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The quantum-classical Liouville equation provides a description of the dynamics of a quantum
subsystem coupled to a classical environment. Representing this equation in the mapping basis leads
to a continuous description of discrete quantum states of the subsystem and may provide an alternate
route to the construction of simulation schemes. In the mapping basis the quantum-classical
Liouville equation consists of a Poisson bracket contribution and a more complex term. By
transforming the evolution equation, term-by-term, back to the subsystem basis, the complex term
�excess coupling term� is identified as being due to a fraction of the back reaction of the quantum
subsystem on its environment. A simple approximation to quantum-classical Liouville dynamics in
the mapping basis is obtained by retaining only the Poisson bracket contribution. This approximate
mapping form of the quantum-classical Liouville equation can be simulated easily by Newtonian
trajectories. We provide an analysis of the effects of neglecting the presence of the excess coupling
term on the expectation values of various types of observables. Calculations are carried out on
nonadiabatic population and quantum coherence dynamics for curve crossing models. For these
observables, the effects of the excess coupling term enter indirectly in the computation and good
estimates are obtained with the simplified propagation. © 2010 American Institute of Physics.
�doi:10.1063/1.3480018�

I. INTRODUCTION

The construction of algorithms for simulating the quan-
tum dynamics of an arbitrary many-body system is a long
standing problem. Since the computational cost of a quantum
simulation scales exponentially with the system size, a full
quantum calculation is impractical except for small systems.
This fact has prompted the construction of a variety of ap-
proximate methods for the simulation of quantum dynamics.
One class of approximate schemes singles out a portion of
the system for a full quantum treatment while its
environment—the rest of the system—is treated classically.
A number of such mixed quantum-classical schemes have
been proposed and references to this literature can be found
in reviews on this topic.1–5

We focus on one scheme of this type based on the
quantum-classical Liouville equation �QCLE�,

�

�t
�̂W�X,t� = −

i

�
�ĤW, �̂W�t��

+
1

2
��ĤW, �̂W�t�� − ��̂W�t�,ĤW�� , �1�

where �· , ·� is the commutator and �· , ·� is the
Poisson bracket. Here X= �X1 ,X2 , . . . ,XNe

�= �R , P�
= �R1 ,R2 , . . . ,RNe

, P1 , P2 , . . . , PNe
� are the positions and mo-

menta of the 2Ne environmental degrees of freedom and the
index W stands for a partial Wigner transform6,7 over the

environmental degrees of freedom, so that the density matrix

�̂W�X� and Hamiltonian ĤW�X� are operators in the Hilbert
space of the subsystem while functions of the phase space
variables for the bath degrees of freedom. �The dependence
on the phase space coordinates will be omitted when confu-
sion is unlikely to arise.� The nature of QCL dynamics and
the statistical mechanics of systems following this dynamics
have been described.8 For a review with references to the
literature on this topic, see Ref. 5.

While the QCLE has a number of attractive features and
has been shown to provide an accurate description of the
dynamics in many instances,9–21 it is difficult to solve. A
direct numerical integration of Eq. �1� requires very fine spa-
tial grids and can be used for the study of small systems.11

The QCLE can be cast in any basis which spans the Hilbert
space of the quantum subsystem.22 When written in the
quantum subsystem basis, the QCLE can be solved using a
trajectory-based algorithm where trajectories are not inde-
pendent of one another.9,10 Representation of QCLE in the
adiabatic basis gives a more intuitive picture in terms of
classical trajectories moving on single or mean Born–
Oppenheimer surfaces.23–25 Also, diagonalizing the
Hellman–Feynman force derived from the Born–
Oppenheimer potential leads to the force basis which yields
yet a different route to simulation of the QCLE.26,27

Another representation of QCL dynamics is in terms of
the mapping basis.28,29 This basis, which provides a descrip-
tion of a discrete quantum system in continuous variables,
has been used in a number of different applications to quan-
tum dynamical problems.30–41 When the QCLE is expressed
in this basis one obtains an evolution equation where the
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evolution operator consists of a Poisson bracket contribution
which can be solved by characteristics, and a more complex
term that involves specific correlations of the quantum sub-
system and classical environment. Thus far, simulations of
the QCLE in the mapping basis have neglected this more
complex contribution. In this paper we provide an analysis of
the mapping form of the QCLE that elucidates the nature of
this neglected term. By transforming the QCLE in the map-
ping basis back to the subsystem basis, where an interpreta-
tion of the physical meaning of the different terms is easier,
we show that the neglected term �called the excess coupling
term� accounts for a fraction of back reaction of the quantum
subsystem on its environment. We also describe how the
contribution of the excess coupling term to the average val-
ues of certain observables can be estimated numerically.

The outline of the paper is as follows. In Sec. II we
summarize the equations to be analyzed and introduce some
key definitions, while in Sec. III we perform the term-by-
term analysis of the mapping equation based on the back
transformation to the subsystem basis. Section IV presents an
analysis of the approximate form of the mapping QCLE that
includes only the Poisson bracket term, called the Poisson
bracket mapping equation �PBME�. This section also de-
scribes how neglecting the excess coupling term affects the
average values of different types of observables. In Sec. V,
the performance of the PBME is tested on two often-studied
curve crossing models, and the effects of the excess coupling
term in the evolution operator are discussed. Section VI con-
tains the conclusions of our investigation.

II. SUBSYSTEM AND MAPPING BASIS
REPRESENTATIONS

For a system with partially Wigner transformed Hamil-

tonian ĤW= P2 /2M + p̂2 /2m+ V̂s�r̂�+Ve�R�+ V̂c�R , r̂�, where

Ve, V̂s, and V̂c are, respectively, the environment, subsystem,
and coupling potentials, R and P are again the
Ne-dimensional coordinates and momenta of particles of the
environment with mass M, and r̂= �r̂1 , r̂2 , . . . , r̂Ns

� and p̂
= �p̂1 , p̂2 , . . . , p̂Ns

� are the Ns coordinate and momentum op-
erators of the particles of the quantum subsystem with mass
m, the QCLE in the subsystem basis takes the form23
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·
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·
�Vc
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= − iL̃���,����W
����X,t� . �2�

Here and in the following we use the Einstein summation
convention where repeated indices are summed. The sub-

system basis is defined by the eigenvalue problem, ĥs
��
=��
��, where ĥs= p̂2 /2m+ V̂s. In Eq. �2�, �̃���= ���−���� /�

and Vc
���= ��
V̂c
���. The last line in Eq. �2� defines L̃���,���,

the QCL operator in the subsystem basis.

Starting from this subsystem representation of the
QCLE, we may transform it to the mapping basis in the
following way. Suppose that there are N subsystem quantum
states 
��, �=1, . . . ,N. These subsystem states may be
mapped onto harmonic oscillator states via the transforma-
tion, 
��→ 
m��= 
01 , . . . ,1� , . . . ,0N�, where

�q
m�� = �q1,q2, . . . ,qN
01, . . . ,1�, . . . ,0N�

= 	0�q1� ¯ 	0�q�−1�	1�q�� ¯ 	0�qN� , �3�

with 	0 and 	1, respectively, being the ground and the first
excited state wave functions of a harmonic oscillator. The
creation and annihilation operators on the mapping states,
â�= �q̂�+ ip̂�� /2� and â�

† = �q̂�− ip̂�� /2�, are used to define
a mapping of operators as42

Â = A���
�����
 → Âm = A���â�
†â��. �4�

For example, the partially Wigner transformed mapping form
of the system Hamiltonian is

Ĥm =
P2

2M
+ Ve�R� +

1

2�
h����R��q̂�q̂�� + p̂�p̂�� − �
����

�
P2

2M
+ Ve�R� + ĥm�R� . �5�

Here we used the expression for the creation and annihilation
operators in terms of the coordinates and momenta of the
harmonic oscillators, together with the appropriate commu-

tation relationship. Also, h����R�= ��
ĥ
��� with ĥ= ĥs

+ V̂c�R , r̂� so that, more explicitly,

h����R� = ��
��� + Vc
����R� . �6�

In writing Eq. �5�, we assumed that h���=h���. Following
this prescription, after a further Wigner transformation6 over
the mapping variables,

�m�X,x� =
1

�2���N� dzeip·z/��r −
z

2
��̂m�X��r +

z

2
� , �7�

where x= �x1 ,x2 , . . . ,xN�= �r , p�= �r1 ,r2 , . . . ,rN , p1 , p2 , . . . ,
pN�, the QCLE takes the form28,29

�

�t
�m�X,x,t� = −

h���

�
�p��

�

�r�

− r��
�

�p�
	�m�t�

+ � �Hm

�R
·

�

�P
−

P

M
·

�

�R
	�m�t�

−
�

8
� �h���

�R � �2

�r� � r��
+

�2

�p� � p��
	 ·

��m�t�
�P

� .

�8�

Note that the Wigner transform variables r, p, and z have the
same dimension as the number of quantum states, N. The

Wigner transform of Ĥm over mapping variables is
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Hm�X,r,p� =� dzeip·z/��r −
z

2
�Ĥm�r +

z

2
�

=
P2

2M
+ Ve�R� +

1

2�
h����R��r�r�� + p�p�� − �
����

�
P2

2M
+ Ve�R� + hm�R� . �9�

We can also write the mapping form of the QCLE as

�

�t
�m�X,x,t� = �Hm,�m�t��X,x

−
�

8
� �h���

�R � �2

�r� � r��
+

�2

�p� � p��
	 ·

��m�t�
�P

� .

�10�

In Eq. �10�, �Hm ,�m�X,x denotes a Poisson bracket with re-
spect to both the bath X and mapping x variables. Neglecting
the last term of the dynamics in Eq. �10� yields a Hamil-
tonian system of equations which can be easily solved using
Newtonian trajectories. The last term has a complex form
involving both bath and mapping differential operators
which make its interpretation difficult and precludes the
implementation of simple algorithms for the simulation of
the full mapping form of the QCLE.

III. TRANSFORMING MAPPING DYNAMICS BACK TO
THE SUBSYSTEM BASIS

In order to understand the nature of the last term in the
mapping QCLE, we shall transform each term in this equa-
tion back to the quantum subsystem basis. Naturally, com-
bining all the back-transformed terms, the original subsystem
basis equation �Eq. �2�� is recovered; however, the term-by-
term transformation highlights how each contribution in the
mapping representation of the QCL operator is associated
with a specific contribution in the subsystem basis form of
the operator. This procedure leads to a simple physical inter-
pretation of the last term in Eq. �10�.

We begin by recalling the expression for the Wigner
transformed density matrix in the mapping basis. Using the
definition of a mapping operator in Eq. �4� and the expres-
sion for the Wigner transform of the density operator in Eq.
�7�, one has

�m�X,x� =
1

�2���N� dzeip·z/��r −
z

2
��̂m�X��r +

z

2
�

=
1

�2���N� dzeip·z/��W
����X��r −

z

2
�â�

†â���r +
z

2
�

= �W
����X�c����x� , �11�

where

c����x� =
1

2��2���N

��r�r�� + i�r�p�� − r��p�� + p�p�� − �
���� .

�12�

Details of the calculation of c����x� are given in the Appen-
dix.

Next, given �m�X ,x� we consider how to recover the

expression for �W
����X�. The mapping relationship in Eq. �4�

ensures that the matrix elements of an operator are the same
in the subsystem and mapping bases, thus

�W
����X� � ��
�̂W
��� = �m�
�̂m
m��� . �13�

Inserting resolutions of the identity in the coordinate repre-
sentation, the last term in the equality above can be written
as

�m�
�̂m
m��� =� dydy��m�
y��y
�̂m
y���y�
m���

=� drdz�m��r −
z

2
���r − 


z

2
��̂m�r +

z

2
�

��r + � z

2
�m��� . �14�

Mean r= �y+y�� /2 and difference z=y�−y coordinates were
introduced in the last line to pave the way for the introduc-
tion of the Wigner transform of the density operator in the
mapping coordinates. The off-diagonal element of the opera-
tor in the equation above can in fact be expressed as
�r−z /2
�̂m
r+z /2�=�dpe−ip·z/��m�X ,x� �the inverse trans-
form of the expression in Eq. �7��. Combining this expres-
sion with the identity in Eq. �13�, we get

�W
����X� =� drdzdpe−ip·z/��m�X,x�

��m��r −
z

2
���r + � z

2
�m��� . �15�

In the Appendix we show that the integral over z in the
equation above can be performed analytically to obtain

�W
����X� =� dx�m�X,x�g����x� , �16�

where

g����x� =
2N+1

�
e−x2/�

��r�r�� − i�r�p�� − r��p�� + p�p�� −
�

2

���� .

�17�

�In the notation of this paper x2=x ·x=r2+ p2=���r�
2 + p�

2�.
For clarity, in some places we shall use the more expanded
forms of this condensed notation.� Relationships analogous
to those in Eqs. �11� and �16� hold for the representation of
any operator in the two bases, except for the fact that the
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multiplicative prefactors in Eqs. �12� and �17� are inter-
changed.

These results can be used to establish the relationship
between the mapping and the subsystem bases. To set the
stage for our analysis, we multiply each term of Eq. �10� by
g����x� and integrate over the mapping coordinates to obtain

�

�t
�W

����X,t�

=� dxg����x��Hm,�m�t��X,x −
�

8
� dxg����x�

�� �h���

�R � �2

�r� � r��
+

�2

�p� � p��
	 ·

�

�P
��m�t� .

�18�

In the expression above, the integrand contains �m�X ,x , t�.
We can use Eq. �11� to express this quantity in terms of the

density matrix in the subsystem basis �W
����t� to get

�

�t
�W

����X,t�

=� dxg����x��Hm,�W
����t�c����x��X,x −

�

8
� dxg����x�

� � �h���

�R � �2

�r� � r��
+

�2

�p� � p��
	 ·

�

�P
��W

����t�c����x� .

�19�

In order to proceed with our analysis, we consider separately
the Poisson bracket and second complex terms on the right
hand side.

A. Transformation of the Poisson bracket term

The first contribution in the Poisson bracket
�Hm ,�m�t��X,x, arising from derivatives with respect to the
mapping variables, is −h��� /��p���� /�r��−r���� /�p����m

�see Eq. �8��. Its back transformation is given by

PB1 =� drdpg����−
h���

�
	�p��

�

�r�

− r��
�

�p�
	�W

���c���.

�20�

Direct substitution of the expressions for g��� and f��� re-
sults in a sum of integrals that can be evaluated analytically
�they are all in the form of a polynomial times a Gaussian
function� to obtain

PB1 = − i�̃����W
��� +

i

�
��W

���Vc
��� − Vc

����W
���� �21�

after substitution of h��� from Eq. �6�. This contribution rep-
resents the evolution of the quantum subsystem and includes
the influence of the environmental degrees of freedom

through the coupling potential V̂c.
Next, we consider the back transformation of the second

contribution in Eq. �8� coming from derivatives with respect

to environmental coordinates ��Hm /�R ·� /�P
− P /M ·� /�R��m�t�. Given the form of Hm in Eq. �9�, one can
write this contribution as

�Hm

�R
·
��m

�P
−

P

M
·
��m

�R
=

�Ve

�R
·
��m

�P
−

P

M
·
��m

�R

+
�hm

�R
·
��m

�P
. �22�

Because �Ve /�R=−Fe�R� and P /M are independent of the
mapping variables, the back transformation of the first two
terms in Eq. �22� is simple,

PB2 =� drdpg���� �Ve

�R
·

�

�P
−

P

M
·

�

�R
	�W

���c���

= − �Fe ·
�

�P
+

P

M
·

�

�R
	�W

���. �23�

The last term in Eq. �22�, arising from �hm /�R, gives

PB3 =� drdpg���
1

2�
�r�r�� + p�p�� − �
����

�
�h���

�R
·
��W

���

�P
c����x� . �24�

This integral too can be performed after substitution of the
g��� and c��� functions to get

PB3 =
1

2
� �Vc

���

�R
·
��W

����

�P
+

��W
���

�P
·
�Vc

����

�R
	

+
1

4
Tr�� �V̂c

�R
·
� �̂W

�P
	
���, �25�

where Tr� indicates a trace over the quantum subsystem
states.

Combining the results above, we obtain

� dxg����x��Hm,�m�t��X,x

= − iL̃���,����W
����t� +

1

4
Tr�� �V̂c

�R
·
� �̂W

�P
	
���. �26�

Thus, we find that the back transformation of the Poisson
bracket term yields the QCL operator in the subsystem basis
defined in Eq. �2�, plus an extra contribution

1 /4Tr���V̂c /�R ·��̂W /�P�
���. It is this term that is respon-
sible for any errors in the approximate simulations of the
QCLE that include only the Poisson bracket term.

An understanding of the physical meaning of this extra
contribution can be obtained from the following consider-
ations. First, we observe that the trace of the partially Wigner
transformed density matrix over the quantum subsystem
states is just the phase space density of the environment,
�b�X , t�=Tr� �̂W�X , t�. Taking the trace of Eq. �2� yields
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�

�t
�b�X,t� = − �Fe�R� ·

�

�P
+

P

M
·

�

�R
	�b�t�

+ Tr�� �V̂c

�R
·
� �̂W�t�

�P
	 , �27�

or, equivalently,

Tr�� �V̂c

�R
·
� �̂W�t�

�P
	 = � �

�t
+ Fe�R� ·

�

�P
+

P

M
·

�

�R
	�b�t�

� � �

�t
+ iLe	�b�t� , �28�

where iLe is the classical Liouville operator for the environ-
ment in isolation from the quantum subsystem. Conse-
quently, the trace term in Eq. �28� can be interpreted as the
time variation of the phase space density of the environment
along the flow lines generated by the classical evolution of
the environment in isolation from the quantum subsystem. In
a system where there is no coupling between the environ-
ment and the quantum subsystem, this term is zero by Liou-
ville’s theorem. As a result, a nonzero value of the trace
contribution can be interpreted as an effect arising from the
back reaction of the quantum subsystem on its environment.

B. Excess coupling term

To complete the back transformation of the mapping
QCLE to the subsystem basis, we must back transform the
complex last term in Eq. �10�,

−
�

8
� drdpg���� �h���

�R � �2

�r� � r��
+

�2

�p� � p��
	 ·

�

�P
�

��W
���c���

= −
1

8
� �h���

�R
·
��W

���

�P
+

�h���

�R
·
��W

���

�P
	
���

= −
1

4
Tr�� �V̂c

�R
·
� �̂W

�P
	
���. �29�

Since this result is again proportional to

Tr���V̂c /�R ·��̂W�t� /�P�, we call this contribution an excess
coupling term.

Inserting these results into Eq. �19�, the QCLE in the
subsystem basis �Eq. �2�� is obtained as expected. However,
from this derivation, we learn that the excess coupling term
is equal and opposite in sign to the last term in Eq. �26�. As
a result, this contribution exactly cancels the analogous term
in the back-transformed Poisson bracket expression to yield
the desired result.

IV. APPROXIMATE MAPPING QCLE

The results of Sec. III can be used to assess the utility of
the approximate mapping QCLE where only the Poisson
bracket contribution is retained in the Liouville operator.
This PBME is

�

�t
�m�t� � �Hm,�m�t��X,x

= −
h���

�
�p��

�

�r�

− r��
�

�p�
	�m�t� +

�Hm

�R
·
��m�t�

�P

−
P

M
·
��m�t�

�R
. �30�

It can be solved by characteristics28 and the resulting set of
ordinary differential equations is43

dr��t�
dt

=
1

�
h����R�t��p���t� ,

dp��t�
dt

= −
1

�
h����R�t��r���t� , �31�

dR�t�
dt

=
P�t�
M

,
dP�t�

dt
= −

�Hm

�R�t�
.

Consequently, the simulation of the dynamics described by
Eq. �30� is an easy task.44,45

From the results in Sec. III it follows that Eq. �30� is
equivalent to the following equation in the subsystem basis:

�

�t
�W

����X,t� � − iL̃���,����W
����t�

+
1

4
Tr�� �V̂c

�R
·
� �̂W�t�

�P
	
���. �32�

Because of the presence of the second term on the right side,
this form of the equation shows that the back reaction of the
quantum subsystem on the dynamics of the environmental
degrees of freedom is incorrectly described and the solution
by characteristics is only an approximation to full QCL dy-
namics. Two features should be kept in mind when consid-
ering the error incurred in the use of the PBME. First, the
effects of the environment on the quantum subsystem are
fully accounted for in the Poisson bracket, and the effects of
the quantum subsystem on the environment are also included
in this term through the first term in PB3 in Eq. �25�. Second,
note the factor of 1/4 in Eq. �32�: the error involves only a
portion of the back reaction of the quantum subsystem on the
evolution of the environmental density. To the extent that the
effects of the excess coupling term are small, simulations
employing the PBME for the evolution will provide an ac-
curate description of the dynamics.

The equivalence of Eqs. �32� and �30� suggests a means
to gauge the importance of the excess coupling term. Rather
than focusing on the excess coupling term itself, it is more
convenient to consider its effect on the estimates of expecta-
tion values of observables. The expectation value of an arbi-

trary operator B̂W�X� can be written as28
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B�t� =� dXBW
����X��W

����X,t�

=� dXBW
����X,t��W

����X�

=� dXdxBm�x,X,t��̃m�x,X� . �33�

In the first line of Eq. �33� the expectation value is computed
in the subsystem basis, in the second line the time evolution
is moved from the density matrix to the operator, while the
last line gives the expectation value computed in the map-
ping basis. The quantities entering in the mapping form of
the expectation value are the time dependent observable,

Bm�X,x,t� = �2��−1BW
����X�t���r��t�r���t� + p��t�p���t�

+ i�r��t�p���t� − p��t�r���t�� − �
���� , �34�

and the initial density �̃m�X ,x�=�dx�f�x ,x���m�X ,x�� with

f�x,x�� =
1

�2���N � dzdz��m��r −
z

2
��

��r + � z

2
�m����m���r� −

z�

2
��

��r� + � z�

2
�m��e−i�p·z+p�·z��/�

=
1

�2���N �
���

g����x�g����x�� . �35�

Using this expression for f�x ,x�� and Eq. �11�, which ex-

presses �m�X ,x� in terms of �W
����X�, we may write �̃m�X ,x�

as

�̃m�X,x� =
1

�2���N �
���

g����x��W
����X� . �36�

One may verify that �̃m�X ,x� is the Wigner transform of the

initial mapping density operator �̂m�X�=�W
����X�
m���m��
.

These formulas allow one to use either the mapping or
subsystem bases to compute the expectation values of any
observable. As pointed out by Stock and Thoss,35 in the map-
ping formalism the quantum dynamics is restricted to the
space spanned by the mapping oscillator states; however,
classical approximations can lead to dynamics that lies out-
side this space and may give rise to the zero-point energy
problem where energy can flow among the modes without
restriction. While the general resolution of this issue is an
open problem, we note that expectation values using Eq. �33�
with Wigner sampling as indicated will yield exact results for
time dependent observables in the absence of an environ-
ment and the zero-point energy problem does not play a role.

While Eq. �33�, along with Eqs. �34� and �31�, provides
a simple means to compute the expectation value of an op-
erator using the PBME, it is convenient to consider the com-

putation of the general operator B̂W�X� using the PBME writ-
ten in the subsystem basis in order to gain further insight into

the effects of the excess coupling term on such average val-
ues. Taking the time derivative of Eq. �33� and using Eq. �32�
we find

dB�t�
dt

� − i� dXBW
����X�L̃���,����W

����t�

+
1

4
� dXBW

����X�Tr�� �V̂c

�R
·
� �̂W�t�

�P
	
���,

=− i� dXBW
����X�L̃���,����W

����t�

−
1

4
� dX

�BW
����X�
�P

·
�Vc

���

�R
�W

����t�
���, �37�

where, as usual, the Einstein summation convention is used.
In the last line of this equation an integration by parts with
respect to P was performed so that the momentum derivative
of the density matrix no longer appears. The effect of the
excess coupling term on the evolution of the expectation

value of B̂W�X� can be estimated by computing the average
values on the right side of this equation and determining
their relative magnitudes.

If the initial value of the operator B̂W�X� is a function
only of the configuration space coordinates, or independent
of environmental phase space coordinates, then the last ex-
cess coupling term in Eq. �37� will vanish because the mo-
mentum derivative is zero, and for this case we have

dB�t�
dt

= − i� dXBW
����X�L̃���,����W

����t� . �38�

For such observables the excess coupling term will enter the
computation of the average value indirectly through the den-
sity matrix on the right side. This can be seen by writing the
formal solution of Eq. �32� as

�W
����t� = �e−iL̃t����,��W

��0�

+ �
0

t

dt��e−iL̃�t−t������,�
1

4

�Vc
���

�R
·
��W

����t�
�P


�,

�39�

and inserting the result on the right of Eq. �38�. The evalua-
tion of this higher order correction is difficult because of the
convolution in the above equation. In particular these con-
siderations apply to the computation of important observ-
ables such as the quantum subsystem populations and quan-
tum coherence, since the initial values of these observables
are independent of the phase space coordinates.

If instead the observable is a function G�P� only of the
environmental momenta, then the excess coupling term en-
ters the computation of the time rate of change of its expec-
tation value directly. Consider the expectation value of

GW
����X�=G�P�
���,
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G�t� = �
�
� dXG�P��W

���X,t� . �40�

If we compute the time derivative of this quantity using Eq.
�37� we obtain

dG�t�
dt

=� dX
�G�P�

�P
· F����W

����X,t�

+
N

4
� dX

�G�P�
�P

· Fc
����W

����X,t� , �41�

where F���=−��Ve�R�+Vc
����R�� /�R is the total force on the

environment and Fc
���=−�Vc

����R� /�R is the force contribu-
tion arising from the quantum subsystem-environment cou-
pling. The first contribution on the right side of Eq. �41� is
obtained from the explicit computation of

−i�dXG�P�
���L̃���,����W
����t�, while the second contribu-

tion comes from the evaluation of

1 /4�dXG�P�
��� Tr���V̂c /�R ·��̂W�t� /�P�
���. These formu-
las provide an indication of how the time evolution of the
environmental momenta is influenced by the excess coupling
term. In particular, if the coupling is weak or if the environ-
ment is large and only a portion of the environment is di-
rectly coupled to the quantum subsystem, the total force on
the environment will dominate the coupling force and this
effect will be small.

V. CURVE CROSSING MODELS

In this section we consider the simulation of quantum-
classical Liouville dynamics in the mapping basis for two
curve crossing models studied earlier by Tully.46 In particular
we carry out simulations using the PBME and compare the
results with numerically exact quantum dynamics using a
discrete Fourier transformation method47 for these systems.
Previous studies of the spin-boson model showed that the
PBME yields results which are in excellent agreement with
the numerically exact quantum simulations for the entire
range of system parameters that were studied.28 In the spin-
boson model, the coupling between the environment and the
quantum subsystem is linear in the environmental coordi-
nates and is nonzero for all values of this quantity. The curve
crossing models studied here provide a further test of the
PBME for a situation where the coupling among the different
degrees of freedom is nonlinear in the environmental coordi-
nates and is localized in the configuration space of the envi-
ronment.

A. Simple avoided crossing

The simple two-state avoided crossing is defined by the
following Hamiltonian matrix in the diabatic basis:46

h =�A�1 − e−B
R
�
R


R
 Ce−DR2

Ce−DR2
− A�1 − e−B
R
�

R


R

� . �42�

The corresponding total Hamiltonian in the mapping basis is

Hm =
P2

2M
+

1

2�
A�1 − e−B
R
�

R


R

�r1

2 + p1
2 − r2

2 − p2
2�

+
C

�
e−DR2

�r1r2 + p1p2� . �43�

The diagonal elements of the Hamiltonian in the diabatic
basis and the adiabatic energies for this model are sketched
in Fig. 1. Our simulations are carried out using atomic units
�a.u.� and the parameters in these units are taken to be
A=0.01, B=1.6, C=0.005, and D=1.0.

We assume that the initial density matrix is uncorrelated
and can be factored into a product of subsystem and envi-
ronmental contributions, i.e., �̃m�X ,x�= �̃s�x��e�X�, where
�̃s�x� is the subsystem density matrix in the mapping basis
and �e�X� is the distribution function for the environment.
The density �e�X� is chosen to be the Wigner transform of a
Gaussian wave packet centered at R0 with momentum P0,

�e�X� =
�

��
e−�P − P0�2�2/�2 1

��
e−�R − R0�2/�2

. �44�

The mass M of the environmental degree of freedom is taken
to be 2000 atomic mass units, while R0=−3.8 a.u. and
�=1.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

ρ s
α

α

P0

-0.01

-0.005

0

0.005

0.01

-3 -2 -1 0 1 2 3

E

R

FIG. 1. �Top� Diagonal elements of the Hamiltonian in the diabatic basis
�dashed lines� and adiabatic �solid lines� energies for the simple avoided
crossing model. �Bottom� Asymptotic populations of state 1 �solid squares
with error bars� and state 2 �solid circles with error bars� as a function of the
initial momentum of the wave packet P0 for the simple avoided crossing.
The corresponding numerically exact quantum results are indicated by open
squares for state 1 and open circles for state 2. The exact results are con-
nected with lines as a guide for the eye.
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We assume the subsystem is initially in state 1, so that in
the mapping basis,

�̃s�x� =
2

�2�3�r1
2 + p1

2 −
�

2
	e−x2/�. �45�

We consider the time evolution of the subsystem popula-
tions, �s

���t�, �=1,2, and coherence as measured by the off-
diagonal element of the subsystem density matrix, �s

12�t�.
These quantities are conveniently computed using the formu-
las in Eq. �33� for a general operator by selecting

BW
���=
��
��� and BW

���=
�1
��2, respectively. The
asymptotic values of the populations in states 1 and 2 after
the system has passed through the interaction region are
shown in Fig. 1 as a function of the initial momentum of the
wave packet. We see that the PBME and exact quantum re-
sults are in excellent agreement for values of P0 above 10.
Under this threshold, nuclear quantum effects play an impor-
tant role so the most likely cause for the discrepancies in the
figure is the breakdown of the classical dynamics approxi-
mation for the nuclei �note that usually, mixed quantum-
classical nonadiabatic tests do not explore the range below
this value of the momentum for this model�.

The time evolution of the real and imaginary parts of
�s

12�t� is displayed in Fig. 2. These results for the quantum

coherence are also in good agreement with the numerically
exact full quantum simulations. The comparisons shown in
these figures test two effects at the same time: the validity of
the QCLE and its approximation by the PBME. Recall that
from the considerations in Sec. IV the effects of the excess
coupling term enter the populations and quantum coherence
only as higher order contributions.

For the simple avoided crossing �and the dual avoided

crossing considered below�, Ve�R�=0 so that F���=Fc
��� and

the two integrals on the right of Eq. �41� are equal, and the
two contributions differ only in their prefactors. For this two-
level model N=2 and the PBME prediction for the time rate
of change of G�t� is 3/2 that of QCL dynamics. This is a
severe test of the approximation since Ve�R�=0 for this
model. Thus, there is a substantial influence on the environ-
mental momenta but, as noted above, these enter only in
higher order corrections to the quantum subsystem popula-
tions and coherences, contributing to the good agreement
with the exact results seen in the figures.

B. Dual avoided crossing

The dual avoided crossing model provides a further test
of the theory. The Hamiltonian matrix in the diabatic basis
takes the form46

h = � 0 Ce−DR2

Ce−DR2
− Ae−BR2

+ E0

	 , �46�

resulting in the mapping Hamiltonian,

Hm =
P2

2M
+

1

2�
�− Ae−BR2

+ E0��r2
2 + p2

2 − ��

+
C

�
e−DR2

�r1r2 + p1p2� . �47�

The system parameters were taken to be A=0.10, B=0.28,
C=0.015, E0=0.05, and D=0.06, again in a.u. The initial
conditions have the same form as for the simple avoided
crossing, with R0=−10. The diagonal matrix elements in the
diabatic representation and the adiabatic energies for this
model are plotted in Fig. 3 �top� and the populations as func-
tion of P0 in the bottom panel of this figure. One can see that
the agreement with exact quantum dynamics is very good
over the entire range of P0, although there are small discrep-
ancies in the magnitudes of maxima and minima in the popu-
lation curves.

The time evolution of the real and imaginary parts of
�s

12�t� for the dual avoided crossing model is shown in Fig. 4.
The results for the quantum coherence are again in good
agreement with the numerically exact full quantum simula-
tions for this model.
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FIG. 2. The real �thick lines� and imaginary �thin lines� parts of �s
12�t� vs

time for the simple avoided crossing model. The dashed lines denote the full
quantum results while the solid lines are the results of computations using
the PBME. �Top� P0=50, �bottom� P0=10.
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VI. CONCLUSION

By transforming the mapping form of the QCLE term-
by-term back to the subsystem basis we were able to identify
the nature of the complex term in this equation that makes its
simulation difficult. This observation then led to an analysis
of the PBME, the approximate form of the mapping QCLE
that retains only the Poisson bracket term in the Liouville
operator. The PBME is easily simulated by classical trajec-
tories. However, when compared to the full QCLE, it con-
tains an extra term that can be interpreted as being propor-
tional to the effect of the quantum subsystem on the time
evolution of the probability density function of the environ-
ment along the flow lines generated by the classical evolu-
tion of the environment in isolation from the quantum sub-
system. The excess coupling term in the full mapping QCLE
cancels this contribution to yield the original QCLE.

Earlier simulations28,35,36 on spin-boson model with bi-
linear coupling to the bath, along with the present simula-
tions on two curve crossing models with nonlinear bath cou-
pling, indicate that the correction terms are small and the
approximate PBME yields good agreement with the exact
quantum results for these models. These results suggest that
this approximate evolution equation will be useful in many
applications; however, the validity of the PBME must be

tested for the specific problem under consideration and it
may not always be a good approximation to full QCL
dynamics.48 The effects of the excess coupling term on the
time evolution of the observables can be estimated by com-
puting the expectation values in Eq. �37� and these values
provide one way of gauging the importance of the deviations
from the QCLE. Although care must be exercised in the use
of the PBME when applied to a given system, the ease with
which it can be simulated and its accuracy for many systems
of interest make it a powerful simulation scheme that should
find increased use in future applications.
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APPENDIX: CALCULATION OF c���„x… AND G���„x…

In this Appendix we show how c����x� in Eq. �12� and
g����x� in Eq. �17� can be computed.

1. c���„x…

Starting from its definition we have,

-0.04

-0.02

0

0.02

0.04

-4 -3 -2 -1 0 1 2 3 4

E

R

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

ρ s
α

α

P0

FIG. 3. �Top� Diabatic diagonal elements of the Hamiltonian �dashed lines�
and adiabatic energies �solid lines� for the dual avoided crossing model.
�Bottom� Populations of the diabatic states with same symbols as those in
Fig. 1.
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12�t� vs time for the dual avoided
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�2���Nc����x� = �â�
†â���W =

1

2�
� dzeip·z/��r −

z

2
��q̂�q̂�� + p̂�p̂�� + i�p̂�q̂�� − q̂�p̂�����r +

z

2
�

=
1

2�
� dzeip·z/���r −

z

2
	

�

�r +
z

2
	

��
− �2 �

�z�

�

�z��
+ ��r +

z

2
	

��

�

�z�

− ��r −
z

2
	

�

�

�z��
�
�z�

=
1

2�
�r�r�� − �2� dz
�z�

�

�z�

�

�z��
eip·z/� − �� dz
�z�

�

�z�
��r +

z

2
	

��
eip·z/��

+ �� dz
�z�
�

�z��
��r −

z

2
	

�

eip·z/���
=

1

2�
�r�r�� − �2� i

�
p�	� i

�
p��	 − ��
���

2
+

i

�
p�r��	 + ��−


���

2
+

i

�
p��r�	�

=
1

2�
�r�r�� + i�r�p�� − r��p�� + p�p�� − �
���� . �A1�

2. g���„x…

Similarly for g����x� we have

g����x� =� dze−ip·z/��m��r −
z

2
���r + � z

2
�m���

=� dze−ip·z/�	0�r1 −
z1

2
	¯ 	1�r� −

z�

2
	¯ 	0�rN −

zN

2
		0�r1 +

z1

2
	¯ 	1�r�� +

z��

2
	¯ 	0�rN +

zN

2
	

= � 1

��
	N/2 2

�
� dze−ip·z/��
���e

�−1/2���r1 − z1/2�2+�r1 + z1/2�2��
¯ �r�

2 −
z�

2

4
	e�−1/2���r� − z�/2�2+�r� + z�/2�2��

� ¯ e�−1/2���rN − zN/2�2+�rN + zN/2�2�� + �1 − 
����e
�−1/��r1

2+z1
2/4��

¯ �r� −
z�

2
	e�−1/��r�

2+z�
2/4��

¯ �r�� +
z��

2
	

� e�−1/��r
��
2

+z
��
2 /4��

¯ e�−1/��rN
2 +zN

2 /4���
=

2N+1

�
e−x2/��
����r�

2 −
1

4
�2� − 4p�

2�	 + �1 − 
�����r� + ip���r�� − ip����
=

2N+1

�
e−x2/��r�r�� − i�r�p�� − r��p�� + p�p�� − 
���

�

2
� , �A2�

where we have used Eq. �3� together with 	0�x�= �1 /���1/4e−�1/2��x2
, 	1�x�= �1 /���1/4�2 /��xe−�1/2��x2

. In this expression
recall that z= �z1 ,z2 , . . . ,zN�, p= �p1 , p2 , . . . , pN�, and p ·z= p1z1+ p2z2+ ¯+pNzN, with similar vector notation for other un-
scripted quantities.
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