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The effects of hydrodynamic interactions on the friction tensors for two particles in solution are
studied. The particles have linear dimensions on nanometer scales and are either simple spherical
particles interacting with the solvent through repulsive Lennard-Jones forces or are composite
cluster particles whose atomic components interact with the solvent through repulsive
Lennard-Jones forces. The solvent dynamics is modeled at a mesoscopic level through multiparticle
collisions that conserve mass, momentum, and energy. The dependence of the two-particle relative
friction tensors on the interparticle separation indicates the importance of hydrodynamic interactions
for these nanoparticles. ©2005 American Institute of Physics. fDOI: 10.1063/1.1924505g

I. INTRODUCTION

Particle dynamics in solution is modified by interaction
with the hydrodynamic modes of the solvent. Disturbances in
the fluid created by the solute molecules are transmitted to
other parts of the fluid through solvent collective modes,
such as the solvent velocity field, and this gives rise to a
long-range hydrodynamic coupling among the solute mol-
ecules. As a result, the motions of particles are coupled by
hydrodynamic interactions even though they may be sepa-
rated by distances greater than the range of direct intermo-
lecular forces.1 Hydrodynamic interactions play an important
role in many processes. The frictional properties of polymer
molecules in solution and the dynamics of structural changes
such as polymer collapse are strongly influenced by hydro-
dynamic interactions among the monomers comprising the
polymer chain.2 Hydrodynamic interactions govern the fric-
tional properties of colloidal suspensions and the full treat-
ment of such interactions for concentrated colloidal suspen-
sions is a challenging task.3

The simplest context in which such hydrodynamic inter-
actions can be investigated is for two particles fixed in a
solution at a distanceR12 and this is the case we study in this
paper. In particular, we examine how the friction depends on
the separation between the two particles. Studies of hydro-
dynamic effects on the two-particle friction are difficult to
carry out by full molecular dynamics because of the need to
simulate large systems for long times in order to be able to
capture the coupling through hydrodynamic fields. To cir-
cumvent this difficulty, we model the solvent at a mesoscale
level that satisfies the microscopic conservation laws and is
therefore able to yield the correct hydrodynamic coupling
among the solute molecules.4,5

The outline of the paper is as follows. In Sec. II we
specify the system being investigated and also sketch the

multiparticle collision dynamics that is used to model the
solvent motions. The friction coefficients that are of interest
in this study are defined in Sec. III. In this section we also
present the results of simulations of the friction for two
smooth spherical Brownian particles interacting with the sol-
vent molecules through repulsive Lennard-Jones forces. In
Sec. IV we consider the more complex situation where the
two Brownian particles are clusters of Lennard-Jones par-
ticles and describe the new features that arise because of the
composite nature of the particles. The conclusions of the
paper are given in Sec. V.

II. DYNAMICS OF TWO BROWNIAN PARTICLES

We study a system with two Brownian particles with
particle massesmB in a solvent or bath ofNs particles with
particle massesm smB@md. The solvent particles are la-
belled 1, . . . ,Ns and have position and velocity coordinates
sr ,vd=hr i ,vi u i =1, . . . ,Nsj. Similarly, for the two Brownian
particles we definesR ,Vd=hRa ,Va ua=1,2j. The general
form of the Hamiltonian for such a system is

HsR,V,r ,vd =
mB

2
V2 + VBBsRd

+
m

2
v2 + Vsssr d + o

a=1

2

VBssRa,r d

= HBsR,Vd + H0sr ,v;Rd. s1d

In this equation we have defined the HamiltonianHB for the
pair of Brownian particles in the absence of solvent and the
HamiltonianH0 for the solvent in the potential field of the
fixed positions of theB particles. The solvent particle-solvent
particle potential energy isVss, the interaction energy be-
tween a Brownian particle and the solvent particles isVBs,
andVBB is the interaction energy between the two Brownian
particles.
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Our calculations of the two-particle friction are carried
out in a mesoscopic solvent rather than in a full molecular
solvent. We adopt the multiparticle collisionsrandom rota-
tiond model for the solvent dynamics.4,6,7 In this model the
intermolecular forces among the solvent molecules are set to
zero sVss=0d and replaced by multiparticle collisions at dis-
crete time intervalst which are carried out in the following
way: the simulation box is partitioned inton3 cellssmultipar-
ticle collision volumesd labeled byj and at each time interval
t rotation operatorsv̂j, chosen at random from a set of ro-
tation operators, are assigned to each cell. In the simulations
described in this paper we use rotations by ±p /2 about a
randomly chosen axis. We have employed random shifting of
the grid used to define the multiparticle collision volumes.8

At any time instant, a cell will contain a certain number
of solvent molecules with velocitiesvi8. Let Vj be the center-
of-mass velocity of the particles in cellj. The postcollision
velocities of the particles in the cell are determined by rotat-
ing the particle velocities, relative to the center-of-mass ve-
locity Vj, by the rotation operatorv̂j, and then addingVj to
the result:

vi = Vj + v̂jfvi8 − Vjg. s2d

Such multiparticle collisions are carried out indepen-
dently in each cell. Between multiparticle collisions the sys-
tem evolves by Newton’s equations of motion that follow
from the Hamiltonian in Eq.s1d with Vss set to zero. This
mesoscopic dynamics satisfies the mass, momentum, and en-
ergy conservation laws. Thus, the dynamics is microcanoni-
cal, preserves phase-space volumes, and will generate the
correct hydrodynamic coupling between the two Brownian
particles on long distance and time scales.4–6

Simulation details

We have carried out molecular-dynamicssMDd simula-
tions for two Brownian particles in a solvent ofNs mesos-
copic particles. Our primary interest is in the situation where
the two Brownian particles are fixed at a given distance or
are massive so that their motion occurs on a long time scale.
We suppose thatVBB=0 so that the only interactions between
the particles are through the solvent. This allows us to isolate
solvent coupling effects without having to account for con-
tributions to the friction arising from direct intermolecular
forces between the Brownian particles.

The Brownian particle-solvent particle interactions,VBs,
are repulsive Lennard-JonessLJd interactions with param-
eters:s=0.3, 0.7 and 1.0 nm, ande=1.006 04 kJ/mol. The
repulsive LJ potential is the same as that used in our study of
the friction of a single Brownian particle.9 Since the solvent
particles are treated as point particless is proportional to the
radius of the Brownian particle. The masses of the solvent
particles arem=3.9948 g/mol. The distances between two
Brownian particles are chosen to lie betweenR12=0.7 and
2.5 nm for s=0.3 nm,R12=1.5 and 2.7 nm fors=0.7 nm,
andR12=2.3 and 4.0 nm fors=1.0 nm. The particle pair is
oriented along thez axis with Brownian particle centers at
−R12/2 andR12/2.

The simulations were carried out in a cubic box of vol-
umeV=L3 with periodic boundary conditions. If the volume
of the Brownian particle isVB= 4

3ps3, V0 is defined as the
volume of the system occupied by solvent molecules,V0

=V−2VB. The multiparticle collision cell volume is given by
Vj=V/n3=sL /nd3=,3. We have takenn=32. Fors=1.0 nm,
the simulation box was changed to a rectangular shape where
the length alongz was doubled and the number of solvent
molecules was doubled. The values ofL andNs were chosen
to fix the number density of solvent particles atrs=Ns/V0

=2035.42 nm−3 or an average of 10 particles per collision
cell so that there are either 327 680 or 655 360 solvent mol-
ecules in the simulation box.

Newton’s equations of motion were integrated using the
velocity Verlet algorithm10 with a time step of Dt
=0.003 388 ps. Multiparticle solvent collisions were carried
out in cells with linear dimension,=L /n=0.17 nm every
100 molecular-dynamics time steps so thatt=100Dt
=0.3388 ps. The temperature, determined from the average
kinetic energy, was taken to beT=40.33 K so that the re-
duced temperaturekBT/e=1/3. The results were obtained
from ensembles of ten microcanonical MD trajectories of
length approximately 68 ns. The statistical errors in the fric-
tion coefficients were determined from block averages over
the ensemble members.

III. TWO-PARTICLE FRICTION

Our focus is on the calculation of the fixed-particle fric-
tion tensor for two Brownian particles.11 The friction tensor
can be obtained from the time integral of the force autocor-
relation function as

zabsR12d = bE
0

`

dtkfas0dfbstdl0, s3d

wherefastd is the random force,

fastd = eiL0tsFa − kFald ; eiL0tfas0d, s4d

andFa is the force on Brownian particlea. The Liouvillian
iL0· =hH0, ·j, whereh·,·j is the Poisson bracket, describes the
evolution governed by the bath HamiltonianH0, again with
Vss set to zero and its effect modeled by multiparticle colli-
sions. Here the angular brackets signify an average over a
canonical equilibrium distribution of the bath particles with
the two Brownian particles fixed at positionsR1 and R2,
k¯l0=Z0

−1edr NdpNe−bH0, . . ., whereZ0 is the partition func-
tion. Isotropy yields the relations,zzz

11=zzz
22, zxx

11=zyy
11=zxx

22

=zyy
22, zzz

12=zzz
21, andzxx

12=zyy
12=zxx

21=zyy
21.

Figure 1 shows the MD simulation results for the two-
particle friction coefficients for two LJ particles withs
=0.7 nm as a function of the interparticle separation,R12. sA
set of calculations was carried out fors=0.3 and 1.0 nm
showing similar trends.d The friction coefficients were ob-
tained from the extrapolation of the time-dependent friction
to t=0 as discussed in our earlier investigation of the friction
coefficient for a single Brownian particle.9

A number of different friction tensors can be defined for
this two-Brownian particle problem since the friction tensor
in Eq. s3d is labeled by particle indices and spatial compo-
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nents. In view of the symmetry properties noted above, we
plot the zzz

absR12d and zxx
absR12d components of the friction

tensor. In this figure we also plot the relative friction defined
by

zs−dsR12d = bE
0

`

dtkf12s0df12stdl0

= 2fz11sR12d − z12sR12dg, s5d

wheref12std is defined by

f12 = F1 − F2. s6d

The components of the friction normal to the intermo-
lecular axis,zxx

11 andzxx
12, are seen to be almost independent of

R12 while the components parallel to this axis,zzz
11 and zzz

12,
increase as the particle separation decreases. This trend is
seen even more clearly in the relative friction wherezxx

s−d is
nearly independent ofR12 and equal to its asymptotic value
of twice the single-particle friction coefficient. The parallel
component,zzz

s−d, increases strongly asR12 decreases.
If the Brownian particles were macroscopic in size, the

solvent could be treated as a viscous continuum, and the
particles would couple to the continuum solvent through slip
boundary conditions in view of the central forces that act
between the Brownian and solvent particles. The single-
particle friction would then be given by Stokes law,zS

=4phs, whereh is the solvent viscosity. The two-particle
friction could be calculated by solving the Navier–Stokes
equations in the presence of the two fixed particles. This is a
well-known problem that has been extensively studied and
exact solutions have been constructed for steady incompress-
ible flows.12,13More tractable expressions obtained using the
method of reflections have also been constructed for the dis-
tance dependence of the friction and mobility tensors.14,15

The Brownian particles in our study are not macroscopi-
cally large so that even the single-particle friction has impor-
tant microscopic contributions and cannot be simply de-
scribed in terms of the Stokes law form.9 In our simulations,
the interactions of the Brownian particles with the solvent

molecules are through repulsive LJ intermolecular forces
rather than through boundary conditions as is usual in hydro-
dynamic treatments of the friction. It is also important to
realize that the mesoscopic solvent is a compressible fluid,
while most hydrodynamic treatments of the friction assume
an incompressible fluid. For these reasons it is very difficult
to construct simple models for our two-particle friction data
and the present simulations probably represent the most ac-
curate description of the dependence of the friction on the
interparticle separation for this system. For these reasons we
have chosen to contrast our simulation results with the pre-
dictions of a a very simple hydrodynamic model simply to
gauge the rough magnitudes of hydrodynamic effects.

If we assume that hydrodynamic interactions between
the particles are given by Oseen interactions, the two-particle
friction tensor takes the form,16

zsR12d = z0fI + z0TsR12dg−1, s7d

wherez0 is the one-particle friction coefficient andTsR12d is
the Oseen tensor,

TabsR12d = s1 − dabd
1

8phR12
s1 + R̂12R̂12d. s8d

Here R̂12 is a unit vector along the interparticleszd axis.
Taking the inverse of the matrix in Eq.s7d we find,11

zzz
11 =

z0

1 − f2hsR12dg2, zxx
11 =

z0

1 − fhsR12dg2 , s9d

zzz
12 =

− 2z0hsR12d
1 − f2hsR12dg2, zxx

12 =
− z0hsR12d

1 − fhsR12dg2 , s10d

wherehsR12d=z0/8phR12.
For comparison, in Fig. 1 we also plot these expressions

for the friction tensor components. There are deviations at
small separations as might be expected since the simple hy-
drodynamic approximations will be poorest at these dis-
tances. Our simulations show thatzxx

12 varies much more
weakly with internuclear separation than the predictions of
the simple hydrodynamic model.

Much more detailed theoretical treatments of the dis-
tance dependence of the friction tensors have been carried
out. In particular, Jones and Schmitz17 have presented a se-
ries of solutions for the mobilitysfrom which the friction can
be computedd as a power series in the ratio of the particle
size to the distance between the particles that provide a better
description of the friction at small separations. The upper
dotted line in Fig. 1 shows that while the theory predicts that
the friction should increase more strongly at small separa-
tions than the simple point particle approximation, the result
still lies below the simulation results.

IV. TWO-CLUSTER FRICTION

The two-particle friction calculations discussed in the
previous section pertain to a somewhat ideal situation since
the two particles interact with the solvent through central
repulsive LJ forces. In most instances of solute molecule
Brownian motion in solution one is concerned with the mo-
tions of large molecules or other aggregates of atomic

FIG. 1. Friction coefficientsskg/mol psd for s=0.7 nm as function of
R12 snmd. P: zzz

s−d, j: zxx
s−d, l: zzz

11, 3: zxx
11, p: zxx

12, and1: zzz
12, respectively.

The solid line indicates twice the single particle friction, 2·z0

=3.242 kg/mol ps, and the other lines from top are the analytic results for
zzz

s−d, zxx
s−d, zzz

11, zxx
11, zxx

12, andzzz
12, respectively. The uppermost dotted line is the

more accurate analytical resultssee textd.
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groups. In such situations the solvent molecules will interact
primarily with the atomic surface sites and macroscopically
one will have stick boundary conditions. To investigate the
issues that come into play when two composite particles in-
teract through the solvent by hydrodynamic forces, we study
the two-particle friction for clusters of particles.

Specifically, theM particles comprising of a cluster in-
teract through LJ forces withecc=1.006 kJ/mol andscc

=0.34 nm. The masses of the cluster particles aremc

=39.948 g/mol. The individual particles in the cluster inter-
act with the solvent molecules through repulsive LJ forces
with ecs=1.006 kJ/mol andscs=0.221 nm. The position of
the center of mass of a cluster is denoted byRa where a
labels the cluster. The LJ forces that bind the cluster particles
together are sufficiently strong that no evaporation of the
clusters is observed on the long time scale of our simula-
tions. The number of solvent molecules per cell isNs/V0

=10, the same as that for two LJ particles in the previous
section.

We first compute the friction of a single cluster in order
to be able to assess the importance of hydrodynamic interac-
tions when two clusters interact through the solvent. The
structure and some aspects of the diffusional motion of
single LJ clusters in the mesoscopic solvent were studied
earlier.18 The numbers of LJ atoms in a cluster were chosen
to be M =25, 50, 100, and 155. The structure of the cluster
can be determined from an examination of the radial distri-
bution functions for cluster and solvent molecules relative to
the center of masssc.m.d of the cluster which are defined as

gc.m.−nsrd =
1

4pr2rn
Ko

i

Nn

dsur i − R1u − rdL , s11d

wheren=c or s labels a cluster or solvent molecule,R1 is the
center of mass of the cluster, andrn is the number density of
cluster or solvent molecules. Figure 2 shows these radial
distribution functions for a cluster withM =155 particles.
The highly structured cluster particle radial distribution func-
tion with sharp peaks indicates that the cluster is solidlike.
The solvent molecule distribution function shows that sol-
vent molecules do not penetrate deeply into the cluster so
that most cluster-solvent interactions are with the surface
cluster particles. The radius of the clusterrc can be estimated

from the radial distribution functions and was found to be
rc<1.0 nm. For clusters withM =25, 50, and 100 we find
rc<0.54, 0.66, and 0.85 nm, respectively.

The friction coefficient for cluster is defined in terms of
the autocorrelation function of the force on the center of
mass of the cluster,

zc = bE
0

`

dtkf1
cs0df1

cstdl0, s12d

wheref1
c=F1

c−kF1
cl with F1

c the total force on the cluster cen-
ter of mass,F1

c=M−1oi=1
M Fi whereFi is the force on cluster

particlei. Notice that this expression for the friction includes
contributions from cluster particle-cluster particle interac-
tions as well as cluster particle-solvent particle interactions.

In our calculations of the friction, the center of mass of
the cluster was fixed by a holonomic constraint.19 Figure 3
plots the friction coefficients, obtained from the extrapola-
tion of the time-dependent friction tot=0, versus the cluster
radiusrc. We see that the friction increases linearly withrc,
indicative of a significant hydrodynamic component to the
friction for these nanometer scale composite particles. If the
clusters were macroscopic objects in an incompressible fluid
one would expect Stokes law to hold with stick boundary
conditions. In the figure we plotzS=6phrc for comparison.
The slope of the cluster simulation data is larger than that
predicted by Stokes law, presumably due to the fact that
macroscopic theory is not fully applicable to these mesoscale
particles and there are internal contributions to the friction.

The diffusion coefficient of the cluster was also com-
puted from both the mean-square displacement and center-
of-mass velocity autocorrelation function for the moving
clusters. The results are shown in Fig. 4 as a function of the
number M of cluster particles. As expected, the diffusion
coefficient falls rapidly as the number of particles in the clus-
ter increases. We also plot estimates of the cluster diffusion
coefficient using the Stokes–Einstein relation with the fric-
tion coefficient approximated by its simulation value when
the center of mass of the cluster is fixed and the Stokes value
of the friction for stick boundary conditions. While these
estimates show a similar dependence onM, especially that

FIG. 2. Radial distribution functionsgCM−csrd ssolid lined andgCM−ssrd sdot-
ted lined vs rsnmd for M =155.

FIG. 3. The friction coefficientsskg/mol psd zc sPd andzS=6phrc sld as
function of radius of cluster,rc.
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obtained using the simulation value ofzc, there are quantita-
tive differences likely due to the use of the fixed-particle
friction.

Having characterized the frictional properties of a single
cluster, we turn to the study of the two-cluster friction coef-
ficient. Specifically, we consider two clusters, each withM
=25 particles, separated by distances ranging fromR12

=0.15 to 0.27 nm between their centers of mass. The cluster
separation was held fixed by a holonomic constraint. Again
the particles within each cluster interact through LJ forces
and with the solvent through repulsive LJ forces. There are
no direct interactions between the particles in different clus-
ters. An example of a two-cluster configuration in the meso-
scopic solvent is shown in Fig. 5. We see that the clusters are
not spherical and various cluster configurations contribute to
the value of the two-cluster friction.

The cluster relative friction coefficients,zc
s−dsR12d, were

computed using the analog of Eq.s5d and the results are
shown in Fig. 6 as function of the intercluster separation,
R12. As for the two LJ particle case, the component of the
relative friction along the cluster internuclear axisfzc,zz

s−d g ex-
hibits a strong variation with decreasing internuclear separa-
tion. The normal component of the frictionfzc,xx

s−d g is almost
independent ofR12 and is closely approximated by twice the
single cluster friction coefficient. For comparison, we also
plot on this graph the hydrodynamic approximation to the
relative friction determined from Eqs.s9d and s10d with zc,0

given by the simulation result for the single cluster friction.
In this approximation the hydrodynamic interactions are
treated assuming that the clusters are structureless objects.
This simple Oseen hydrodynamic approximation predicts a

much stronger variation withR12, especially for the normal
component of the relative friction. Most of this difference
can be ascribed to differences inzc,xx

12 sR12d. We have also
examined the solvent particle distribution in the vicinity of
the clusters, in particular, for small inter-cluster separations.
Even at the smallest internuclear separation in our study, the
solvent particles lie between the clusters, although the sol-
vent density is reduced. Consequently, a decrease in the fric-
tion due to a strong particle depletion effect does not seem to
play an important role. This is evident in the simulation data
which show a rising relative friction coefficient even at the
shortest distances.

V. CONCLUSION

The computation of the friction coefficient is a demand-
ing task for molecular-dynamics simulation. Large system
sizes and long simulation times are needed to accurately es-
timate the friction. The determination of the two-particle
friction tensors is even more challenging. The use of the
mesoscopic multiparticle collision model for the solvent dy-
namics has allowed us to carry out extensive simulations of
the effects of hydrodynamic interactions on the friction ten-
sors for nanoscale LJ and composite cluster particles. Since
the particles have nanometer dimensions they lie in the in-
termediate size range where a pure hydrodynamic treatment
is not fully applicable and yet solvent collective effects are
sufficiently large that hydrodynamic contributions are likely
to play an important role. Our simulations bear out these
considerations. We find clear signatures for the importance of
hydrodynamic effects. Hydrodynamic effects manifest them-
selves in the magnitudes of the single-molecule friction co-
efficients. The dependence of the two-particle friction on the
interparticle separation is clear evidence for the influence of
hydrodynamic interactions on this transport property. Simple
hydrodynamic models cannot quantitatively describe the
simulation results.

The mesoscopic multiparticle collision dynamics con-
serves mass momentum and energy and as a result can cap-
ture correctly the hydrodynamic interactions among solute
species. In this connection, the model has proved useful in
studies of polymer20–23and colloid24,25dynamics where such

FIG. 4. Diffusion coefficientss10−4 nm2/psd of moving clusters as function
of number of cluster particles,M, obtained from mean-square displacement
sPd, velocity autocorrelation functionssld, andD=kBT/z with zc sjd and
with zS smd.

FIG. 5. Instantaneous configuration of two clusters withM =25 particles and
separated byR12=1.5 nm in the mesoscopic solvent.

FIG. 6. Friction coefficientsskg/mol psd for M =25 as function ofR12 snmd.
P: zc,zz

s−d and j: zc,xx
s−d , respectively. The solid line indicates 2·zc,0

=4.516 kg/mol ps, and the other lines from top are the hydrodynamic re-
sults forzc,zz

s−d andzc,xx
s−d , respectively.
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hydrodynamic interactions are important and yet are difficult
to model by other techniques such as Brownian dynamics. In
Brownian dynamics the spatially dependent friction tensors
must be supplied as input. Analogous considerations apply to
diffusion-influenced reactions where the long-range diffusion
coupling influences reaction rates.26 The present calculations
have shown that the hydrodynamic interactions among small
solute species can be described in such simulations and thus
provide a basis for studies of more complex molecular sys-
tems in solution.
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