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Abstract

The structural properties and dynamics of molecular clusters embedded in a mesoscopic solvent
are investigated. The solvent interactions are taken into account through a multi-particle collision
operator that conserves mass, momentum and energy and the solvent dynamics is updated at
discrete time intervals. The cluster particles interact among themselves and with the solvent
molecules through intermolecular forces. The properties of large and small Lennard–Jones clusters
interacting with the mesoscopic solvent molecules through repulsive Lennard–Jones interactions
are studied as a function of the potential parameters. Modi0cations of both the cluster and solvent
structure as a result of solute–solvent interactions are considered. Since the solvent dynamics
correctly reduces to that given by the hydrodynamic equations on long distance and time scales,
the e2ects of hydrodynamic interactions on single and multi-particle di2usion are taken into
account. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In many instances, one is interested in the dynamical behavior of <uids on long
distance and time scales and in such regimes a continuum description is appropriate.
The use of the Navier–Stokes equations to describe <uid <ow is a prime example
of such a case. If macroscopic particles, such as large colloidal particles, are em-
bedded in a continuum solvent, their dynamics and interactions are in<uenced by the
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hydrodynamic properties of the medium. The hydrodynamic 0elds couple to the par-
ticles through boundary conditions at the surfaces of the particles [1,2]. Approaches
of this type can be used to understand how Brownian particle dynamics is driven by
hydrodynamic 0elds [3] and how hydrodynamic interactions contribute to the structure
of the friction or di2usion tensors of the macroscopic particles [4–8].
When the solvent dynamics is not treated explicitly but its e2ect is accounted for in

terms of frictional and random forces, the dynamics of embedded particles is described
by Langevin equations of motion. In Langevin equation approaches of this type, often a
position-dependent friction tensor is employed to account for hydrodynamic interactions
among the particles.
Hydrodynamic approaches have also proved very successful in describing the dynam-

ics of small molecules in solution [9]. For microscopic particles, there is considerable
ambiguity concerning the nature of the boundary conditions that should be applied at
the particle surface and, indeed, one should investigate the validity of these models
in view of the microscopic space and time scales [10]. In addition, there are subtle
features involved in the microscopic derivations of multi-particle Langevin descriptions
of particle dynamics from the full evolution equations [11,12].
We have recently constructed a mesoscopic model for <uid dynamics [13]. In this

model, which is a variant of direct simulation Monte Carlo (DSMC) [14,15], <uid par-
ticles interact through multi-particle collision events which take place at discrete time
intervals. Between such collision events the particles undergo free streaming motion.
The dynamics conserves mass, momentum and energy and yields the exact hydro-
dynamic equations of motion for the conserved 0elds on long distance and time scales.
One may consider the dynamics of solute molecules in this mesoscopic solvent and
because the solvent is described at an e2ective particle level the solute and solvent
molecules interact through intermolecular forces rather than through boundary condi-
tions. This leads to a hybrid description of the dynamics where solute molecules evolve
by Newton’s equations of motion but the solvent evolves through the multi-particle
mesoscale dynamics [16].
Part of the utility of such a method is that motions of large molecular entities with

nanometer length scales should be described in a physically meaningful fashion which
accounts for the speci0c nature of the interactions with the solvent that occur on short
scales and also takes into account the hydrodynamic solvent e2ects on the motion that
occur on long scales. Both e2ects play important roles in conformational changes in
large proteins and other biomolecules. An application of a variant of the hybrid MD
scheme has been applied recently to a study of polymer dynamics [17].
In this paper, we consider the dynamics of Lennard–Jones clusters with sizes ranging

from a few to over a 100 particles in order to investigate the dynamics of complex
molecular entities in the mesoscopic solvent. Conditions are chosen so that the clusters
persist in vacuum in liquid-like states for long time periods without evaporation. We
then study the modi0cations in the cluster structure and dynamics when they are em-
bedded in the mesoscale solvent. The intermolecular interactions with the solvent are
varied to investigate how the cluster properties change.
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The outline of the paper is as follows: Section 2 summarizes both the mesoscale
<uid dynamics and the hybrid molecular dynamics–mesoscale solvent model. Section 3
presents results for the cluster dynamics in vacuum and in the mesoscale <uid sol-
vent. Both small and large clusters are considered in order to explore di2erent degrees
of contact between the solvent and cluster molecules. Comparisons with continuum
theories are made. The conclusions of the study are presented in Section 4.

2. Model for cluster dynamics in a mesoscopic solvent

The system we investigate comprises a cluster, whose particles interact through at-
tractive intermolecular forces, embedded in a solvent whose dynamics is treated at
a mesoscopic level. The solvent molecules labeled 1; : : : ; N have phase space co-
ordinates (r(N ); v(N ))= (r1; r2; : : : ; rN ; v1; v2; : : : ; vN ), while the cluster particles, labeled
N+1; : : : ; N+M have phase space coordinates (r(M); v(M))= (rN+1; rN+2; : : : ; rN+M ; vN+1;
vN+2; : : : ; vN+M ).
The total potential energy of the system is made up of cluster particle–cluster particle

and cluster particle–solvent molecule interactions,

V (r(M); r(N ))=Vcc(r(M)) + Vcs(r(M); r(N )) : (1)

There are no solvent molecule–solvent molecule interactions since these are taken into
account by multi-particle collisions in the mesosopic treatment of the solvent dynamics.
To carry out multi-particle solvent molecule collisions, the system is partitioned into

cells and time is divided into discrete time intervals �. At any time instant, a cell will
contain a certain number of solvent molecules. At the discrete time instants, the solvent
molecules undergo multi-particle collisions which are carried out in the following way:
each cell is assigned at random a rotation operator !̂ from a set of rotation operators,

. The velocity of each solvent molecule in the cell is rotated relative to the center
of mass velocity of the molecules in the cell V by the rotation operator !̂,

vi → V + !̂[vi − V] : (2)

Such multi-particle collisions are carried out independently in each cell.
For times between the discrete time intervals at which solvent multi-particle collisions

take place, all particles in the system, cluster particles and solvent molecules, evolve
according to Newton’s equations of motion,

ẋi= vi ;

mi v̇i=− @V
@ri

=Fi ; (3)

where mi is the mass of particle i and the potential energy V is that given in
Eq. (1). If the solvent molecules are within the range of interaction of the solvent–
cluster potential energy, then their dynamics is in<uenced by these interactions; other-
wise they simply undergo free streaming motion.
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In the absence of cluster particles, the mesoscale solvent dynamics is a variant of
DSMC [14,15] with a modi0ed collision rule. The multi-particle collision dynamics
conserves the mass, momentum and energy in each cell. The phase space volume is
preserved and the collision rule ensures that an equilibrium microcanonical ensemble
distribution exists. The solvent dynamics can be compactly formulated in terms of the
following kinetic equation for the phase space probability distribution function [13]:

P(v(N ); r(N ) + v(N ); t + �)=CP(v(N ); r(N ); t) ; (4)

where the collision operator C is given by

CP(v(N ); r(N ); t)

=
1

||
||L
∑

L

∫
dMv(N )P(Mv(N ); r(N ); t)

N∏
i=1

�(vi − V� − !̂�[Mvi − V�]) ; (5)

and Mv(N ) = (Mv1; Mv2; : : : ; MvN ) denotes the set of pre-collision velocities and � is the coor-
dinate of a coarse-grained cell of the system. From an analysis of this equation, we
have shown that the mesoscopic solvent model correctly describes the hydrodynamics
of the conserved variable 0elds [13].

2.1. Simulation method

Given the above description of the model, the system Hamiltonian is

H =
∑
i

1
2
miv2i +

∑
i¡j

V�i�j (|ri − rj|) ; (6)

where �i= c if i is a cluster particle and s if it is a solvent molecule. The cluster
particles interact with each other via Lennard–Jones (LJ) potentials,

Vcc=4�cc

[
�12cc
r12

− �6cc
r6

]
; (7)

while the cluster particle–solvent molecule interactions are repulsive and are given by
truncated LJ potentials,

Vcs(r)=

{
4�cs[

�12cs
r12 − �6cs

r6 + 1
4 ]; r 6 21=6�cs

0; r ¿ 21=6�cs
: (8)

The cluster particle–cluster particle interaction parameters are �cc=0:34 nm and �cc=
1:00604 kJ=mol and the values for the cluster particle–solvent molecule interactions
are �cs=1:00604 kJ=mol with �cs taking either of two values, 0.17 or 0:221 nm. The
masses of the cluster particles are mc=39:948 g=mol and the solvent molecules have
masses ms=3:9948 g=mol.
The simulations were carried out in a cubic box of length L=5:44 nm with periodic

boundary conditions containing N =327 680 solvent molecules with number density
�s=2035:42 nm−3. Clusters with M =5; 25 and 123 particles were studied. Newton’s
equations of motion were integrated using the velocity Verlet algorithm [18,19] with a
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time step of Ot=0:002 ps. To perform multi-particle solvent collisions, the simulation
box was divided into (32)3 cells. Multi-particle solvent collisions were carried out every
50 molecular dynamics time steps so that �=0:1 ps. At these discrete time intervals,
the velocities of all solvent particles in a frame moving with the velocity of the center
of mass of the particles in each cell were rotated by �=2 along a randomly chosen
direction independently in each cell.

3. Cluster structure and dynamics

Although isolated clusters are metastable, for some temperature ranges and potential
parameters they can persist for long enough time periods so that their “equilibrium”
properties can be established. For example, both Lennard–Jones and molecular clusters
composed of tens to thousands of molecules have been investigated by simulation
methods and have been shown to exist in a variety of thermodynamic states, including
solid and liquid states [20–30]. In this section, we consider LJ clusters that exist in
the liquid state in vacuum and examine how the structure and dynamics of the clusters
changes when they are embedded in a mesoscopic solvent.

3.1. Cluster structure

We begin with a discussion of moderately large clusters with sizes of M =25 and 123
particles (Fig. 1). At temperatures of T =40:33 K (T ∗ =0:33) and 48:4 K (T ∗ =0:4),

Fig. 1. Radial distribution function gCM−c(r) versus r∗ = r=�cc for M =25 (solid line) and M =123 (dotted
line) clusters in vacuum.
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Fig. 2(a)–(b). Radial distribution function gCM−c(r) versus r∗ for �cs =0:17 nm (left) and �cs =0:221 nm
(right) for M =25 clusters in the mesoscale solvent (solid lines); vacuum cluster (dotted lines). Also shown
is the solvent radial distribution function gCM−s(r) (dashed lines).

respectively, these clusters exist in the liquid state and persist with little or no evapo-
ration during the 1–2 ns of our simulations.
It is convenient to characterize the cluster structure in terms of the radial distribution

functions for cluster and solvent molecules relative to the center of mass of the cluster.
These distribution functions are de0ned by

gCM−�(r)=
1

4�r2��

〈
N�∑
i

�(|xi − RCM | − r)

〉
; (9)

where �= c or s designates a cluster or solvent molecule, RCM is the center of mass
of the cluster and �� is the number density of cluster or solvent molecules. In this
expression, we take �c= �−3

cc =25:44 nm−3 and �s=2035:42 nm−3.
Fig. 1 shows this radial distribution function for two clusters in vacuum with M =25

and 123 particles at temperatures of T ∗ =0:33 and T ∗ =0:4, respectively. The results
were obtained by performing constant temperature MD simulations to thermalize the
clusters at the desired temperature, followed by a 1–2 ns constant energy simulation to
obtain the information needed to compute the radial distribution function. The graphs
of gCM−c(r) show liquid-like distributions of cluster particles at these temperatures
and structural ordering within the clusters. Two prominent cluster particle layers are
seen in the M =25 cluster and three prominent layers in the M =123 particle cluster.
Such structural features in large liquid LJ clusters have been seen in earlier investiga-
tions [24–26]. We have veri0ed the liquid-like character of cluster by computing the
mean-square displacement of the cluster particles.
Next, we consider the modi0cations in the cluster structure that occur when the

clusters are embedded in the mesoscopic solvent. Since the solvent interacts with the
cluster particles through repulsive intermolecular forces, we can study the modi0cations
in the cluster structure and dynamics as a function the parameters in these interactions.
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Fig. 3. Instantaneous cluster con0gurations for M =25 clusters with �cs =0:17 nm (left) and �cs =0:221 nm
(right) showing the liquid-like and solid-like structures of these two cases. The solvent molecules are not
shown in these 0gures.

Due to the mesoscopic treatment of the solvent, its equation of state is the ideal
gas law in the absence of any embedded particles. The actual pressure felt by the
cluster molecules depends on the cluster particle–solvent molecule interactions. In the
calculations described below, we 0x �cs= �ss and vary �cs. The M =25 cluster radial
distribution functions are shown in Figs. 2 (left) and (right) for �cs=0:17 nm and
�cs=0:221 nm, respectively. These results may be compared with the corresponding
vacuum values also shown in the 0gure. Also, in these 0gures we show the radial
distribution functions gCM−s(r) for the solvent molecules relative to the cluster center
of mass. The structures of the radial distribution functions are similar in vacuum and
in the mesoscopic solvent for �cs=0:17 nm but considerable structural changes take
place when �cs=0:221 nm. For �cs=0:221 nm the cluster is compressed and actually
adopts a solid-like con0guration. These di2erences are seen in cluster con0gurations
drawn from the molecular dynamics simulation shown in Fig. 3.
The origin of this di2erence can be found in the structure of the solvent molecule–

cluster particle distributions. For �cs=0:17 nm, the solvent molecules are able to pene-
trate into the cluster while for �cs=0:221 nm they are not able to do so. Consequently,
in the latter case, the solvent provides a larger external force on the cluster which com-
presses it and induces a solid-like structural con0guration.
The results presented in Fig. 4 for gCM−c(r) and gCM−s(r) for clusters with M =123

particles exhibit structural changes similar to those for the M =25 particle clusters.
Again, for �cs=0:17 nm solvent molecules are able to penetrate into the cluster interior
and cluster structure exhibits only small changes compared to that in its vacuum state.
For �cs=0:221 nm, there is almost no penetration into the cluster by solvent molecules
and the cluster adopts a solid-like structure.
For the large compact clusters considered above we have two situations. For �cs=

0:17 nm solvent penetrates the cluster, however, the solvent molecules within the clus-
ter cannot be regarded as a continuum since they are few in number and their dy-
namics is dominated by cluster particle–solvent molecule intermolecular forces. For
�cs=0:221 nm solvent molecules are not able to penetrate into the interior of the
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Fig. 4(a)–(b). Radial distribution function gCM−c(r) versus r∗ for �cs =0:17 nm (left) and �cs =0:221 nm
(right) for M =123 clusters in the mesoscale solvent (solid lines); vacuum cluster (dotted lines). Also shown
is the solvent radial distribution function gCM−s(r) (dashed lines).

Fig. 5. Radial distribution function gCM−c(r) versus r∗ for the LJ cluster with M =5: vacuum cluster (dotted
line); cluster in mesoscale solvent (solid line); solvent radial distribution function gCM−s(r) (dashed line).

cluster and the cluster structure is determined mainly by intermolecular forces at the
cluster surface. Consequently, it is of interest to investigate the structure and dynamics
of a small cluster where all cluster molecules are in close contact with the mesoscale
solvent.
For this purpose we take M =5 and LJ parameters �cc=5:0302 kJ=mol and �cc=

0:34 nm. The mean kinetic energy of the particles was chosen to correspond to a clus-
ter temperature of T =85 K. For these parameters, this small cluster persists without
evaporation for the duration of our simulations (1 ns) and is liquid-like. The radial
distribution function gCM−c(r) is shown in Fig. 5 and displays two prominent peaks
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Fig. 6(a)–(b). Instantaneous cluster con0gurations for the M =5 cluster; in mesoscopic solvent (left) and in
vacuum (right).

re<ecting the structural ordering in this small cluster. The peak at small r corresponds
to two particles while that at larger r corresponds to three particles. Two cluster con-
0gurations drawn from the molecular dynamics simulation are shown in Fig. 6.
If this cluster is embedded in a mesoscopic solvent which interacts with the cluster

particles through truncated LJ potentials with �cs=1:00604 kJ=mol and �cs=0:17 nm,
the cluster structure and dynamics is modi0ed. Fig. 5 compares the resulting cluster
radial distribution with that for the vacuum cluster. The repulsive interactions with the
solvent molecules have the e2ect of making the cluster more compact and increasing
the structural ordering within the cluster as re<ected in the more prominent peaks
in gCM−c. The solvent radial distribution function indicates that the solvent molecule
density in the cluster particle vicinity is lower than that in the bulk of the solvent
but nevertheless solvent molecules are found in signi0cant numbers throughout the
cluster—all cluster particles feel the in<uence of solvent molecules.

3.2. Cluster di4usion and dynamics

The vacuum clusters were prepared with no net translation of the center of mass
of the cluster; however, in the presence of the solvent, the cluster as a whole may
di2use and this di2usion provides information on the interactions of the cluster with its
environment. In general, one may expect that the di2usion of such complex molecular
entities with internal dynamics will not be simple. Nevertheless, we shall show that
simple hydrodynamic models, while unable to quantitatively characterize the di2usion
coeScients, are able to capture some of their qualitative aspects.
The mean-square displacement of the center of mass of the cluster was found to

vary linearly with time and the di2usion coeScients were extracted from this data. We
use the notation DCM (M ; �cs) to label the various cluster di2usion coeScients since
their values will depend on the cluster size and the nature of the interactions with the
solvent. We 0nd values of DCM (25; 0:17)=9:6× 10−7 cm2=s, DCM (25; 0:221)=1:3×
10−6 cm2=s, DCM (123; 0:17)=3:9 × 10−7 cm2=s, DCM (123; 0:221)=4:3 × 10−7 cm2=s,
and DCM (5; 0:17)=5:7× 10−6 cm2=s.
The large compact clusters with M =25 and 123 will appear as rough nearly spher-

ical objects to the mesoscopic solvent and on large enough scales the interactions with
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the solvent should be mimicked by stick boundary conditions at the cluster surfaces to
the surrounding <uid with viscosity ". Consequently, in this large particle limit, one
might expect the di2usion coeScient to be given approximately by the Stokes–Einstein
relation:

DSE =
kBT
6�"Rc

; (10)

where Rc is the radius of the cluster.
We use the notation Rc(M ; �cs) to denote the dependence of Rc on the cluster size and

�cs values. From the radial distribution function data one may obtain crude estimates of
the cluster sizes and we 0nd Rc(25; 0:17) ≈ 2:25, Rc(25; 0:221) ≈ 1:6, Rc(123; 0:17) ≈
3:5, Rc(123; 0:221) ≈ 3:0 and Rc(5; 0:17) ≈ 1:0 in units of �cc. The viscosities of
the bulk mesoscopic solvent may be obtained by direct simulation of the autocorrela-
tion expressions for the viscosity [13]. We 0nd the values "(25)= 5:0× 10−4 N s=m2,
"(123)=6:5×10−4 N s=m2 and "(5)= 1:0×10−3 N s=m2 for the viscosities appropriate
for the three cluster cases studied here. (The viscosities are labeled by the cluster size
M although the viscosity is that for the bulk solvent in the absence of a cluster. This
notation is used since the temperature of the system is di2erent for di2erent cluster
sizes and this a2ects the value of the viscosity.)
Using these values of the radii and viscosities in the Stokes–Einstein relation for the

di2usion coeScient, we 0nd DSE(25; 0:17)=7:8× 10−7 cm2=s, DSE(25; 0:221)=1:1×
10−6 cm2=s, DSE(123; 0:17)=4:6×10−7 cm2=s, DSE(123; 0:221)=5:4×10−7 cm2=s and
DSE(5; 0:17)=1:8 × 10−6 cm2=s. These results should be compared to the values ex-
tracted from the mean square displacements of the centers of mass of the clusters. The
results are in qualitative agreement although there are quantitative discrepancies. Such
di2erences are to be expected in view of the fact that the clusters are not macroscopic
objects and cluster molecules interact with the solvent via intermolecular forces so the
radii to be used in the Stokes–Einstein relation are not precisely determined. In addi-
tion, the clusters are not simple spheres but have internal structure and dynamics. Note
that for M =5 where such a model is expected to have the least validity the result is
much farther from the Stokes–Einstein value but still re<ects the large hydrodynamic
contribution to the di2usion coeScient. (See Ref. [10] for a discussion of microscopic
and hydrodynamic contributions to the di2usion coeScient.)
For the larger clusters the general trends in the di2usion data are in accord with the

simple scaling predicted by the Stokes–Einstein law for the larger clusters. The ratios
of the di2usion coeScients should be inversely related to the ratio of the cluster radii
if the Stokes–Einstein relation is valid. We have DCM (25; 0:221)=DCM (25; 0:17)≈ 1:35
while Rc(25; 0:17)=Rc(25; 0:221)≈ 1:4. For the larger M =123 cluster we have DCM
(123; 0:221)=DCM (123; 0:17)≈ 1:1 while Rc(123; 0:17)=Rc(123; 0:221)≈ 1:2. These re-
sults con0rm that the mesoscopic solvent acts like hydrodynamic continuum on large
distance and time scales and is able to reproduce the hydrodynamic e2ects responsible
for the di2usive motion.
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Fig. 7. Residence time correlation function Cs(t) versus time for the M =25 particle cluster with �cs =0:17.

It is interesting to study the dynamics of the solvent molecules that penetrate into
the cluster interiors for �cs=0:17. To investigate the dynamics of these trapped solvent
molecules, we have computed their mean residence time within the cluster in the
following way. Let ((Rc − |ri(t)−RCM |) be the characteristic function which is unity
if the solvent particle i is within the cluster with radius Rc at time t and zero otherwise.
The residence time correlation function is de0ned as

Cs(t)=N−1
s

Ns∑
i=1

〈((Rc − |ri(t)− RCM |)((Rc − |ri(0)− RCM |)〉 ; (11)

where Ns is the average number of solvent molecules in the cluster at time zero and
the angle brackets signify an average over realizations of the cluster preparation. A
plot of Cs(t) versus t is shown in Fig. 7. The residence time extracted from this
exponential decay is �R(25; 0:17)=8:33 ps. The decay in Fig. 7 and the value of the
mean residence time provide information on the nature of the di2usive escape of a
collection of small molecules from a compact, dynamic collection of large scatterers.

4. Conclusion

The results of this investigation have shown that the hybrid molecular dynamics–
mesoscopic solvent dynamics model provides a route for the description of the structural
modi0cations and dynamics of large molecular entities in a <uid environment. Spe-
ci0c structural modi0cations were seen to arise from the variations of the mesoscopic
solvent–solute particle interactions. In dealing with large molecules in various types
of solvent environments, such as polar or non-polar, hydrophobic or hydrophilic in-
teractions, molecular structural changes will occur as a result of the speci0c nature
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of these interactions. However, the large scale motions of these groups are likely to
be governed by the hydrodynamic 0elds of the surrounding solvent rather than these
speci0c interactions. For the relatively simple cluster systems considered here we have
shown that both these e2ects can be captured by the hybrid model with a mesoscopic
treatment of the solvent.
As a result of the solvent–solute molecule interactions, the solvent structure is also

non-trivial in the vicinity of the solute molecules. However, because of the manner
in which the solvent dynamics is carried out solvent–solvent structural features are
absent—the equation of state for the <uid solvent alone is that of an ideal gas. Con-
sequently, the solvent structural correlations in the vicinity of the solvent re<ect only
the solvent–solute interactions and are, therefore, not completely correct. The extent to
which such correlations may be neglected depends on the application. The extension
of the hybrid model to incorporate such structural e2ects in the vicinity of the solute
remains a topic for research.
The results presented here suggest that the combination of full molecular dynamics

for certain species embedded in a <uid which is treated at a mesoscopic level is a
fruitful way to treat aspects of the structure and dynamics that goes beyond simple
hydrodynamic and Langevin descriptions. This method could 0nd application in the
study of a variety of chemical rate processes involving large scale conformational
changes and other problems in biological and microcolloidal dynamics.
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