantum subsystem is initialized in state
|1〉 and the bath is initially in thermal equilibrium.
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FIG. 2. Population difference as a function of �t with the parameter set:
ε = 0, � = 0.4, ξ = 0.09, β = 12.5, and ωc = 1.0. See the text for the two
modified focused initial conditions.

First, we consider FBTS results for the symmetric spin-
boson model. Figure 2 shows the time evolution of the popu-
lation difference, 〈σ̂z〉. We not only consider the full-sampling
and focused initial condition FBTS results, but also consider
two cases with modified focused initial conditions. In case 1,
we replace the typical focusing condition δ(q2

1 + p2
1 − 1) by

δ(q2
1 + p2

1 − 1.5). In case 2, we use the even more severely
modified focused initial condition δ(q2

1 + p2
1 − 0.8)δ(q2

2
+ p2

2 − 0.2). In both modified cases, we omit the backward
coherent states because they can be exactly replaced by the
forward states as discussed in Sec. III A. All FBTS results
in Fig. 2 are scaled in the following way: 〈σ z〉/1MC, where
1MC is the MC estimate of the constant 1 using either the full
sampling, proper, or modified focused initial conditions, de-
pending on the case considered.

Examination of Fig. 2 reveals a rather important reason
behind the reported accounts14, 28 of high accuracy in the ap-
plication of focused initial conditions to the symmetric spin-
boson model. The results in the figure show that any modified
focused initial condition of the form δ(q2

1 + p2
1 − r) with r

being an arbitrary real number can yield results (scaled by
1MC) almost identical to the exact quantum calculation. In ad-
dition, case 2, where the modified initial condition has non-
zero quantum amplitude in state |2〉, also yields good results,
except that the initial amplitude is slightly lower. This behav-
ior, in which a large portion of phase space leads to similar
quantum evolution, can be traced to the fact that the two dia-
batic states are energetically degenerate in the absence of the
bath.

For FBTS and related mapping algorithms, it is crucial
to simulate the correct bath dynamics. We argue intuitively
that the energetic degeneracy of the two states gives an effec-
tively trivial quantum feedback on the bath. In the ensemble
picture, the bath oscillators oscillate around their equilibrium
points as if the quantum subsystem only influences the ampli-
tudes of their oscillations but does not modify their oscillation
frequencies or displace them from their equilibrium points.
However, the quantum subsystem still feels the bath dynam-
ics and suffers decoherence. We support this intuitive argu-
ment by the following observations: First, if one simply sup-
presses the subsystem-related part in the equation of motion
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FIG. 3. Population difference as a function of �t with the following param-
eters: ε = � = 0.4, ξ = 0.13, β = 12.5, and ωc = 1.0. (a) Comparison
of results obtained with the FBTS and its variants with the exact quantum
values. (b) Comparison of results obtained with the FBTS with proper and
modified focused initial conditions. See text for definitions of the four cases.

for P in Eq. (13), i.e., use dP/dt = −∂V0(R)/∂R, then one
still obtains a result which is almost identical to that shown
in Fig. 2. Second, after the fifth oscillation in the figure, even
case 2 converges to the exact result. This suggests that once
the system moves beyond its correlation time scale with re-
spect to the initial condition, the system is insensitive to the
population distribution over the two energetically degenerate
levels.

The asymmetric spin-boson model in which a bias ε is
introduced is a more challenging system for simulation. The
consequences of having a bias in the spin-boson model have
been analyzed extensively; for instance, the fundamental dif-
ferences between the quantum dynamics in both symmetric
and asymmetric spin-boson models have been summarized in
Ref. 30.

Figure 3(a) presents the time evolution of 〈σ z〉 for sev-
eral situations: FBTS (full sampling), FBTS (focused initial
condition), and JFBTS (with 26 jumps). For the asymmetric
spin-boson model, we find that the focused initial condition
result deviates significantly from both the full-sampling and
exact quantum results, after about �t > 1.5. The rather poor
performance of the focusing approximation to the FBTS can
again be understood by analyzing the trajectories with modi-
fied focused initial conditions. In Fig. 3(b), several such cases
are presented. For cases 1–3, the modified initial conditions
take the form δ(q2

1 + p2
1 − r) with r = 1.5, 1.8, and 2.0, re-

spectively. In case 4, we use the initial condition δ(q2
1 + p2

1
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− 0.8)δ(q2
2 + p2

2 − 0.2). All the results in Fig. 3(b) are scaled
by the corresponding 1MC as explained earlier. When ε = 0,
different initial conditions yield very different results for 〈σ z〉.
Comparing Figs. 3(a) and 3(b), it is clear that the proper fo-
cused initial condition is simply not a valid approximation
since it prunes too many trajectories from the ensemble.

In Fig. 3(a), we also present results for a JFBTS simula-
tion with 26 jumps. We remark that the minimum number of
average jumps required for a JFBTS calculation to recover the
QCLE result depends on the interplay of several factors, such
as the size of the time-step, the probability distribution P{κ}

and the time-block size J discussed in Sec. II B. In this calcu-
lation, we used the binomial distribution for P{κ}, and a jump
could be introduced in every even-number time step. Finally,
we remark that, in certain cases, the QCLE result might be
obtained with fewer jumps if one uses fixed-interval jumps.
In summary, the JFBTS formalism is flexible in the sense that
many parameters and the jump process can be modified in or-
der to optimize its performance for each individual problem.

From the analysis of these spin-boson models, we see that
the applicability of focused initial conditions is very limited
in scope. Their ability to describe symmetric spin-boson cases
should be taken simply as a rare exception. However, the use
of iterative focusing in the JFBTS was shown to be a more ro-
bust and useful tool. It allows us to obtain the QCLE solution,
which agrees with the exact quantum result.

C. Fenna-Matthews-Olson model

The FMO protein of green sulfur bacteria plays a role
in the transfer of excitation energy to the reaction center in-
volved in photosynthesis.31 The model Hamiltonian for this
process provides an example of a multi-level quantum sys-
tem coupled to a bath. The Hamiltonian is composed of a
seven-level quantum subsystem corresponding to an excita-
tion state localized in one of the seven pigment proteins of
the FMO complex, and each quantum level is bilinearly cou-
pled to its own set of bath oscillators; the bilinear system-bath
coupling is characterized by the Debye spectral density. The
explicit expression for the Hamiltonian and the parameters
used in its definition will not be given here but is available
in Ref. 32 and its supporting documents online. The quan-
tum subsystem is initialized in the state |1〉 and all the bath
oscillators are initially in the thermal equilibrium state. This
model has been studied often. In particular, the PBME33 and
the PLDM27 algorithms, closely related to the FBTS, have al-
ready been applied to investigate the population dynamics of
the FMO complex and compared to the numerically accurate
quantum results.32, 34

Figure 4 plots the populations in states |1〉, |2〉, and |3〉
as functions of time. Two sets of results are presented and
compared against quantum results obtained from rescaled
Hierarchical Coupled Reduced Master Equation (HCRME)
calculation.34 The solid lines represent the results of the
traceless-form FBTS, while the corresponding colored dots
correspond to results of the trace-form FBTS. For this system,
the FBTS is rather insensitive to whether the trace or traceless
forms of the Hamiltonian are used. Unlike the Tully 2 model,
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tion of t at temperature of 77 K. The solid lines represent the traceless-form
results, and the corresponding color dots represent the trace-form results. The
red data points are extracted from Ref. 34.

the FMO model has a dominant pure bath quadratic potential
for each oscillator. Since the system-bath coupling is a weak
perturbation, it is less likely to encounter an inverted poten-
tial for the bath trajectories. In addition to the agreement be-
tween the trace-form and traceless-form, the results are also in
quantitative accord with the rescaled HCRME calculations.34

Furthermore, we have also checked and found (not shown)
that the long-time population distributions of these states ap-
proach the thermal equilibrium distribution at time t = 10 ps.

The results of this section demonstrate the efficiency of
the FBTS in dealing with multi-level systems. For this sys-
tem, inverted potentials in the simulation of trajectories do not
present a problem and the FBTS is not sensitive to the form
of the Hamiltonian.

D. Conical intersection model

Finally we consider a two-level, two-mode quantum
model for the coupled vibronic states of a linear ABA tri-
atomic molecule constructed by Ferretti, Lami, and Villiani
(FLV). In this model, the nuclei are described by two vi-
brational degrees of freedom, X and Y. The partially Wigner
transformed Hamiltonian reads

HW (Rs, Ps) = P 2
X

2MX

+ P 2
Y

2MY

+ 1

2
MY ω2

Y Y 2 + ĥ(Rs), (23)

where the subsystem Hamiltonian is defined by the following
matrix elements:

h11(Rs) = 1

2
MXω2

X(X − X1)2,

h22(Rs) = 1

2
MXω2

X(X − X2)2 + �, (24)

h12(Rs) = γ Y exp(−α(X − X3)2 − βY 2).

In these equations, Rs = (X, Y), Ps = (PX, PY), MX, Y, and ωX, Y

are the mass and frequency for the X and Y DOF, respectively.
The quantum subsystem is initialized in the adiabatic ground
state, while the vibronic X and Y initial states are taken to be
Gaussian wave packets. Further details of this model can be
found in Refs. 35 and 36.
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FIG. 5. Asymptotic adiabatic ground state population at 50 fs versus γ . Due
to the strong system-bath coupling, the orthogonality approximation compro-
mises the FBTS results.

Figure 5 plots the adiabatic ground state population at
t = 50 fs as a function of the coupling strength γ . We see
that the FBTS result matches the Trotter-based QCLE (with
filtering) result up to about γ = 0.02 but deviates significantly
from the QCLE and exact quantum results for larger coupling
strengths. At higher coupling strengths, the errors induced by
the orthogonality approximation become significant. The re-
sult of a 15-jump JFBTS calculation is also shown. This sim-
ulation is able to reproduce all trends in population versus
coupling strength curve and, for this number of jumps, about
10% accuracy is achieved at the highest coupling.

Next, we discuss the importance of the subsystem basis
used for the JFBTS calculation. The JFBTS result in Fig. 5
was obtained using a representation with the basis states
|±〉 = (|1〉 ± |2〉)/√2 where subsystem states |1〉 and |2〉
were used to define the Hamiltonian matrix elements in
Eq. (24). In the figure, this rotated basis yields a JFBTS re-
sult with as much as ∼25% improvement over the FBTS re-
sults. In our other JFBTS calculation (not shown in the fig-
ure) with respect to the original basis, {|1〉, |2〉}, we obtained
at most ∼15% improvement over the FBTS results with the
same number of jumps.

As discussed in Sec. III B, the importance sampling
used to select a pair of forward and backward state indices,
(si, s

′
i), for the collapse of the trajectories in each MC run

helps to avoid doing the exact summation over state indices in
Eq. (15). Thus, another key to the efficiency of the JFBTS al-
gorithm is to have a dispersed probability distribution for Psi ,s

′
i

in order to select as many different combinations of states
as possible. An easy method to satisfy this requirement is to
simply use the uniform probability distribution Psi ,s

′
i
= 1/N2

where N is the number of quantum states. However, we pre-
fer the distribution Psi ,s

′
i
= (q2

si
+ p2

si
)(q ′2

s ′
i
+ p′2

s ′
i
)/Ni defined

in Sec. III B since it minimizes the abrupt changes that can
influence the bath dynamics. Another way to obtain a more
uniform distribution is to select a basis where the off-diagonal
matrix elements are maximized since these influence popula-
tion transfer among different levels.

In the original basis, the FLV model has a sharply peaked
off-diagonal matrix element, h12(Rs). Thus, in the asymptotic
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FIG. 6. The probability distribution Ps,s′ for importance sampling of a pair
of forward and backward quantum states versus t for a typical trajectory in
the original basis (a) and rotated basis (b). In the later case, a more dispersed
probability distribution allows for a more balanced samplings of all pairs of
state combinations. One should replace 1/2 with +/− when using the legend
in panel a to interpret the curves in panel (b).

region where h12(Rs) ≈ 0, the population distribution over the
quantum states does not change significantly even if jumps are
introduced in the JFBTS calculation. Figure 6(a) shows the
population distribution over pairs of forward and backward
quantum states for a typical trajectory in the original basis.
The distribution is highly localized on one particular pair of
states, except when the system moves through the interaction
region where h12(Rs) approaches maximum strength; how-
ever, h12(Rs) has a rather steep profile and the interaction re-
gion occupies a very small portion of the phase space. There-
fore, extensive MC sampling involving many jumps would be
required to sample all different pairs of states. By contrast,
in the rotated basis h++, ( − −)(Rs) = ±h12 are now the diago-
nal elements of the Hamiltonian matrix, and the off-diagonal
matrix element h+−(Rs) is linearly dependent on X. In the
“asymptotic” region (where h12(Rs) ≈ 0), the two diagonal
matrix elements are approximately energetically degenerate
in the rotated basis. Consequently, population transfer occurs
easily in the “asymptotic” region. Since the “asymptotic” re-
gion represents the bulk of the phase space, Fig. 6(b) shows
a more balanced and oscillating population distribution over
pairs of forward and backward quantum states for a typical
trajectory in the rotated basis.

These results show that the FBTS formalism can be cus-
tomized and several modifications, such as the choice of sub-
system basis and the jump probability distribution, etc., can
be independently tuned and adapted to suit the problem un-
der study without actually changing the structure of the algo-
rithm. From the analysis of FLV model, we have seen how
to determine the most suitable subsystem basis for the JFBTS
calculation.

V. SUMMARY AND CONCLUSION

In this work, we demonstrated the usefulness of the FBTS
through simulations of a variety of systems. In most instances,
we obtained converged results with ∼104 trajectories. These
numerical tests suggest that the FBTS performs at the same
level of accuracy and efficiency as the PLDM,24, 27, 37 a closely
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related algorithm. We showed that the traceless-form Hamil-
tonian yields more accurate results when there is no domi-
nant pure bath potential in the model and should be used for
all numerical computations. In cases where the FBTS results
were compromised by the orthogonally approximation, we
demonstrated that these results could be systematically im-
proved by increasing the number of jumps in the generalized
JFBTS algorithm. In order to make JFBTS a computationally
efficient algorithm, we carried out a detailed investigation of
the focusing approximation and provided an extensive analy-
sis of the approximate trajectory dynamics. This analysis indi-
cated that focused initial conditions should be used only when
the nonadiabatic effects can be treated as a weak perturbation
or for special cases such as the symmetric spin-boson model
where the bath is rather insensitive to the differences between
the quantum states. Finally, we also justified the validity of it-
erative focusing in the JFBTS. In all cases studied the QCLE
solution either reproduced the exact quantum results or was a
very good approximation to the exact results. Thus, the ability
of the FBTS and JFBTS to reproduce the QCLE solution also
implies an ability to reproduce the full quantum results.

The number of jumps used in the JFBTS determines how
many trajectories will be needed to obtain a converged result.
As noted throughout the paper, several implementation details
of the JFBTS algorithm can be customized to significantly re-
duce the minimum number of jumps and improve the con-
vergence properties of the algorithm. In addition, the number
of jumps needed to obtain QCLE result will certainly depend
on the details of the Hamiltonian of each model. It is not a
simple manner to predict the number of jumps and trajecto-
ries required to obtain the full QCLE result for an arbitrary
system. However, at least two orders of magnitude increase in
the number of trajectories (in comparison to the correspond-
ing FBTS calculation) should be expected for most cases in
which the FBTS results are compromised by the orthogonal-
ity approximation. Perhaps the greatest utility of the JFBTS
algorithm is that it provides a simple method to gauge the suf-
ficiency of the FBTS when one studies nonadiabatic dynamics
for complex real systems, beyond the simple benchmark mod-
els studied here for which exact quantum results are known.

Potential improvements to the family of (J)FBTS algo-
rithms are still possible; especially, it might be helpful to re-
formulate the entire formalism in the adiabatic basis. Cur-
rently, the flexibility of the algorithm can be traced back to
the use of the subsystem basis, which is not uniquely defined
as in the case of adiabatic basis. In particular, a current chal-
lenge of the JFBTS algorithm is related to the determination
of the best timings for the insertion of jumps in the course of
trajectory evolution. In the current formulation, there are no
indicators which help to make this judgement. However, as is
often the case with surface hopping algorithms formulated in
the adiabatic basis, we expect that inherent indicators natu-
rally emerge from the formalism once it is re-expressed in the
adiabatic basis.
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APPENDIX A: INSERTIONS OF PROJECTION
OPERATORS

In this Appendix, we support the claim that insertions of
projection operators, P = ∑ |ms〉〈ms |, in the mapping repre-
sentation do not introduce additional errors. We first consider
the concatenation of parameterized time evolution operators
in the subsystem:

〈λ|e− i
¯
ĥ(X0)τ . . . e− i

¯
ĥ(XM−1)τ |λ′〉

=
∑

μ1,...,μM−1

〈λ|e− i
¯
ĥ(X0)τ |μ1〉〈μ1|e− i

¯
ĥ(X1)τ |μ2〉

× . . . 〈μM |e− i
¯
ĥ(XM−1)τ |λ′〉

=
∑

μ1,...,μM−1

〈mλ|e− i
¯
ĥm(X0)τ |mμ1〉

× 〈mμ1 |e− i
¯
ĥm(X1)τ |mμ2〉

× . . . 〈mμM
|e− i

¯
ĥm(XM−1)τ |mλ′ 〉. (A1)

On the right side of the first equality, we insert the resolu-
tion of identity I = ∑

μ |μ〉〈μ| at every time step. To obtain

the second equality, we use the matrix identity: 〈μ|e i
¯
ĥ(X)τ |μ′〉

= 〈mμ|e i
¯
ĥm(X)τ |mμ′ 〉. If we express every time evolution op-

erator in terms of zi variables,

e
i
¯
ĥm(X)τ =

∫
d2z

πN
|z〉〈z(τ )|, (A2)

where 〈z(τ )| is time-evolved by Eq. (13), we obtain the de-
sired expressions in Eq. (14).

APPENDIX B: FORWARD AND BACKWARD
TRAJECTORIES WITH FOCUSED INITIAL
CONDITIONS

In this Appendix, we take ¯ = 1 and use the scaled co-
herent state variables as defined in Sec. II. We prove that the
backward trajectories can be exactly replaced by the forward
trajectories in the FBTS if the focused initial condition is im-
posed. The coherent state variables, z and z′, matter critically
in two places in the formalism. First, the equation of motion
for the bath momenta defined in Eq. (13) depends explicitly

on these variables through the term 1
2

∂hλλ′
(R)

∂R
(qλqλ′ + pλpλ′

+ q ′
λq

′
λ′ + p′

λp
′
λ′). Second, these variables play a critical role
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in the evaluation of the expectation value of an operator B̂,

〈B̂(t)〉 =
∑
λ,λ′

∫
dX

∫
dxdx ′Bλ′λ

W (X, t)ρλλ′
W (X),

=
∑
λ,λ′

μ,μ′

∫
dX

∫
dxdx ′φ(x)φ(x ′)ρλλ′

W (X)

× (qλ − ipλ)(qμ(t) + ipμ(t))

× (q ′
λ′ + ip′

λ′)(q ′
μ′(t) − ip′

μ′(t))B
μμ′
W (Xt ), (B1)

where the q and p variables with no explicit time arguments
are taken to be the initial values at t = 0. In the following, we
prove the identities

q ′
λ(t)q ′

λ′(t) + p′
λ(t)p′

λ′(t) = qλ(t)qλ′(t) + pλ(t)pλ′(t),
(B2)

(q ′
λ′ + ip′

λ′)(q ′
μ′(t) − ip′

μ′(t)) = (qλ′ + ipλ′)(qμ′(t) − ipμ′(t)).

The first identity implies that the backward trajectories can
be replaced by the forward ones in the equation of motion
for the bath. The second identity implies that the expectation
value of the operator B̂(t) can also be evaluated without hav-
ing the backward trajectories.

Without loss of generality, we assume the quantum state
is initialized in state |1〉 with the following focused initial con-
dition: δ(q2

1 + p2
1 − 1)δ(q ′2

1 + p′2
1 − 1) and every other com-

ponent of the q and p vectors is set to zero at t = 0. We
remind that the q(t) and p(t) variables satisfy the equation
of motion in Eq. (13). First, we define a function gλλ′(t)
= q ′

λ(t)q ′
λ′(t) + p′

λ(t)p′
λ′(t) − qλ(t)qλ′(t) − pλ(t)pλ′(t). It is

easy to verify that gλλ′(0) = 0 for every (λ, λ′) combination.
Now we prove that dngλλ′ (t)

dtn
|t=0 = 0 for all n. We show that the

first two derivatives of gλλ′(t) are equal to zero,

dgλλ′(t)

dt

∣∣∣∣
t=0

= hλα[p′
αq ′

λ′ − q ′
αp′

λ′ − pαqλ′ + qαpλ′]|t=0

+hαλ′
[p′

λq
′
α − q ′

λp
′
α − pλqα + qλpα]|t=0

= 0 (B3)

and

d2gλλ′(t)

dt2

∣∣∣∣
t=0

= 2hλαhλ′βgαβ(0) − hλ′αhαβgβλ(0)

−hλαhαβgβλ′(0)

= 0. (B4)

Since any higher derivative of gλλ′(t) at t = 0 can be recur-
sively defined in terms of Eqs. (B3) and (B4), we have proved
that gλλ′(t) = 0 for all t and established the first identity in
Eq. (B2).

Next, we define functions fλλ′(t) = q ′
λq

′
λ′(t) + p′

λp
′
λ′(t)

− qλqλ′(t) − pλpλ′(t) and kλλ′(t) = −q ′
λp

′
λ′(t) + p′

λq
′
λ′(t)

− pλqλ′(t) + qλpλ′(t). We remark that the second identity in
Eq. (B2) is equivalent to fλλ′(t) + ikλλ′(t) = 0. Similar to the
previous analysis, we note that fλλ′(t) = 0 and kλλ′(t) = 0 by
showing that these functions and all orders of their derivatives

are zero at t = 0. Furthermore, we note the simple relations
between the first derivatives of these functions:

dfλλ′ (t)

dt

∣∣∣∣
t=0

= hλ′α[q ′
λp

′
α(t) − p′

λq
′
α(t) − qλpα(t)

+pλqα(t)]|t=0,

= −hλ′αkλα(0)

= 0,

(B5)
dkλλ′(t)

dt

∣∣∣∣
t=0

= hλ′α[q ′
λq

′
α(t) + p′

λp
′
α(t) − pλpα(t)

− qλqα(t)]|0,
= hλ′αfλα(0)

= 0.

From these equations, it is obvious that all higher derivatives
of these functions evaluated at t = 0 should vanish. Thus, we
have established the second identity in Eq. (B2).
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