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A new approximate solution to the quantum-classical Liouville equation is derived starting from the
formal solution of this equation in forward-backward form. The time evolution of a mixed quantum-
classical system described by this equation is obtained in a coherent state basis using the mapping
representation, which expresses N quantum degrees of freedom in a 2N-dimensional phase space.
The solution yields a simple dynamics in which a set of N coherent state coordinates evolves in for-
ward and backward trajectories, while the bath coordinates evolve under the influence of the mean
potential that depends on these forward and backward trajectories. It is shown that the solution sat-
isfies the differential form of the quantum-classical Liouville equation exactly. Relations to other
mixed quantum-classical and semi-classical schemes are discussed. © 2012 American Institute of

Physics. [http://dx.doi.org/10.1063/1.4736841]

. INTRODUCTION

Nonadiabatic processes are at the core of many physical
phenomena, including population transfer among electronic
system states, quantum coherent evolution of a system inter-
acting with environmental degrees of freedom, and electron
and proton transfer reactions in condensed phase and biolog-
ical systems, among others. In investigating such phenom-
ena, one often focuses on certain quantum degrees of free-
dom whose dynamics is of primary interest. These may be the
electronic degrees of freedom of a chromophore excited by a
radiation to prepare the initial state of the system, the exciton
states of a light harvesting system, or even the electron or pro-
ton degrees of freedom involved in the transfer of these parti-
cles. In such cases, we are led to consider how these quantum
degrees of freedom interact with the environment in which
they reside. Interactions with the environment can lead to the
breakdown of the Born-Oppenheimer approximation and one
must consider nonadiabatic dynamics in such open quantum
systems.

A number of different approaches have been developed
to describe nonadiabatic dynamics. These include mean-
field and a variety of surface-hopping schemes,'~” methods
based on semi-classical evaluations of path integral formula-
tions of quantum mechanics,* " and descriptions based on the
quantum-classical Liouville equation.”! An important ingre-
dient in any approach dealing with nonadiabatic dynamics is
the manner in which quantum coherence and decoherence are
taken into account in the dynamics. The description of nona-
diabatic dynamics necessarily entails dealing with coherence
that is generated and destroyed as the system evolves while
interacting with its environment. Many of the various nona-
diabatic approaches that have been constructed deal with the
issue of decoherence in various ways.?>~>

Another characteristic of nonadiabatic schemes is the
manner in which the environment is modeled. At the sim-
plest level, the environment may be treated as a stochastic
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bath, which leads to reduced descriptions that do not explicitly
include the environmental degrees of freedom in the evolu-
tion. Their effect only appears in certain parameters and terms
that characterize the coupling to the environment. Schemes
of this type include various quantum master equations*® such
as the Lindblad, Redfield, and Bloch equations.”’29 Other
methods explicitly account for the environmental degrees of
freedom. It is challenging to treat large and complex systems
fully quantum mechanically, although there are developments
along these lines.>** Some methods, for example, some path
integral methods, begin with a full quantum treatment and
then make semi-classical approximations to obtain tractable
solutions.'”2%3% Often the environment in which the quan-
tum dynamics of interest occurs can be described by classical
dynamics to a high degree of accuracy and this has spawned
a number of mixed quantum-classical descriptions of nonadi-
abatic dynamics. Many surface-hopping schemes fall in this
category as do some approximations to semi-classical path in-
tegral formulations and mean-field methods.!”-3"-*% Here, we
focus on descriptions based on the quantum-classical Liou-
ville equation (QCLE).

The QCLE employs a partial Wigner representation of
the environmental (bath) degrees of freedom and may be de-
rived from full quantum dynamics by truncating the quan-
tum evolution operator to first order in a small parameter
related to the ratio of the characteristic masses of quantum
and bath degrees of freedom.*® It may also be derived from
partially linearized path integral formulations,*>*' indicating
the close connection between these different starting points.
This equation has been shown to provide an accurate de-
scription of nonadiabatic dynamics in many applications and
to account for quantum decoherence.”’ A number of differ-
ent methods, whose structure depends on the basis chosen
to represent the quantum degrees of freedom, have been de-
vised for its simulation.*”~** Simulation methods that utilize
an adiabatic basis can be cast into the form of surface-hopping
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dynamics, but in a way that includes coherent evolution
segments that account for the creation and destruction of
coherence in a proper manner. More recently, as in some
semi-classical approaches,'” the mapping basis*’ was used to
describe the quantum degrees of freedom in the QCLE in a
continuous classical-like manner, leading to a trajectory de-
scription in the full system phase space. >

In this paper, we also utilize the mapping representa-
tion but instead of dealing directly with the solution of the
QCLE using a Liouville propagator, we start with its solu-
tion in terms of forward-backward quantum-classical propa-
gators constructed some time ago.’® With this starting point
and the introduction of a coherent state basis,’* > we are able
to obtain a solution of the QCLE that involves the forward-
backward trajectories of the coherent state variables, coupled
to the evolution of the bath phase space variables. Formally,
both forward and backward trajectories are propagated for-
ward in time. The two sets of trajectories are distinguished
and named by their association with the forward and back-
ward quantum-classical propagators, respectively. This for-
mulation leads to a simple set of equations of motion that
describe the nonadiabatic dynamics of the system.

The outline of the paper is as follows: In Sec. II, we
sketch the important features of the QCLE, its representa-
tion in the mapping basis, and formal solution in forward-
backward form needed for our calculation. The forward-
backward trajectory solution is constructed in Sec. III, which
contains the most important results of the paper. A discussion
of the results is presented in Sec. IV, while the Appendices
give the additional technical details of the calculation.

Il. QUANTUM-CLASSICAL LIOUVILLE EQUATION

We consider a quantum subsystem coupled to a
bath. We assume that the dynamics of such a sys-
tem is described by the quantum-classical Liouville
equation.**246:56-60 For a quantum operator By (X), which
depends on the classical phase space variables X = (R, P)

=(Ri,Ry,...,Ry,, P\, P»,..., Py,) of the bath, this
evolution equation takes the form,
d Can
EBW(Xa 1) =iLBw(X,1), (1)
where the quantum-classical Liouville operator is
A i oA | A N
iL-= 7L w1 = 5({Hw, 4 —={- Hw}. @

Here, the subscript W refers to a partial Wigner trans-
form over the bath degrees of freedom (DOF), Ay (X)
is the partial Wigner transform of the total Hamiltonian
of the system, [-, -] is the commutator and {Aw, By}

_ A (D 9 9 8\p. _ dAwoBw _ 9Aw 9By - .
= AW(ﬁﬁ — ﬁﬁ)BW = B_RWB_I?/ — ()_PW()_R!/V %S the Pois-
son bracket in the phase space X of the partially Wigner trans-
formed Ay and By operators. The total Hamiltonian may be

written as the sum of bath, subsystem, and coupling terms,
Hy(X) = Hy(X) + hy + Vo(R) = Hy(X) + h(R),  (3)

where H,(X) = P2/2M + V,(R) is the bath Hamiltonian
with V,(R) the bath potential energy, i, = p*/2m + V; is the
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subsystem Hamiltonian with p and V; the subsystem momen-
tum and potential energy operators, and V,(R) is the coupling
potential energy operator. The masses of the subsystem
and bath particles are m and M, respectively. The evolution
equation for the density matrix gy (X, ) is analogous to Eq.
(1) with a change in the sign of the evolution operator.

A. Formal solution

The QCLE may also be written in a form that is analo-
gous to the quantum Liouville equation:>

d . i1 — N N
EBW(XJ)=%(HA By — Bw Ha ), “4)

where operators 7?{ A and ;( A are given by
— N AA ~ AN\ A
Ha = Hw 1+7 , Ha= 1+7 Hy, (5)

-
with A the negative of the Poisson bracket operator, A =V p
<« —

Vg — Vg - Vp.
The formal solution of the QCLE can be expressed in
either of two forms as

Bw(X, 1) = X By (X) 6)
= S(e M/ By (X)e AN,

The first equality follows from the formal solution of Eq. (1)
while the second equality follows from Eq. (4). The S in this
latter form simply specifies the order in which products of the
left and right operators act in order to be identical with the
first form involving the QCL operator. In particular, a general

term S((T—( N BW(;{ A)%) in the expansion of the exponential

. i ! .
operators is composed of (J;,r]f,)' separate terms each with a

prefactor of Uq_—kk'), Each of these separate terms corresponds

— <«
to a specific order in which the 7, and 7{, operators act on
By . This formal solution will be used in the calculations pre-
sented below.

B. Mapping representation

We will be concerned with the representation of the
QCLE in the quantum subsystem basis and its equivalent
representation in the mapping basis. The subsystem basis,
{Ix); A =1, ..., N}, is defined by the eigenvalue problem
hs|) = €,|1), and a matrix element of an operator Bw(X) is
given by By (X) = (x| By(X)[)').

The |\) eigenfunctions of an N-state quantum subsys-
tem can be replaced with the eigenfunctions of N fictitious
harmonic oscillators,'”* |m,), having occupation numbers,
which are limited to O or 1: [A) — |m;) = |0p, ..., 15, ...0x).
Creation and annihilation operators on these states, le and a;,,
respectively, are defined as
i = = iPD), b= =@ tip), D)

A \/ﬁ qx Pr)s A \/ﬁ q> Pr) s
and satisfy the commutation relation [d;, &I/] =8 .
The actions of these operators on the single-excitation

Downloaded 18 Jul 2012 to 137.146.249.244. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



22A507-3 C.-Y. Hsieh and R. Kapral

mapping states are &A|0) = |m;) and a;|m;) = |0), where |0)
= 10;...0y) is the ground state of the mapping basis.

We may then define the mapping versions of operators,
B,,(X), given by

B(X) = B (X)al 4y, 8)

so that a matrix element of By in the subsystem basis
is equal to the matrix element of the corresponding map-
ping operator in the mapping single-excitation basis: B‘AV”(X )
= (A By (X)|\) = (m;|Byu(X)|my). (The Einstein summa-
tion convention will be used throughout although sometimes
sums will be explicitly written if there is the possibility of
confusion.) In particular, the mapping Hamiltonian operator
is

H, = Hy(X) + " (R)a)ay = Hy(X) + h, )

where we applied the mapping transformation only on the
part of the Hamiltonian that involves the subsystem DOF in
Eq. (9). The pure bath term, ﬁb(X) in Eq. (3), acts as an iden-
tity operator in the subsystem basis and is mapped onto the
identity operator of the mapping space.

The QCLE (4) may now be written in terms of mapping
operators as

d . i - " <«
—B,(X,t) = —-(HY B, — B, H} ), 10
g B0 =2 (003 HR) (10)

where H" is given by H" = H,,(1 + %A /2i), with an anal-

ogous definition for H'{. One may verify that the mapping
space matrix elements of this equation are identical to the sub-
system matrix elements of Eq. (4). Consequently, the formal
solution of this equation is similar to that in Eq. (6) and is
given by

Bu(X, 1) = S(e MR B, (X)e MR/, (11)

This equation will form the starting point for the explicit solu-
tion of the QCLE in terms of forward-backward trajectories.

lll. FORWARD-BACKWARD TRAJECTORY SOLUTION

In this section, we derive a new approximate solution to
the QCLE for an operator Bw(X, 1) in the subsystem basis.
This new solution is based on Eq. (6), which shows that the
time evolution of By (X, ) can be formally expressed in the
mixed quantum-classical analogue of the forward-backward
form for a quantum operator in the Heisenberg picture. We
then apply the mapping transformation and introduce sets
of forward and backward coherent state variables to com-
pute the matrix elements of the the mixed quantum-classical
propagators in terms of classical-like trajectories. Throughout
the derivation presented in the current section, we often rely
on standard approximations such as Trotter decomposition,
which is bounded by O(t?), where 7 is an infinitesimal time
slice that we use to break up the propagators as explained in
the next paragraph. In addition, we will invoke an approxima-
tion, Eq. (35), on the inner products between coherent state
variables introduced in adjacent time steps. This last approxi-
mation is essential as it allows the trajectory segments in ad-
jacent time slices to be pieced together and form a smooth
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trajectory in the phase space. Further discussion on the im-
plications of making such an approximation is elaborated in
Sec. III C.

The formal solution of the QCLE can be written in terms
of a sequence of M short-time propagators acting on the initial
value of the operator:

Bw(X, 1) = o eitan | oifAm By (X), (12)

where At;j =1t —tj_ =t forall j withtp = 0 and 7y = 1.
(When information about a specific time step is needed,
we use the At; notation, otherwise the common value 7 will
be used.) In the above equation, the chronological order* of
the time steps goes from left to right. This ordering conven-
tion is chosen such that the propagator 'L at time Jj updates
all the propagators at later times before it acts on the operator
By . This prescription allows us to parametrize the Liouville
operators, ﬁ(X 1), with the trajectories of bath coordinates, X;
= X(1).

Consequently, in view of Eq. (11), the formal solution
applies in each time segment so that By (X, ) may also be
written as

Ba(X, 1) = SRS (MM
X S(eiA[MHX/hém(X)efiAtMHX/h)
X L. e IAHRR AN (g3

where there are M concatenated S(- - -) brackets.

A. Representation in coherent states

In order to proceed with the evaluation, we must consider
the computation of the forward and backward propagators in
this expression. To order 72, we have

GTHRI — B AT/2 i Bnt/h (72, (14)

Also, to order 72, we may write the first exponential operator
as

Q

AT = 1 CHL A+

N

T ’
= 14 SHy(OA + W afay At

= 1+ ZHCOA + S0 aa] —Tro A + ...
15)

where we have reversed the normal-ordered product of an-
nihilation and creation operators into an anti-normal order
form using their commutation relation. The by-product of
reversing the ordering of creation and annihilation opera-
tors is the emergence of a trace term in the last line of this
equation. Since the trace term is independent of the quan-
tum state, it may be combined with the bath potential, Vy(R)
= V,(R) — Tr h(R), to give Ho(X) = P?/2M + Vo(R) so
that we have the simpler form of Eq. (15),

enAT/2 — 1 4 %HO(X)A i %h“’amiA +0OE).  (16)
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In this form, the propagator can be expressed conveniently in
coherent states.”*
We define the coherent states |z) in the mapping space,

alz) =z, 1z) (z|ai =z (zl, (17

where |z) is a coherent state with N degrees of freedom and the
eigenvalue is z; = (¢, + ipy)/~/2h. The variables ¢ = (qi,
.., qy) and p = (py, ..., py) are the mean coordinates and
momenta of the harmonic oscillators in the state |z), respec-
tively; i.e., we have (z|g,|z) = ¢, and (z|px|z) = pa.
The coherent states form an overcomplete basis; thus, we
have to specify the inner product between any pair of coherent
states and the resolution of identity.>* The inner product is

L1212
zlZy=e 2zl 1) +z" 2 ,

, , (o ot
_ e_i(lz_z |2)—1\\(z~z )' (18)

The norm of the inner product measures how far away the two
coherent states |z) and |7') are in the phase space of coherent
state variables. The resolution of the identity is

dZ
1:/—|z><| (19)
7T

where d?z = d(R(2))d(3(z)) = dqdpl(2h)V.

Given these properties of the coherent states, we may
insert the resolution of the identity in the bath Hamiltonian
terms and between the d;, and &j{ operators in Eq. (16) to ob-
tain

2

S _ (14 L 4’z
ettt = (14 Zmoon) [ Soia

d? \
+—/ 20 a0 12) (21l A + O,
2 aN

2
_ / % &) (14 3 (Ho(X) +h 2122
+ O(r2)> (zl,

d*z IH (X,2)A 2
= ”—NIZ)e2 DRz + O(T9). (20

In this calculation, we used Eq. (17) to eliminate the annihi-
lation and creation operators in Eq. (20). Note that 1** 7%z,
= Lh* (qvg;. + papy) since h**" is symmetric. In the last
line of Eq. (20), we defined the “classical” Hamiltonian

Hu(X, 2) = Hy(X) + h™ 2520 = Hy(X) + ha(R, 2),
P2
= — + hy, Va(R, 21
sz et @ + Va(R, 2), 21)

where Vy(R, 2) = Vo(R) + V¥ (R)z] 2.

The operator H.(X, z) A acts on all bath phase space vari-
ables to its right. Therefore, it is convenient to introduce a no-
tation that makes this action evident. More specifically, we let

aHCl 5) BHL.I 5) >
Hox. op = e 0 OHa 5
(X, 2) 5P 3R R ap L&
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so that
A, A d’z iL(X,2)7)2 2
ext = [ 512} T (] + O, (23)

Similarly, we can define

9 9Hs 9 9Hy

AH, (X, o T oy = LX,
XD =35 3R "R ap i L2,
(24)
and
_itAf d’z iL(X.2)T)2 2
e 2 mno— n—_N |Z>e = <Z| + O(T ) (25)

The other quantity that will enter in the evaluation of
the time evolution is the action of the exponential operator

e An(0T/f on a coherent state. In Appendices A and B, we
show that
e—il:lm(X)r/h Iz) = e—iHb(X)r/he—iﬁm(R)r/h 12)
= e MO 7)), (26)

with z(t) determined from the solution of the evolution
equation,
dZ)L i 8hcl

=t = . 27
dt h o9z} @7

B. Time evolution of an operator

These results may now be used to compute the value of
the matrix elements of an operator By (X, ¢) in the subsystem
basis: By (X, 1) = (m;| B, (X, t)|m;). We have

M

, d*z; d*z,

By (X.1) = Z/l_[n_zvl n-Nl
! i=1

i£(X,z) 20
% (m; 21) S EEDT (7] T |2,)

X S EXDF (2] T E | zy)
S
X BUF (X (myele 3 |2, e X048t
X 2oy - .. i in 5 |Z/2>€i£(x’zé)%)

. ’ ﬂ
s (2hle T 2y EXDE Y (2 myy). (28)

‘We may now make use of the definition of the S operator
to rewrite the actions of the right and left operators acting on
the bath coordinates of an arbitrary operator Aw(X) in terms
of a single effective operator £,(X, z, z’) that depends on the
coherent state variables z and 7' associated with the forward
and backward propagators, respectively. In Appendix C, we
show that

S(eiZ(X‘Z)%Aw(X)eiZ(X’Z/)%)
= eiﬁe(xs%z/)tz‘iw(x) = AW(XI)~ 29)
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The explicit form of i £.(X, z, ) is

P 9 oVe(X,z,7) 0
L.(X, = — - . — 30
Xz ) =0 og OR ap OV
where  V,(X,z,7) = (V4(R,z)+ V4(R,7))/2.  From
Egs. (29) and (30), we can see that the time evolution of the
bath coordinates under the effective Liouville operator is
given by the solutions of the equations

dR P dP AV(X,z,7)

—_— =, —_— = 3D
dt M dt oR

These results may be used in the expression for B‘ﬁ}/ (X,1)
in Eq. (28) to give

d?*z; d
B (X, 1) = Z/]_[—Z—Z (my)z1) (2] Imy)

eia(x,m,zp%(( il

z1le " |22)

eiﬁe(X.zz-z’z) > H, h oz

((zale'™
xaﬁ“@“W%ﬁkmé%%ﬁmm
XBMM (X)(mu|e HHn h |ZM>)

e T |2) (zale ™ R 120).

(32)

X 2yl

This expression is evaluated sequentially, from smallest to
largest times, by taking the bath phase space propagators in

expressions such as e/£«X:%2) 5 (..) to act on all quantities
in the parentheses, including other propagators at later times
and the matrix elements Bw‘ ,(X ). For example, the action of
the first effective bath operator updates the bath phase space
coordinates from X = X, to X,,. Thus,

d?z; d*7,
wan—Z/HZ (m 21z} )

. 7 At
X ({zi]e! X5 25)
/ —i By (X)) -
L BR(Xy) - (ZhleT KT 2 (33)

The coherent state matrix elements can now be evaluated us-
ing Eq. (26) to give

d?z; d*Z
wan_zfﬂi_—wmwm>

. . 7\ A
x (e AN (2 (11) z0) e Fe K 2T (]

|Z5))e XA (7120 (1)),
d2zl d2 / ,
=Z[H———mmmm»

iLo(Xy 122,75 A
x ({z1 ()] z2)e e En 222 (7] L.

x BUY(X,) . 12125 ().

x Byl (X)) ...

(34)
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In writing the last equality, we canceled the phase factors in-
volving Hy(X;,).
At this point, we can see how a description involving

continuous trajectories may be constructed. The classical bath
iL(Xyy.22,25) 2

propagator for the next time step from #; to , e
involves the coherent state phase space variables z, and z},
which may take any values from the set of coherent state
values. The coherent states involved in the matrix elements
(z1(t1)|z2) and (z5|z} (1)) are not orthogonal since the coher-
ent states are overcomplete. However, in view of Eq. (18),
we see that the overlap between two coherent states decays
rapidly if their phase space coordinates differ significantly.
Consequently, we assume that

(z1(t)]z2) ~ 7N 8(z0 — z1(11)),

(25123 () = 7V8(25 — 2, (1) (35)

Under this approximation, we integrate over z> and z), and
obtain

d? d2
Buan_zf L mafz1) <) )

2
% 1—[ d’z; d* Zz( PLo(Xy 21 (0.2 (1) 5
N N
i=3

X (21Dl .. B (X)) 125 @) (36)

All coherent state and bath phase space variables have now
been updated to time #; and process can now be repeated for
all M time steps, starting with the application of the effective
bath evolution operator for the time step Af,. The result of
this process is the simple expression

d2 d2 /
wan—Z/ L ) (@ )

x (21Ol m) By (X)m [240)). (37)

The matrix elements between coherent states and the single-
excitation mapping states may be evaluated explicitly to give

(my 12) = zpe 12, (38)

Writing this expression in terms of the x = (g, p) variables,
and using the fact that Y (g2 + p?2) is conserved under co-
herent state dynamics, we obtain

By (X.)=)" / dxdx' ¢p(x)p(x")
m

1 : L, :
ﬁ(%\ +ip)(g;, — ips)By (X))

1 . .
X ﬁ(qu(t) —ipu()q, () +ip, (1), (39
where ¢(x) = 2u#h) Ve~ Y.@+r/2h is the normalized
Gaussian distribution function and we have removed the sub-

script 1 from the dummy coherent state variables. The coupled
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A ¥ !
X X, X,
t ——
4 v /"
i/ ’ / r ,1/
1 H, (X,,x,) H (X,.x})
2 - ] ¥ | A A #
H,(X,.x,) H,(X,,x))
1 _b ’ . F ' L] d 1} ~ ®
H (X;.x,) H al Xu X))
0 i . ' » J '- ¥ . & -
'
Yo Xy Xo

FIG. 1. Schematic diagram of the time evolution of the bath coordinates X
= (R, P) (the green line), the forward coherent state coordinates x = (g, p)
(the blue line), and the backward coherent state coordinates x' = (¢, p) (the
red line). The vertical axis denotes the time. At each time step i, the classical
Hamiltonians H.;(X;, x;) and H.(X;, xl.’ ) are parametrized with the updated
coordinates. The wiggly, orange lines represent the direct coupling between
the evolutions of different sets of phase space coordinates under the influ-
ence of the classical Hamiltonians. As shown, the two sets of coherent state
variables are only coupled via the bath coordinates.

equations of motion governing this evolution are

dg, _ 9Hy(R,P.q.p) dp, _ 0Hu(R,P.q,p)

dt Ap, dt 3G
dq, _9Ha(R.P.q'.p)) dp, _ dHa«(R.P.q'.p)
dr op), Codt dq;, ’
dR P dP  9H.R,P.q,p.q. D) (40)
dat M’ dt R ’

where

H.(R,P,q,p.q',p")
1 !
= E(HCZ(R’Pﬂ q, P)+Hcl(R7P7QaP/))' (41)

Equation (39) and the associated non-Hamiltonian evolution
equations (40) are the results we set out to derive.®’ They
constitute a simple algorithm for obtaining a solution to the
QCLE. Figure 1 presents a schematic picture that depicts the
dynamics of coordinates prescribed by the evolution equa-
tions (40). As noted earlier, although both forward and back-
ward trajectories are propagated forward in time, the two sets
of trajectories arise from the forward and backward quantum-
classical propagators, respectively.

Earlier, it was shown that the solution to the QCLE in the
mapping basis can be given in terms of an ensemble of entan-
gled trajectories.’”> The solution in Eq. (40) is consistent with
this interpretation in that the forward and backward trajecto-
ries of the coherent state variables are linked by the evolution
of the bath variables. A more detailed link between these two
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different approaches to the QCLE in the mapping basis is a
topic that merits further study.

C. Back to differential form

In this section, we discuss how the forward-backward
solution satisfies the differential form of the QCLE but the
approximation in Eq. (35) eventually leads to an accumu-
lation of global errors. In particular, we construct a finite-
difference expression for the time evolution of B‘*V”(X , 1) us-
ing the forward-backward solution in Eq. (39) and show that
the QCLE is obtained in the limit t — 0. We first write the
matrix element for (A| By (X, 1 + 7)|)) using Eq. (37),

By (Xt +0)= / d*z(1)d*Z ($(2)$()
n

X (D025t 4+ 1)Z, (t + 1)

x (57 By (X, 1), (42)
where ¢(z) = 7 Ve "2, We then expand to first order in

to obtain

B X+~ Y / d*z(d*Z (P2
!

X (02502 (02, OB (X, 0

* Bz’u, / 8ZZ !
+T(ZM(Z‘)W + ZM'(I)K)BW (X, t)
+ 1202, (DiL B (X, t)] + O,

(43)

The integrals over z(¢) and 7'(f) may be performed and, after
rearranging terms and taking the limit T — 0, the result is
(some details are given in Appendix D),
By (t+1)—B}r@) d
m —

li = —BX(
TLO T dt w ( )a

I A N
= (M;I[HW, By 1))

1 Ao N N
— 5 (AMH{Hw. Bw} = {Bw, Hy}|1), (44)

which is the QCLE.

The QCLE in the subsystem basis is a first order differen-
tial equation with respect to time; therefore, it only describes
how the matrix elements of By (X, t) at the beginning and the
end of a time step are related. That our solution is found to
satisfy the QCLE is consistent with the fact that all approxi-
mations used to derive the evolution in a single time step are
exact to O(t?). However, in order to connect the trajectories
of coherent state phase variables from adjacent time steps, we
made the approximation, (z;(T)|zi+1) ~ 7V8(zi+1 — z(1)).
whether the proposed solution satisfies the QCLE or not. To
understand the effects of this approximation, we consider
how our solution would be modified if the approximation
were not made. One way to re-formulate the solution is
to insert a set of single-excitation mapping states between
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every inner product of coherent states, i.e., (z;(T)|zi+1)
= Zm (zi(t)|lmy,)(my,|zi41). Once the mapping states are
inserted, one loses the continuous trajectory picture in the
coherent state phase space but one can formally integrate
out the z; and z; variables in sequential (or chronological)
order. This sequence of formal integrations is equivalent to
the evaluations of the matrix elements of By (X, 1) at every
time step. Computationally, this is a very demanding task
because one needs to sample, propagate, and integrate out
coherent state trajectories at every time step. However, this
prescription (a continuous evolution of matrix elements)
coincides exactly with the dynamics one would expect from
the QCLE in the subsystem basis.

At this point, it is obvious that the coherent-state or-
thogonality approximation replaces the continuous evolution
of the matrix elements, BCVN(X , 1), with continuous trajec-
tories, z(#) and z'(¢). Instead of taking Bé‘v“/(X, t — 1) as the
starting point to compute BCVN(X ,t) at the next time step,
the orthogonality approximation actually takes the operator
|2(t — 7)) (z(0)| B,,(X, 0)|z'(0)) (z'(t — 7)| as the starting point
and further propagates trajectories from the previous time step
to obtain |z(1))(z(0)| B, (X, 0)|2/(0))(z'(¢)|. Although the or-
thogonality approximation inevitably yields nonlocal errors,
it does provide a computationally efficient way to simulate
the dynamics. Other semi-classical approaches for solving the
system-bath dynamics indicate that this is a sensible approx-
imation to make. For instance, if we do not use the orthog-
onality approximation then we can write our solution in the
form of a standard coherent state path integral. Application
of the stationary phase approximation will yield the same set
of equations of motion for the coherent state phase variables.
Similar coherent state dynamics was obtained in the context
of a different semi-classical framework.?’

Finally, we comment on the fact that the semiclassi-
cal analysis yields exact quantum mechanical solution for
quadratic Hamiltonians. This is certainly true when the sys-
tem is isolated from the bath. The same also holds true for our
solution; if there are no bath terms then there is no need to
make the orthogonality approximation. However, when a bath
is present, the semi-classical analysis is equivalent to implic-
itly making the orthogonality approximation, which becomes
exact in the limit # — 0 in view of Eq. (18). The potential
source of errors, which arises from the system-bath interac-
tions, can easily be overlooked because it is eliminated as
soon as semi-classical conditions are imposed.

IV. DISCUSSION

The results derived above provide a simple simulation al-
gorithm for the dynamics described by the QCLE. Most often
it is the average value of an operator (or correlation function)
that is of interest. The average value of a quantum operator
Bw(X, 1) is given by

B(t) = f dX Tr (Bw(X)pw(X, 1)),

= [ax B xosf oo,

J. Chem. Phys. 137, 22A507 (2012)

1
— Z /ddedx’ ﬁ(qﬂ(t)‘i‘lpu(t))

o
vy

X (q(1) — il () By (X,)

1 !
x 57 (@ — DG + ipi) ey (XP)B(x"),
(45)

where the trace is taken in the quantum subsystem space. In
the above equation, the average value may be computed by
sampling over the coherent state variable functions ¢(x) and
¢(x') and the given initial density matrix element p%}’\(X ) for
the bath coordinates.

Our solution for B"}‘;\'(X , 1) has a number of elements in
common with other approaches that have been devised to sim-
ulate nonadiabatic dynamics and it is instructive to make com-
parisons with methods that have been constructed in a similar
Spirit.

A. Comparison with partially linearized path
integral methods

First, we draw comparisons between two mixed
quantum-classical formalisms: the QCLE and partially lin-
earized path integral methods. The formal equivalence be-
tween the two formalisms was established in a general
setting*' when the subsystem DOF were expressed as quan-
tum operators. Therefore, the close resemblance between our
solution and that of Huo and Coker? is expected, since they
are approximate solutions to the QCLE and a particular form
of the partially linearized path integral, respectively. However,
in view of the derivation of our solution presented above,
the result in Ref. 20 is not an exact solution of the QCLE.
In our formalism, H,.; defined in Eq. (21) contains V{(R)
= V,(R) — Tr,h instead of simply the bath potential V,(R).
Recall that the trace term arose from the commutation rela-
tion for the annihilation and creation operators and the need
to use an anti-normal order for the product of these opera-
tors to evaluate the short-time propagator. If this trace term
is absent, one can show that the solution does not satisfy the
differential form of the QCLE.

The system Hamiltonian, Hy(X) = Hy(X) + h(R),

A

can be written in an equivalent form Hy (X) = Hy(X)
+ (Trsh(R))/N + ﬁ(R), where ﬁ(R) is traceless. Since this
is an identity, the QCLE is independent of the choice of
the form, which is used in this equation. Our solution is
also independent of the way the Hamiltonian is written,
although the equations of motion take a somewhat different
form. If the Hamiltonian with the trace removed is used
in the derivation, the evolution equations have the same
structure as is in Eq. (40) but Hy(X, z) in Eq. (21)
is replaced by H.(X,z) = Hy(X)+h**'ziz;;  with
Ho(X) — Hy(X) + (Tr;h(R))/N (Ref. 62). When the
calculation given in Sec. III C is repeated with this form of
the Hamiltonian, the QCLE is again obtained, confirming
that the different but equivalent forms of the Hamiltonian
yield the same evolution.
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However, this is not the case when other approximate
theories are considered. In particular, it was shown’? that the
choice of Hamiltonian form is crucial in the Poisson Bracket
Mapping Equation (PBME) approximation to the QCLE (dis-
cussed below). When the traceless form is used, dynamical
instabilities that arise in the course of the evolution can be
tamed, while if the original form of the Hamiltonian is used,
the instabilities can lead to difficulties.

The form of the Hamiltonian also affects the nature
of the dynamics in the semi-classical approach used in
Ref. 20. While the evolution equations in this approach differ
from those in Eq. (40), the equivalence is restored between
the two solutions if the traceless form of the Hamiltonian is
used. The reason that the partially linearized path integral
solution depends sensitively on the form of the Hamiltonian
is due to the semi-classical approach used to solve the
dynamics. According to the semi-classical calculation, the
dynamics of the bath momenta are governed by the force,
—3(0H(X,2)/0R 4+ 0H.(X,2)/IR), where Hy(X,2)
= Hy(X) + hy(R, 7). The Hamiltonian H.(X, z) misses the
term —Tr;h(R) in H(X, 2) in Eq. (21) in the current formu-
lation. This extra term is required to restore the equivalence
between the solution using the original Hamiltonian and that
using the traceless form of the Hamiltonian.

B. Comparison with Poisson bracket
mapping equation

Next, we compare the current solution to the PBME ap-
proximation to the quantum-classical Liouville equation,’*>
which is obtained from the mapping form of the QCLE
by dropping an excess coupling term.’' In the case of an
isolated subsystem, one can perform a change of variables
7 =(z+7)/2 and Az = z — 7 and show that both the mean,
Z, and the difference, Az, variables follow exactly the same
Hamiltonian dynamics, as described in Eq. (27) with no R de-
pendence. This implies that if Z(0) = Az(0) then z = Az(t)
for all 7. Since the computation of the time evolution of an
operator in the subsystem basis requires integration over the
entire coherent state phase space, as prescribed in Eq. (39), Az
becomes a redundant variable. A direct comparison between
the two methods can be made if one either integrates out Az,
or replaces the integral of Az by the integral of Z as follows:

[ Lz

d*z
N o2 = = = = = =
=2 / e 22 0z (D — 2258w

2lazp? Az () Az

1
+ Z‘SM\"SM,M’) . (46)

The above identity can be easily proved in a basis that diag-
onalizes the Hamiltonian, followed by the transformation of
the resulting identity back to the original basis, in the same
spirit as the computation of the exact coherent state dynamics
in Appendix A.
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After properly removing Az, one can show that Eq. (39)
reduces to

! 1
By (X.0=>) / dx (zkz;,z;(r)zw(r) = DT
N
1_ —x 1 w
—EZM(I)ZMr(I)5A,A'+g5x,xf5u,u’ 4p(x)By, (X)),

-y / dxg w(OBL (X)c,r(x(),  (47)

where x = (¢ = V2h 2HNZ, p = V2K 2A37) and the functions®?
g (x) = (Im;) (m,/)w and ¢, (x) = (akax )w represent the
Wigner transformation (.)y of the outer product of states and
a pair of annihilation and creation operators, respectively.
The last expression in Eq. (47) is exactly the evolution of
Bﬁ;\/(X ,t) in the PBME method. Furthermore, the Wigner
transformation variables, x, in the PBME method follow the
same Hamiltonian dynamics derived above for the mean co-
ordinates of the coherent state variables. Despite the very dif-
ferent starting points of the two solutions, this comparison
reveals the close relation between the dynamics of Wigner
transformed coordinates and the mean coordinates in the co-
herent state phase space. Although, this close relation can
only be made obvious after the effects of difference variables
are properly taken into account of and removed (either explic-
itly integrated out, or replaced using Eq. (46)). Essentially, the
dynamical information encoded in the coherent states vari-
ables of 2N harmonic oscillators can be merged and be en-
coded in N Wigner transformed coordinates.

We next comment on the comparison to the PBME
method in the presence of a bath. One may lin-
earize the bath potential V,(X, z,7) ~ (V4(R,Z) + ‘W"Az
+Vu(R,2) — BV‘I Az)/2 = V,(R, 7) such that the dynamlcs
of the bath Varlables only depends on the mean coordinates
Z. The bath potential linearization allows one to properly re-
move the difference variables and encode the approximate
dynamics in N harmonic oscillators. Repeating the same cal-
culations and using the coherent-state orthogonality approxi-
mation, one can show that Eq. (47) still holds in the general
mixed quantum-classical setting.

C. Comparison with semi-classical schemes

Finally, we compare our results to some semi-classical
schemes. The mapping representation consolidates the way
subsystem dynamics is handled in the QCLE and in some
semi-classical schemes. For instance, in the case of a lin-
earized bath potential, the Hamiltonian dynamics prescribed
by our solution is also identical to that in the semi-classical
path integral approach of Stock and Thoss'®!” as well as the
linearized semi-classical initial value representation (LSC-
IVR) of Miller.>'>% Furthermore, the full version of the
current solution also handles the subsystem dynamics in
ways similar to the forward-backward semi-classical initial
value representation (FB-IVR) approaches'*%%% that uses
the Herman-Kluk propagator. One difference is that the
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forward and backward trajectories are not linked in the
present solution.

Finally, we observe that the classical-like system-bath
dynamics prescribed in our solution could be similar to
that of a mixed semi-classical scheme® in which the bath
DOF and subsystem DOF are treated with LSC-IVR and the
FB-IVR, respectively. Further investigations into the subtle
connections between our solution of the QCLE and other
semi-classical schemes might inspire further developments in
nonadiabatic quantum dynamics.
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APPENDIX A: EXACT EVOLUTION OF COHERENT
STATES

We restrict this analysis to real-valued, symmetric,
quadratic Hamiltonian operators, ,,, which are the only type
of Hamiltonian encountered in the mapping formalism. It is
always possible to diagonalize such a Hamiltonian matrix, to
obtain

Py
hy = E h axak/zg E Mw )\,a)\ak/

AN

(AD)

where the operators IQL and b,, are defined in the second line
of the equation. We use the superscript d to emphasize that the
Hamiltonian is now put in the diagonal form with respect to
operators Bﬂ and BL. Since the Hamiltonian is real and sym-
metric, the matrix M is an orthogonal matrix.

With respect to the new operators fm and ISL, we define
the coherent state |y) by

buly)=yuly). 1D, = (yly, (A2)

where y,, = \/#th (Gu +iPp).

Consider the time evolution of the coherent state |y) with
N degrees of freedom,

l‘ﬂ

ehmt|y>_ehm®_ {—»ZZ }’
—Inl? (yeﬁ")'"

e !

=ly(®), (A3)

ind . .
where y,(t) = y,(0)e” 7 ’. In this calculation, we used the ex-
pansion of a coherent state in terms of a complete set of har-
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monic oscillator states:

o m
- M
) =e Y =, (A4)
Equation (A3) implies the equation of motion,
dy, d i szd,
= h w(t) = ———=, A5
dt — # " = h oy (A3)

where iid, = 3", ki y*y,. If we substitute in the variables g
and p into the equation of motion for y then we get the usual
Hamilton’s equation for ¢ and p.

Next, we prove that Hamilton’s equation is invariant
under the linear transformation, y, = » M ; ;2 and ylj
= Y, Zi M. This proceeds as follows:

Ml Tk

d d j ahd
ﬁ Z M y“’ J— l M}LM cl ,
dt oy,

——ZM,W Myu—__ZM*M " M’Z’V’

WA

—= Y Mg = - (A6)

APPENDIX B: MATRIX ELEMENTS OF THE UNITARY
EVOLUTION OPERATOR IN THE SINGLE
EXCITATION SUBSPACE

In this Appendix, we evaluate matrix elements of the
form (m)\|e_%i‘m |m;/), where h,, is still the real-valued and
symmetric Hamiltonian considered in Appendix A. We evalu-
ate this matrix element in two ways: directly and also in terms
of matrix elements (1 L|e_%f‘ﬁv’ |/71;/) via a linear transforma-
tion. The state |/i,) = |0y...15...0x) is an N-harmonic-
oscillator state with a single excitation on the Ath oscillator,
hib!b,.

First, we prove that |m;) =), M],|m,). This is
straightforward since |m;) = ézi |0) and |ri2,,) = BL |0), where
|0) is the common ground state. Therefore, the two states are
related by the orthogonal matrix M, which was used to estab-
lish the linear transformation between Ezi and 5L. The evalua-
tion proceeds as follows:

(myle” " my)

- _ithd -
= <m/1/|M)L/M/€ ﬁhli{ﬂml,),
= WMAWM A(mu|e & |)’> (yl7),
dx -
= (Znh)NMAu M (mll |y(t)> ())|m/4>,
dx T * ,=Ly0P ~LIyP
B WM/\”MM’/\’yM’(t)yue ’ €,

f(z h)NZ)\(f)Z* e lF _/(2 h)NZ?»(t)Z* e ,
(B1)
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where dX = dgdp and dx = dqdp. To obtain the above
result, we used the relation z, = vTMy., =M,y to re-
express the y variables in terms of z variables and employed
the volume element transformation, dX = dx|det[dy,/dz4]]
= dx|detM| = dx, since |detM| = 1. Since the y(r) vari-
ables satisfy Hamilton’s equations, [y()|*> = |y|>. Fi-
nally, we note that |y|> = 3=, yiva = 3, , v M5, My, 252,
= ZM 2,20 = |z|?, completing the results needed to obtain
Eq. (B1).

Next, we compute e~ 7" |z) directly, where |z) is defined
by a,|z) = z,|z). To carry out this calculation, we reconsider
Eq. (B1),

L fom

(my| el

' _ dx —Lhut
Im;.) = / Qi) (myle |2) (z Imy) ,

dx if L2
—5hm —3lz
- (271—h)N(m/v|€ it |z) Zie 2l

(B2)
Comparmg the last lines of Eqs (B1)and (B2), we see that
(m,\/|e’fh""|z) = zu(t)e™ S0P — {my|z(t)). Since the iden-

tmeg hold for all possible (m;/| and |z), we can identify
e ilnl|z) = |2(1)).

APPENDIX C: EFFECTIVE LIOUVILLE OPERATOR

Below, we prove the identity in Eq. (29) that relates the
forward and backward bath propagators to the effective Liou-
ville operator:

S(eiZ(X,x)% AW(X)eiZ(X‘X/)%)

i";i (it/2)]

~ O —— = S(L A (LY TH),

_ (17/2) J Tk R ik
= ZO Z (k) SUALF Aw (LY ™),

k=0
2 ~>(P )~>(P) =)
Z (lT/ ) Z Z 1 2 N E’ AW’
Jj=0 : {p}
ity (1 - =\ .

_y¢ ,) (5(5 + L’)) Aw(X),

=0 7
— ei,C,,(X,x,x’)‘EAAW. (C])

In these expressions, we used the shorthand notations,

Z :Z (X,x)and L' = Z (X, x"), and the definition of S in
going from the third to fourth lines. The sum on {p} denotes
a sum over all permutations.

APPENDIX D: DIFFERENTIAL FORM

The term zeroth order in 7 in Eq. (43) is easily computed
by performing the integrals over z(f) and 7/(¢) and the result
is simply By ,(X , 1). The first term of order 7, which we call
I;, involves time derivatives coherent state variables. Using
the equations of motion for the coherent state variables and
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performing the integrals, we find

1= 2 (1 Bu (X, 01[).

= ;— (O TAw, By (X, 01]3), D1)

which is the first term in the QCL operator in Eq. (2).

Next, we consider the first-order term involving the evo-
lution of the spatial coordinates of the bath as given by
the effective Liouville operator. Inserting its definition in

Eq. (30), iL(X, z, Z)——'%—W-%,theevalu-

"
By P i i
a &+ 37 1s straightforward since

it does not contain the coherent state variables. Performing
the integrals over these variables yields I, = 3% %. The
remaining terms require more attention since they involve the
force acting on the bath variables, which depends on the effec-
tive potential where V,(X, z, 2') = (Vu(R, z) + Va(R, 2))/2.

Denoting this contribution /3, we have

L=-)" / d*2(1d*Z (P()p(2)

B”“ dH,(R,z,7)
JOR

x (D)2 1)z, (1)z), (f)

_Z / d*z()d*z () (2)¢(2))

wt’
X ()23 ()2, ()2, (1) aP
y AVo(R) 10Vy(R,z)  103Vu(R, 7))
aR 2 9R 2 9R
IBX dVo(R
_ _ 9By IVl )+131+132. (D2)

oP OR

The I3, integral may be evaluated as follows:
1 !’ ’
=3 [ 0z wpene)

DBy 3Va(R.2)
VT

- Z / d*z(OP(2) 2,1, (1),

,u,oza

x 2.(D25 )z}, (D2, () ———

IBIY 9V (R, z) i}
. 2 (D25 (¢
Y o «Wz®
B’“\ IV (R, 7)
= d*z(t T
Em / 09)" =

X 1220?20 (t)1*80a 815 (1 — 84)
H 12O P12, (8038 (1 — Saer)
+ 122001 * S 82 8,02 )-
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Performing the z integrals, we find

Lo L ZBVC’”‘ 9By ZBVCX" IBLY
T & R 0P dR 9P

2aw%33$’
R P

_ Ly V. 0By  9Tr,V. 9By

2 oR dP oR 0P |)

aTr,h 8 By
aR P

1 ah 3B
== 0|55 p
2 dR P

). (D3)

In writing the last line of this equation, we used the fact that
the subsystem Hamiltonian is independent of R so V. can be
replaced by /.

Similarly, the I3, integral can be evaluated to give,

1 By oh
Iy = —= | e —

dBy 0Trh
2 aP OR

dP OR . (D)

A~ v
Recall that VO(R)ZV};(R)—TI'JI so that ag;}’)‘/%
_ BY avy(R) _ 0BY oTrh
— 3P R 9P AR
integral is

. Given these results, the entire I3

1 Ao N N
13=-—§HXHHW,BW}—{BW,HWHKW% (D5)

where the Tryi terms arising from the Vy, I3, and I,
canceled.
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