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Synthetic chemically powered nanomotors often rely on the environment for their fuel supply. The
propulsion properties of such motors can be altered if the environment in which they move is chem-
ically active. The dynamical properties of sphere dimer motors, composed of linked catalytic and
noncatalytic monomers, are investigated in active media. Chemical reactions occur at the catalytic
monomer and the reactant or product of this reaction is involved in cubic autocatalytic or linear
reactions that take place in the bulk phase environment. For these reactions, as the bulk phase re-
action rates increase, the motor propulsion velocity decreases. For the cubic autocatalytic reaction,
this net effect arises from a competition between a reduction of the nonequilibrium concentration
gradient that leads to smaller velocity and the generation of fuel in the environment that tends to
increase the motor propulsion. The role played by detailed balance in determining the form of the
concentration gradient in the motor vicinity in the active medium is studied. Simulations are carried
out using reactive multiparticle collision dynamics and compared with theoretical models to obtain
further insight into sphere dimer dynamics in active media. © 2011 American Institute of Physics.
[doi:10.1063/1.3607408]

I. INTRODUCTION

Molecular motors that use chemical energy for their
propulsion perform a variety of tasks that are essential for bio-
chemistry in the cell.1, 2 These motors are able to operate in
the presence of strong fluctuations and move from one place
to another in the cell by directed motion that is more effective
than simple diffusion. Synthetic chemically powered motors,
which have similar sizes and move with comparable veloci-
ties to those of biological motors, have been fabricated. Such
synthetic motors are of interest since they have the potential
to be used in applications that benefit from active transport
instead of normal diffusion.

Various types of synthetic motors have been constructed.
Perhaps the most studied self-propelled objects of this kind
are metallic nano and micron scale rod-shaped motors.3–7 In
Pt-Au rod motors catalytic decomposition of hydrogen per-
oxide or other fuel occurs at the Pt end and the propulsion
mechanism is electrochemical in nature.8, 9 Striped metallic
rod motors, where Ni is incorporated to allow the motor to be
guided by external magnetic fields, have been made and used
to show that targetted cargo delivery can be achieved.10–12

Motors with high velocities have been made from carbon-
nanotube-supported metallic rods with hydrazine as fuel.9

Carbon fibers have been autonomously propelled through
an electrochemical mechanism by the enzyme catalyzed
glucose-oxygen reaction.13 A number of other applications
have been demonstrated and these studies have served to in-
dicate the potential utility of synthetic motors.14

In addition to metallic rod motors, sphere dimer15 and
Janus particle16 silica-Pt motors, which also use hydrogen
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peroxide as fuel but operated by different mechanisms, have
been fabricated and their dynamics has been investigated.
Mesoscopic models have been constructed and used to sim-
ulate the sphere dimer dynamics and elucidate the nature of
the propulsion mechanisms.15, 17–19 Colloidal Janus particles
that exhibit directed motion have also been studied theoreti-
cally and experimentally.20–25

Most synthetic chemically powered motors have the
common feature that they do not carry their fuel; instead it
is supplied by the surrounding medium in which they move.
If the medium in which the motor moves is itself chemically
active, this can influence the motor dynamics. For example,
the reaction products can be consumed in environmental re-
actions and thereby change the nonequilibrium concentration
gradients that are a central element of the propulsion mecha-
nism. One can consider more complex reaction kinetics in the
medium and such kinetics may influence the motor dynamics
in more subtle ways.

In this article, we investigate the dynamics of a chemi-
cally powered sphere dimer motor, which consists of linked
catalytic and noncatalytic spheres, in a chemically active
medium. In Sec. II we describe the reactive mesoscopic
method used to simulate the motor dynamics and also dis-
cuss how the propulsion velocity can be estimated from a
knowledge of the intermolecular forces and the nonequilib-
rium concentration fields in the system. The discussion is pre-
sented in general terms that allow for arbitrary reactions at
the catalytic sphere and arbitrary reactions in the bulk phase.
Section III considers two specific examples of chemically ac-
tive media: a cubic autocatalytic reaction and a linear reaction
in which the reaction product from dimer catalytic reaction
is consumed. This section presents the simulation results and
discusses the role played by detailed balance in the motor
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dynamics when the cubic autocatalytic reaction occurs in the
bulk phase. Theoretical models for the phenomena are pre-
sented in Sec. IV and compared to the simulation results.
Section V describes the translational diffusion and orienta-
tional relaxation times for the self-propelled sphere dimers.
The conclusions are given in Sec. VI.

II. NANOMOTOR AND ITS ENVIRONMENT

Chemically powered sphere dimer motors consist of
linked catalytic (C) and noncatalytic (N) spherical monomers.
The directed motion of a dimer motor is due to a propul-
sion force Fprop that arises from the interactions of the dimer
monomers with the chemical species Xα in its environment,
and the chemical reaction that occurs with rate Rc

α on the sur-
face of the catalytic monomer.17–19 We consider the general
case where the environment in which the motor moves is itself
chemically active. We assume that various chemical reactions,

∑
α

ν j
α Xα

k j

⇀↽
k− j

∑
α

ν̄ j
α Xα ( j = 1, . . . , r ) , (1)

labeled by the index j , occur in the medium. In this equation
ν

j
α and ν̄

j
α are the stoichiometric coefficients for reaction j and

k j and k− j are the rate constants that characterize the forward
and reverse reactions. Nanomotors are subject to strong fluc-
tuations from the environment and our simulations of sphere
dimer motors in active media utilize a particle-based meso-
scopic molecular dynamics method for the evolution that can
account for such fluctuations.26, 27 From these simulations we
can compute the forces on the nanomotor and determine its
velocity and other properties. However, in order to gain in-
sight into the factors that determine the motor velocity, it is
useful to consider approximate theoretical expressions that
can be used to estimate this quantity. Below we describe both
the mesoscopic simulation method for the motor dynamics in
an active medium and the theoretical estimate for the motor
velocity.

A. Mesoscopic simulation method

The dynamics in the reactive environment is simulated
using reactive multiparticle collision (RMPC) dynamics.28–30

RMPC dynamics consists of a concatenation of multiparti-
cle collisions that change the velocities of the particles and
birth-death stochastic reactive events. Nonreactive events oc-
cur by multiparticle collision (MPC) dynamics. The imple-
mentation of MPC dynamics and examples of its applications
are described in reviews31, 32 and references therein. Briefly, to
carry out multiparticle collisions, at time intervals τ the point-
like solvent molecules are sorted into cubic cells with linear
dimension a0 and rotation operators ω̂ξ are assigned to each
cell from some set of rotation operators. Multiparticle colli-
sions are performed independently in each cell, and in these
collisions the postcollision velocity of particle i in cell ξ is
given by v′

i = Vξ + ω̂ξ (vi − Vξ ), where Vξ is the center-of-
mass velocity of the particles in that cell.

Reactive multiparticle collisions combine such velocity-
changing events with a birth-death stochastic description of

reactions. Specifically, a reaction,∑
α

ν j
α Xα

k j→
∑

α

ν̄ j
α Xα, (2)

is assumed to occur with probability

pξ

j (N
ξ ) = aξ

j

aξ

0

(1 − e−aξ

0 τ ), (3)

where Nξ = (N ξ

1 , N ξ

2 , . . . , ) is the set of numbers of the dif-
ferent species in cell ξ . Here

aξ

j = k j (Vc)
∏
α

N ξ
α !(

N ξ
α − ν

j
α

)
!
, (4)

where the notation k j (Vc) indicates that the rate constants
have been scaled for the cell volume Vc. The combinato-
rial factor accounts for the number of different ways the re-
action can occur in the cell. The quantity aξ

0 is given by
aξ

0 = ∑
j aξ

j . The combination of reactions and multiparti-
cle collisions models coarse grained reactive and non-reactive
collisions in the system.

The monomers of the sphere dimer interact with the parti-
cles in the environment through intermolecular potentials and
in the time intervals τ between multiparticle collisions the
evolution is described by molecular dynamics (MD). Since
there are no solvent-solvent forces to compute in the MD seg-
ments, the simulations are easily carried out, even in systems
with a large number of environmental particles. In summary,
in the hybrid MD-RMPC dynamics used to study the sphere
dimer motion, at time intervals τ the system is divided into
collision cells and reactive multiparticle collisions are carried
out independently in each cell. The system, dimer and solvent
molecules, is then propagated for a time τ by Newton’s equa-
tions of motion after which the next RMPC collision events
take place. The reactive dynamics conserves mass, momen-
tum and energy and thus accounts for hydrodynamic and sol-
vent diffusion effects on the dimer dynamics.

B. Estimate of motor velocity

Micron and nanoscale chemically powered motors move
with small velocities in a viscous medium and, since viscous
forces dominate inertial forces, their Reynolds numbers are
small. In this case we can neglect inertial terms and, consid-
ering the average motion in the steady state, the propulsion
force is balanced by the frictional force, Fprop + Ffric = 0.
Here Ffric = −ζ Vz with ζ the friction coefficient. The motor
velocity is then given by Vz = Fprop/ζ . To compute Vz , we
require an expression for the steady state propulsion force,
which depends on the nonequilibrium species concentration
fields ρα(r) that arise from the chemical reactions at the C
monomer. The propulsion force can be written explicitly as17

Fprop = −
∑

α

∫
drρα(r)

dVCα(r )

dr
(ẑ · r̂)

−
∑

α

∫
dr′ρα(r′ + Rẑ)

dVNα(r ′)
dr ′ (ẑ · r̂′), (5)
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where the vector distance from the center of C to a solvent
molecule is r, while r′ = r − Rẑ has origin at N , where R the
bond length of the dimer and ẑ is a unit vector from N to C .
Since the intermolecular forces are known in our mesoscopic
model, the main difficulty in the computation of Fprop is the
specification of the spatial dependence of ρα(r). To estimate
this quantity we adopt a macroscopic description outside of
a boundary region around the monomers of the sphere dimer
and write

ρα(r) = nα(r)e−β[VCα (r )+VNα (r ′)], (6)

where the Boltzmann factor accounts for the exclusion of A
and B particles from the monomers as a result of the solvent-
monomer intermolecular forces and nα(r) may be found from
the solution of a reaction-diffusion equation in the bulk phase
environment. Given that reactions (1) occur in the environ-
ment, the net rate of reaction for species Xα , Rα(n), follows
from mass action kinetics and is given by

Rα(n) =
∑

j

(ν̄ j
α − ν j

α)

⎡
⎣k j

∏
β

n
ν

j
β

β − k− j

∏
β

n
ν̄

j
β

β

⎤
⎦ , (7)

where n = {nα}, with nα the number density of species Xα .
Consequently, the reaction-diffusion equation may be written
as

∂nα(r, t)

∂t
= Dα∇2nα(r, t) + Rα(n(r, t)), (8)

where Dα is the diffusion coefficient of species Xα . This
reaction-diffusion equation must be solved in the steady state
subject to boundary conditions at the dimer surface and at in-
finity. As r → ∞ we assume that the concentration fields are
either fixed by fluxes into and out of the system to maintain
a steady state, or by the nonequilibrium state of the reactive
medium far from the dimer. At the catalytic monomer surface
R0 we apply a “radiation” boundary condition33 to account
for the reaction that occurs there,

Rc
α(n(R0)) + 4π Dα R2

0
d

dr
nα(r )

∣∣∣
R0

= 0, (9)

while at the noncatalytic sphere a reflection boundary condi-
tion may be used, whose form is similar to that in Eq. (9) with
the reaction term set to zero.

The nonequilibrium steady state concentration fields ob-
tained in this way may be substituted into Eq. (5) to give the
propulsion force. The friction coefficient of the dimer can be
estimated either from kinetic theory and Stokes law or ob-
tained from the simulation to complete the calculation of the
sphere dimer velocity.

III. PROPULSION IN AN ACTIVE MEDIUM

In the simulations of sphere dimer motion described in
this section, the reaction,

A + C
k1
⇀↽
k−1

B + C, (10)

is assumed to occur at the catalytic monomer with rate
Rc

A(n(R0)) = −k0
1n A(R0) + k0

−1nB(R0), where k0
1 and k0

−1 are
intrinsic reaction rate constants that characterize the for-
ward and reverse reactions in the boundary layer around

the catalytic monomer. In our simulations the reaction
A → B occurs with probability p+ whenever A encounters
C . The reverse reaction occurs with probability p− = 1 − p+
on encounter of B with the C monomer, although the forward
and reverse reaction probabilities could have been chosen
independently.18 The irreversible reaction A → B corre-
sponds to p+ = 1. These probabilities, along with the colli-
sion frequencies of the A and B species with the catalytic
sphere, determine the k0

±1 intrinsic rate constants. Since the
A and B molecules must encounter the C sphere before reac-
tion can take place, there is also a diffusion-controlled com-
ponent that contributes to the full k±1 rate constants for the C
catalytic reaction in the system. We shall describe below how
these rate coefficients can be determined from the simulations
and theoretically estimated.

We also suppose that the cubic autocatalytic chemical
reactions,

B + 2A
k2
⇀↽
k−2

3A, (11)

occur in the environment with rate,

RA = −RB = k2nB(r, t)n2
A(r, t) − k−2n3

A(r, t). (12)

In the RMPC simulations, for the cubic autocatalytic reac-
tion, the quantities aξ

j have the forms aξ

2 = k2 N ξ

B N ξ

A(N ξ

A − 1)

and aξ

−2 = k−2 N ξ

A(N ξ

A − 1)(N ξ

A − 2) for the forward and re-
verse reactions in Eq. (11), respectively.29 While special, this
is an interesting set of bulk phase reactions to consider since
the B species which is produced from A in the forward reac-
tion at the catalytic monomer is converted back to A in the
environment.56 This has consequences for the nature of the
nonequilibrium steady state that is established in the system
and role that detailed balance plays in propulsion.

For comparison, we also consider the simpler situation
where the B species is simply converted another species D
by the reaction,

B
k3→ D, (13)

that occurs with rate RB = −k3nB . The corresponding aξ

j

quantity for the RMPC simulations is aξ

3 = k3 N ξ

B . The species
D is not involved in the catalytic reaction at C .

A. Simulation parameters

In our simulations the bulk phase species have iden-
tical masses and interact with the sphere dimer monomers
through repulsive 6-12 Lennard-Jones (LJ) potentials, VSα(r )
= 4ε[(σS/r )12 − (σS/r )6 + 1/4], r ≤ rc, with cutoff dis-
tance rc = 21/6σS . We use the notation VSα , where S = C, N
and α = A, B to denote the various interaction potentials be-
tween solvent and dimer monomers.17–19 We take VAC = VBC

= VAN , which are characterized by the energy and distance
parameters εA and σS , respectively; however, interactions be-
tween the N sphere and B molecules, VB N , have energy
parameter εB .

In our simulations, all quantities are reported in dimen-
sionless units based on energy εA, mass m A, and distance σA

parameters. We chose the average number of particles per cell
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to be n0 ≈ 9 in all simulations. The rotation operators for
MPC dynamics are taken to correspond to rotations about a
randomly chosen axis by an angle of π/2. In the dimension-
less units the MPC cell size is a0 = 1. The masses of both
A and B species are taken to be m = 1. The masses of the
catalytic and noncatalytic spheres are adjusted according to
their diameters, dC and dN , to ensure that the mass densities
of the monomers are approximately same as those of the sol-
vent. The MD time step used to integrate Newton’s equation
of motion with the velocity Verlet algorithm is �t = 0.01,
while the multiparticle collision time is τ = 0.5. The system
is contained in a cubic box of volume V and linear dimen-
sion L = 40 with periodic boundary conditions. The system
temperature is kB T = 0.2 and the LJ potential parameters are
chosen to be εA = 1.0 and εB = 0.1. The diameters of the
catalytic and noncatalytic spheres are dC = 4.0 and dN = 8.0,
respectively. The sphere dimer internuclear separation is fixed
at R = 7.0 by a holonomic constraint.34, 35 This value of R in-
sures that there are no discontinuous potential changes when
chemical reaction occurs on the catalytic sphere. We also pre-
vent discontinuous potential changes due to the bulk reactions
by carrying out these reactions only outside the potential cut-
off distance of the noncatalytic sphere. The reaction proba-
bility at the catalytic sphere and the reaction rate constants
of the bulk phase reactions are varied in the simulations de-
scribed below. For the parameters specified above the diffu-
sion coefficients of solvent species are the same and denoted
by D. Analytical expressions for D are available for MPC
dynamics.31, 32 In order to insure that Galilean invariance is
satisfied for systems with small mean free path λ, a random
shift of the grid that defines the collision cells is carried out
before the collision step.36, 37

B. Simulation results

The velocity of the sphere dimer depends on the rates at
which the reactions in the bulk phase occur, since these rates
influence the local species concentration fields in the vicinity
of the motor. First, we discuss the simple case where both the
catalytic reaction at C and the bulk reaction are irreversible;
i.e., the rate coefficients k−1 = k−2 = 0. Under such nonequi-
librium conditions we see that the “fuel” A for the self propul-
sion, which is consumed at the C sphere, is regenerated in
the bulk phase by the cubic autocatalytic reaction. No explicit
fluxes of species at the boundary need to be introduced in
the simulation to maintain the system in a steady state where
the sphere dimer moves with average constant velocity. Of
course, in a complete specification of the reactive dynamics
one would have to account for the way the bulk reaction is
maintained out of equilibrium. For example, the effective cu-
bic autocatalysis could result from a sequence of elementary
steps where fast intermediate species are eliminated from the
rate equations and the system is subject to flows to maintain a
nonequilibrium state.38 Such effective rate processes are eas-
ily modeled in our coarse grained probabilistic description of
the bulk phase reaction kinetics since RMPC reactive events
are carried out at the MPC cell level at time intervals τ where
many chemical species reside in a cell and many elementary
events could have taken place in the time τ .
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FIG. 1. The average velocity of the sphere dimer motor along its internuclear
axis, 〈Vz〉, as a function of the rate constant k2 for the irreversible cubic auto-
catalytic reaction and as a function of k3 for the linear reaction. The velocity
〈Vz〉 for each value of k2 and k3 was determined from an average over ten
independent realizations of the dynamics.

Figure 1 shows the steady state propulsion velocity of the
dimer as a function of k2. The simulation results were ob-
tained by fitting the motor velocity probability distribution
function p(Vz) to a Maxwell-Boltzmann distribution from
which the average velocity was determined. The dimer veloc-
ity decreases as the rate of the bulk phase reaction increases.
This decrease can be attributed to the fact that the spatial de-
cay of the B particle concentration field with increasing dis-
tance from the C sphere becomes more rapid as k2 increases.
The bulk autocatalytic reaction has both positive and nega-
tive effects on the sphere dimer propulsion. As noted above, it
generates the fuel A that leads to the production of B, whose
gradient at the N sphere is essential for propulsion; however,
the B + 2A → 3A reaction will remove B particles in the
bulk phase and reduce the B concentration gradient. The de-
crease in the sphere dimer velocity with increasing k2 is due
to the fact that at higher k2 the bulk conversion B to A is
sufficiently rapid to reduce the B field gradient at N . These
observations are confirmed by the dependence of nB(r ) on k2

plotted in Fig. 2(a). One sees that nB(r ) does indeed decay
more rapidly as k2 increases.
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FIG. 2. (a) Plot of the B steady state density field nB (r ) in the vicinity of
the catalytic sphere C for different values of k2 for irreversible reactions at
the catalytic sphere and in the bulk phase. (b) The steady state concentration
field of B particles for different values of rate constant k3 for the linear bulk
phase reaction.
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A simple linear reaction B → D in the bulk phase
that destroys B molecules has a similar effect on nB(r ).
Figure 2(b) is a plot of nB(r ) where it is seen that the B field
decays more rapidly as k3 increases. The effect of this reaction
on the dimer velocity is also shown in Fig. 1 as a function of
k3. Since this bulk phase reaction does not regenerate the fuel
A, we must supply A at the boundaries to maintain a steady
state; thus, when B or D molecules leave the simulation box,
new A particles are introduced so that the A field far from the
sphere dimer is specified.

C. Role of detailed balance

The detailed balance condition follows from the princi-
ple of microscopic reversibility and reflects the fact that the
underlying equations of motion are time reversible; hence,
at equilibrium each forward transition is as likely as the re-
verse transition.39 In order to investigate the role that de-
tailed balance plays in the propulsion of the sphere dimer,
we now consider the reversible reaction case. At equilibrium
the time variations of the concentrations described by mass
action rate laws corresponding to Eqs. (10) and (11) are indi-
vidually equal to zero: −k1neq

A + k−1neq
B = 0 and k2neq

B (neq
A )2

− k−2(neq
A )3 = 0. It then follows that detailed balance places

restrictions on the allowed values of the rate constants for this
set of reactions and we have

k1

k−1
= k−2

k2
= neq

B

neq
A

. (14)

We investigated the sphere dimer propulsion for three dif-
ferent cases: (i) when both the C catalytic reaction and the
bulk autocatalytic reaction are irreversible, (ii) when the re-
actions are reversible, but the reaction rates do not satisfy de-
tailed balance, and (iii) when the reactions are reversible and
the reaction rates obey the detailed balance condition. The re-
action rate coefficients and reaction probabilities for above
cases are: (i) p+ = 1.0, p− = 0.0, k2 = 10−4, k−2 = 0.0; (ii)
p+ = 0.8, p− = 0.2, k2 = 10−4, k−2 = 10−5; and (iii) p+
= 0.5, p− = 0.5, k2 = 10−4, k−2 = 10−4 (the relation be-
tween p± and k±1 is given below). The velocity probabil-
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FIG. 3. Probability distribution function p(Vz) of the center-of-mass velocity
of the dimer projected along the internuclear axis for an irreversible reaction
(i), a reversible reaction violating detailed balance (ii), and a reversible reac-
tion satisfying detailed balance (iii).
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FIG. 4. The local steady state concentration of B particles around the cat-
alytic sphere C for an irreversible reaction, a reversible reaction which breaks
the detailed balance, and a reversible reaction which satisfies detailed bal-
ance. The reaction rates for these cases are given in the text.

ity distribution functions p(Vz) of the dimer are shown in
Fig. 3 for these three cases. The average velocities of the
dimer in cases (i)-(iii), determined from the simulation data,
are Vz = 0.034, 0.022, and 0.0, respectively. As expected, the
sphere dimer does not exhibit directed motion when the re-
actions obey detailed balance, reinforcing the fact that dimer
propulsion is a nonequilibrium effect.

These dimer propulsion results can be understood in
terms of the local steady state concentration of species B in
the vicinity of the catalytic C sphere shown in Fig. 4. The
existence of a strong B concentration gradient for the irre-
versible reaction is evident, which then gives rise to a high
propulsion velocity. For a reversible reaction satisfying de-
tailed balance, there is no nonequilibrium B concentration
gradient around the dimer; hence, directed dimer propulsion
cannot occur. (The small deviation from a flat concentration
profile is due to the presence of the noncatalytic N sphere.)
If reversible reactions are considered but detailed balance is
broken, again a considerable nonequilibrium B concentration
gradient exists in the vicinity of the dimer motor. The nature
of the B particle concentration gradient can be understood
in terms of the magnitudes of the reaction rate constants. In
cases (i) and (ii) the rate constants are such that the num-
ber of B particles produced by the bimolecular catalytic re-
action at C is much greater than the number converted back
to A by the bulk phase cubic autocatalytic reaction. How-
ever, in case (iii) where detailed balance is satisfied, the rate
coefficients obey Eq. (14); hence, the B particles produced
by the C catalytic reaction are converted back to A at the
same rate, yielding a flat B concentration profile. These ob-
servations confirm the necessity to break detailed balance for
self-propulsion.40

IV. THEORETICAL DESCRIPTION

In Sec. II we described how the sphere dimer propulsion
velocity could be estimated. The estimate requires the calcu-
lation of the propulsion force from Eq. (5). This calculation,
in turn, requires a knowledge of the nonequilibrium steady
state concentration fields, which may be estimated from the
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FIG. 5. Plot of the time dependent rate coefficient k1(t) versus time (points).
The solid line is a fit to the data using Eq. (15).

solution to the reaction-diffusion Eq. (8) in the steady state,
subject to the boundary conditions in Eq. (9). Both the
reaction-diffusion equation and its boundary conditions re-
quire the rate constants and diffusion coefficients as input.
The bulk phase rate constants are directly specified in the
RMPC stochastic model. As noted earlier, while the reaction
probabilities at the C sphere and the collision frequency deter-
mine the intrinsic k0

±1 rate constants, there is also a diffusion-
influenced component that may control the rate. In addition to
these quantities that enter in the propulsion force, the friction
coefficient of the sphere dimer is needed to complete the cal-
culation of the velocity. In this section we describe how these
quantities may be estimated and compare the estimates with
simulation results. We then use these quantities to calculate
the propulsion velocities for the sphere dimer in the chemi-
cally active media discussed above.

A. Parameter estimates

We first consider the value of the rate constant k1. (A
similar calculation can be carried out to obtain k−1.) The
simplest situation to consider is an irreversible reaction at a
single catalytic C sphere, A + C → B + C , occurring in a
chemically inactive medium initially composed of A parti-
cles. The rate law for this case may be written as dn A(t)/dt
= −k1(t)nC n A(t), which defines k1(t), the time-dependent
rate coefficient. The time-dependent rate coefficient obtained
from the simulation41 by computing −[dn A(t)/dt]/[n A(t)nC ]
is plotted in Fig. 5.

The rate coefficient k1(t) can be calculated by solving
the diffusion equation, ∂n A(r, t)/∂t = D∇2n A(r, t), subject
to the radiation boundary condition, 4π DR2

0(dn A(r )/dr ) |R0

= k0
1n A(R0), applied at R0, an effective C catalytic sphere ra-

dius outside of which the diffusion equation applies. The re-
sult is42, 43

k1(t) = k0
1kD

k0
1 + kD

+ (k0
1)2

k0
1 + kD

exp

[(
1 + k0

1

kD

)2
Dt

R2
0

]

× erfc

[(
1 + k0

1

kD

) (
Dt

R2
0

)1/2
]

. (15)

r
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FIG. 6. Plot of nB (r ) versus r showing the effect of the presence of the non-
catalytic sphere N on the B density field. Results are for the case when there
no bulk phase reaction in the system.

The initial value of this expression is k0
1 while its asymp-

totic value is k1 = k0
1kD/(k0

1 + kD), where kD = 4π DR0 is
the Smoluchowski rate constant44 for a diffusion-controlled
reaction. Thus, from the fit of this formula (given in
Eq. (15)) to the simulation data we can extract k0

1 and R0,
since the value of the diffusion coefficient is known analyti-
cally for MPC dynamics.31, 32 From the data in the equation
we find k0

1 = 11.8 and R0 = 2.8. Note that R0 > σC , which
accounts for the presence of a boundary layer in the vicinity
of the catalytic sphere surface where the continuum diffusion
equation description fails. If the C sphere were a hard sphere
with radius R0, k0

1 has the form, k0
1 = p+ R2

0

√
8πkB T/m. This

yields the value k0
1 = 8.965 for p+ = 1.0.

The computation of nonequilibrium steady state concen-
tration fields is more difficult due to the presence of noncat-
alytic sphere N . A crude estimate for this concentration field
can be obtained by neglecting the presence of the noncatalytic
sphere, so that spherical symmetry can be assumed for the so-
lution of the reaction-diffusion equation. Figure 6 shows the
effect of the presence of the N sphere on the concentration
field obtained from the simulation. The presence of the N
sphere leads to a reduction of nB(r ) in its vicinity, which can
affect the sphere dimer velocity.

In order to obtain the dimer velocity Vz from Eq. (5)
one needs to specify ζ , the friction coefficient of the sphere
dimer. The friction coefficient may be approximated by the
sum of the friction coefficients of the two monomers ζ

= ζC + ζN . The friction coefficient of a single monomer may
be estimated using ζ−1

S = ζ−1
m + ζ−1

h , which accounts for
both microscopic, ζm , and hydrodynamic, ζh , contributions to
the friction coefficient.45 We take a simple collision model
for the microscopic contribution, ζm = 8

3 nσ 2
S

√
2πmkB T , and

a Stokes law form for the hydrodynamic contribution, ζh

= 4πησS , where n is the total number density of the sol-
vent and η is the viscosity. The viscosity is known analyt-
ically for the MPC solvent.31, 32, 46, 47 While the friction co-
efficient can be determined accurately from simulations of
the nanodimer subjected to an external force,48 here for sim-
plicity we take the value ζ = 80.8, from above analytical
calculation.
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B. Propulsion velocities

With a knowledge of the basic parameters and assump-
tions that enter the theoretical calculation in hand, we turn
back to the main topic of this paper, the propulsion velocity
of the sphere dimer in an active medium. For the cubic auto-
catalytic reaction, this entails the solution of the steady state
reaction-diffusion equation,

D∇2nB(r, t) = k2nB(r, t)n2
A(r, t) − k−2n3

A(r, t), (16)

subject to the boundary condition,

− k0
1n A(R0) + k0

−1nB(R0) = 4π DR2
0

d

dr
nB(r )

∣∣∣
R0

, (17)

at the surface around the C sphere with radius R0 and a re-
flecting boundary condition at the N sphere. Boundary con-
ditions at infinity must also be specified. As r → ∞ we as-
sume that the concentration fields are given by the steady state
values of the cubic autocatalytic reaction in the bulk phase:
k2n̄B n̄2

A = k−2n̄3
A. In our model the spatial variations in the to-

tal density can be neglected so that n A(r, t) + nB(r, t) = n0.
Using the fact that the total density is fixed we have n̄B

= n0(1 + k2/k−2)−1 and n̄ A = n0(1 + k−2/k2)−1.
In order to obtain analytical estimates for the solutions to

the reaction-diffusion equation, two approximations are nec-
essary. First, in a full description a reflecting boundary con-
dition should be applied at the N sphere but, as discussed
earlier, this considerably complicates the solution since the
problem no longer has spherical symmetry. However, as we
have seen in Fig. 6, neglect of the N sphere when com-
puting the concentration fields has only a moderately small
quantitative effect on the concentration fields of interest. Sec-
ond, since the reaction-diffusion equation is nonlinear, we
seek a solution that is linear in deviations from the asymp-
totic values of the concentration fields: nB(r ) = n̄B + δnB(r )
and n A(r ) = n̄ A − δn A(r ). The linearized steady state reac-
tion diffusion equation reads

D∇2δnB(r, t) = (k2 + k−2)n̄2
AδnB(r, t). (18)

With the above boundary conditions at the catalytic sphere
surface and at infinity the steady state solution is

nB(r ) = n̄B +
(
k0

1 n̄ A − k0
−1n̄B

)
kD

k0
1 + k0

−1 + kD(1 + κ R0)

e−κ(r−R0)

4π Dr
. (19)
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FIG. 7. Comparison of the steady state B particle concentration field nB (r )
around the catalytic sphere obtained from simulation and (a) from Eq. (19)
with k2 = 10−4 and (b) from Eq. (20) with k3 = 0.01 for the irreversible
reactions.

TABLE I. Average velocities of the center-of-mass of the sphere dimer
along its internuclear axis. Results in the top part of the Table show the
comparison of the propulsion velocity of the nanodimer obtained from the
simulation (V S

z ) and reaction-diffusion theory (V T
z ) for the irreversible cubic

autocatalytic reaction in the bulk phase. The bottom part of the Table shows
the velocity comparison between simulation and theory for the irreversible
linear reaction in the bulk phase.

k2 0.0001 0.0002 0.0005 0.0008 0.001
V T

z 0.056 0.050 0.040 0.035 0.033
V S

z 0.031 0.029 0.023 0.019 0.018

k3 0.001 0.005 0.01 0.02 0.05
V T

z 0.053 0.043 0.036 0.029 0.02
V S

z 0.027 0.024 0.020 0.014 0.006

Here κ =
√

(k2 + k−2)n̄2
A/D is an inverse length. The form of

the A concentration field follows from the conservation con-
dition, n A(r ) = n0 − nB(r ).

The steady state concentration field of B particles for the
irreversible linear bulk phase reaction B → D with rate con-
stant k3 is

nB(r ) = k0
1n0kD(

k0
1 + kD

)
(1 + κ R0)

e−κ(r−R0)

4π Dr
, (20)

where κ = √
k3/D. Figure 7(a) compares the steady state

B particle concentration field around the catalytic sphere
obtained from simulation and from Eq. (19) when both
reactions in the system are irreversible with k2 = 10−4.
Figure 7(b) shows the analogous comparison of the concen-
tration field obtained from the simulation and from Eq. (20)
for k3 = 10−2. One sees good agreement between simulation
and reaction-diffusion theory results.

Using these ingredients to compute Vz we obtain the re-
sults in Table I. As noted earlier, it is the fast conversion of
B to A for large k2 which gives rise to the enhanced decay of
density field. In this case the concentration field agrees well
with the theoretical expression and the discrepancy between
the simulation results and theory is primarily due to the esti-
mate of the friction coefficient. Nevertheless, the results are
in qualitative agreement and correctly capture the trends in Vz

with varying rate constant values.

V. TRANSLATIONAL AND ROTATIONAL DIFFUSION

An important characteristic feature of such small self-
propelled objects is that their motion is stochastic due to ther-
mal fluctuations. Hence they are expected to perform a per-
sistent random walk, due to a competition between directed
motion, with a velocity that depends on the concentration of
the reactive molecules, and angular randomization due to the
thermal rotational Brownian motion.23, 49–52 The transition be-
tween the two regimes depend on the rotational diffusion time
τR of the sphere dimer. For time scales long compared to τR ,
the active particles therefore perform a random walk with a
substantially enhanced diffusion coefficient given by

Deff = D0 + 1

3
V 2

z τR, (21)
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FIG. 8. (a) Log-log plot of the mean squared displacement of the nanodimer
showing ballistic motion, �L2(t) ∼ t2, at short times and diffusive motion,
�L2(t) ∼ t , at long times for k2 = 0.0001. (b) Linear-log plot of the ori-
entational correlation function for the nanodimer as a function of time for
k2 = 0.0001. The dashed line is an exponential fit to the data.

where D0 is the diffusion coefficient of the non-active
particle.

We calculated the effective diffusion coefficient Deff of
the sphere dimer for the irreversible bulk phase cubic auto-
catalytic reaction by computing its mean square displacement
and compared it with the result in Eq. (21). Figure 8(a) shows
the mean squared displacement �L2(t) = 〈[r(t) − r(0)]2〉 for
the nanodimer. One can see the initial ballistic regime charac-
terized by �L2(t) ∼ t2 and late time diffusive regime, where
�L2(t) = 6Defft . The rotational diffusion time τR , which
characterizes the orientational relaxation of the sphere dimer
is defined by the decay of the orientation autocorrelation func-
tion, 〈ẑ(t) · ẑ(0)〉 = e−t/τR . The relaxation time τR was cal-
culated by fitting an exponential to the orientation autocor-
relation function as shown in Fig. 8(b). We find τR ≈ 2000
independent of propulsion velocity.

A good agreement between the enhanced diffusion coef-
ficient Deff obtained from mean square displacement calcula-
tion and that obtained from Eq. (21) is found and shown in
Fig. 9.
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FIG. 9. Plot of the effective diffusion coefficient Deff as a function of 〈Vz〉2

for the self-propelled sphere dimer obtained from simulation (points). The
average sphere dimer velocity 〈Vz〉 was determined from an average of five
independent realizations of the dynamics. The dashed line is the fit from Eq.
(21).

VI. CONCLUSION

Research into synthetic chemically powered motors is
still at an early stage. New motors are being fabricated, the
mechanisms for their motion are being understood and ap-
plications for their uses are being discovered. In almost all
applications that are envisaged the motor will have to move
in a complex environment that contains many, often reactive,
chemical species. Any biological application will certainly be
of this type. Most chemically powered motors that have been
devised rely on species in their environment for fuel. If either
the reactants that power the motor or products of the reaction
are themselves involved in other chemical reactions in the en-
vironment, this can have a significant effect on the propul-
sion properties of the motor, as demonstrated in this paper.
We have only considered some of the simplest ways in which
a chemically active medium can influence motor motion.

In addition to being able to understand how a motor re-
sponds to chemical reactivity in the environment, one can
imagine situations where reactions in the environment can be
used to assist or modify motor dynamics for specific tasks. As
in the cubic autocatalysis example studied in this paper, it may
be possible to regenerate fuel locally where it is needed by
environmental reactions that are themselves driven far from
equilibrium by input of reagents at the boundaries. Since it is
known that the efficiency of reaction networks is often greater
when species are input in an oscillatory fashion,53 it may be
possible to improve the efficiency of synthetic motors by os-
cillatory reactions in the bulk phase in which they move. The
fact that the motors rely for their propulsion on nonequilib-
rium conditions sets the stage for other far-from-equilibrium
chemical phenomena in the environment. We have demon-
strated that sphere dimer motors can be reflected by chemical
waves,54 possibly providing a mechanism for the control of
their motion. Systems in nature display variety of stationary
and dynamical chemical patterns with a wide range of length
and time scales.55 Chemically powered motors may be able to
exploit the patterns in these systems to move in specific ways
in the system to perform their tasks. The work presented in
this paper provides an introduction to some of the phenomena
to be expected for chemically powered motors in chemically
active media.
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