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A mesoscopic model for protein enzymatic dynamics in solution
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A multi-scale, coarse-grained description of protein conformational dynamics in a solvent is

presented. The focus of the paper is on the description of the conformational motions that may

accompany enzyme catalysis as the enzyme executes a catalytic cycle, starting with substrate

binding and ending with product release and return to the original unbound enzyme. The protein

is modeled by a network of beads representing amino acid residues, the solvent is described by

multiparticle collision dynamics, and substrate binding and unbinding events are modeled

stochastically by conformation-dependent transitions that modify the bonding in the network to

correspond to the different binding states of the protein. The solvent dynamics is coupled to that

of the protein and hydrodynamic interactions, which are important for the large-scale protein

motions, are taken into account. The multi-scale model is used to study the dynamics of the

adenylate kinase enzyme in solution. A potential function that describes the different binding and

conformational states of the protein and accounts for partial unfolding during the catalytic cycle

is constructed as a network built from elastic network and soft potential links. The

conformational dynamics of the protein as it undergoes cyclic enzymatic dynamics, as well as its

translational diffusion and orientational motion, are investigated using both multiparticle collision

dynamics and dynamics that suppresses hydrodynamic coupling. Hydrodynamic interactions are

found to have important effects on the large scale conformational motions of the protein and

significantly affect the translational diffusion coefficients and orientational correlation times.

1. Introduction

Many biochemical processes rely on the catalytic activity of

proteins acting as enzyme molecules since they greatly increase

the rates of biochemical reactions. While enzymes operate by a

variety of mechanisms, a common mode of operation involves

large-scale conformational motions of protein domains in

order to bring reactants into a configuration where reaction

is possible. In such cases, the enzymatic cycle comprises the

binding of one or more substrates to active sites in the protein,

conformational changes induced by or accompanying the

binding events, and reaction and product release which triggers

return of the enzyme to its initial set of conformations in

preparation for the next set of substrate binding events.1

Enzymatic cycle times are typically long and the large-scale

conformational motions are strongly influenced by both

fluctuations and solvent interactions. Apart from specific

solvent effects such as binding of water to certain parts of

the protein and exclusion of water from the active site in order

to enhance the efficiency of catalytic reactions, solvent hydro-

dynamical modes also play a role in the dynamics. Solvent

collective modes can dissipate energy within the protein and

can give rise to hydrodynamic coupling among remote parts of

the protein, which changes the time scales on which large-scale

protein motions occur.

A full description of such enzymatic processes should

incorporate a molecular-level description of the enzyme,

substrate binding, product formation and release processes,

and a molecular-level description of the solvent in which the

dynamics takes place. While molecular dynamics has proved

to be a powerful simulation tool for the study of the

conformational dynamics of proteins,2,3 it is very difficult to

study many enzymatic cycles, or even a single cycle, at a fully

microscopic level using molecular dynamics, although recent

computational advances have allowed long time scale simula-

tions of the folding of small proteins to be carried out.4,5

Consequently, in order to study the dynamics of large proteins

in solution over many enzymatic cycles, one must rely on
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coarse-grain multi-scale methods.6–10 Features such as the

large scale motions of the proteins and the influence of solvent

collective motions on this dynamics can be described by

models that neglect some aspects of the molecular detail.

In this article we present a mesoscopic dynamical model that

can be used to investigate ligand-induced conformational

changes in enzymatic cycles in solution. Coarse graining

appears in several aspects of the model: both the protein and

solvent are described at a coarse grained level, in addition, the

time evolution of the entire system, protein plus solvent, is

carried out by combining molecular dynamics (MD) for the

protein and multiparticle collision (MPC) dynamics11,12 for

the solvent. This hybrid MD-MPC scheme preserves the

important conservation laws but allows for efficient simulation

of the dynamics. The method and phenomena are illustrated

by considering the dynamics of adenylate kinase in solution.

This well-studied protein catalyzes the reversible conversion of

ATP and AMP into two molecules of ADP and forms an

essential part of many cellular processes. The protein undergoes

large-scale domain motions in the course of a single catalytic

cycle in order to bring the reactants into a configuration

favorable for product formation and release; thus, its dynamics

requires all components of our mesoscopic model.

In Section 2 we describe, in general terms, the ingredients of

our mesoscopic model: protein potential, solvent dynamics

and solvent coupling to the protein, and the description of

substrate binding and unbinding events. Section 3 shows how

a mesoscopic model for the enzymatic dynamics of adenylate

kinase in solution can be constructed. The results of simulations

of the model are presented in Section 4 while the conclusions

of the study are given in Section 5.

2. Mesoscopic model of enzyme dynamics

2.1 Protein model

As in many other studies we adopt a coarse grained description

of the protein where each of the Np amino acid residues is

represented by a single bead.13 The potential energy of the

protein VP(R) is a function of the coordinates R =

(R1,R2,. . .,RNp
) of the protein beads and we assume it may

be represented by a sum of pair-wise interactions among the

beads. Since we are interested in situations where the protein

undergoes large conformational changes as a result of ligand

binding and product release processes, VP(R) must be able to

describe very different equilibrium conformations of the pro-

tein in various ligand bound and unbound states, as well as the

transitions between these states.

In a full treatment of the enzymatic cycle, even at a coarse

grained level of description, we must consider the binding of

ligands to the enzyme and the subsequent formation of new

bonds and breaking of other bonds as the enzyme–substrate

complex evolves to a new conformational state. Similar con-

siderations apply to the dissociation of the complex to form

the enzyme and product. Rather than explicitly considering

the dynamics of substrate and product molecules in these

processes,14,15 we focus on the state of the protein with bound

or unbound substrates or products. Such structure-based

models have been used to study protein conformational

changes upon ligand binding and unbinding.16,17 A label,

l = l1,l2,. . .,lMs
, is used to indicate the potential function

for the given binding state of the protein: VP(R;l), where we

have supposed that there are Ms such states of binding.

For binding state l the protein will adopt an equilibrium

conformation with configuration R0
l ¼ ðR0

1;l;R
0
2;l; . . . ;R0

Np ;lÞ.
The protein potential functions VP(R;l) may be constructed as

elastic network models (ENM),18 Gō-like models,19 plastic

network models16 or other models that account for large bond

deformations or partial unfolding during the conformational

evolution.17,20,21

2.2 Solvent model and coupling to protein

The solvent is described at a mesoscopic level using MPC

dynamics.11,12 In MPC dynamics, Ns solvent particles, repre-

senting coarse grained real molecules, free stream and undergo

effective collisions at discrete time intervals t, accounting for the
effects of many real collisions during this time interval. The

collisions are carried out by dividing the system into a grid of

cellsVx and assigning rotation operators ôx, chosen from some

set of rotation operators, to each cell of the system at the time of

collision. For example, the set of rotation operators may be

taken to be the operators corresponding to rotations by a fixed

angle about a randomly chosen axis, or those corresponding to

a randomly chosen angle about a randomly chosen axis, etc.

Particles within each cell ‘‘collide’’ with each other and the

postcollision velocity of particle i in a cell Vx is given by

v0 i ¼ Vx þ ôxðvi � VxÞ; ð1Þ

where Vx is the center of mass velocity of particles in the cell.

MPC dynamics satisfies the mass, momentum, and energy

conservation laws. The dynamics is microcanonical and

preserves phase-space volumes. Further descriptions of the

MPC simulation scheme with applications can be found in

recent reviews.22,23

Next we consider how the coarse grained protein interacts

with the mesoscopic solvent. Two coupling schemes have

proven to be effective in modeling the system dynamics.

Explicit solvent-bead intermolecular potentials can be intro-

duced to couple the protein and solvent motions.12 In such a

case the free streaming step is replaced by molecular dynamics

evolution for time intervals t governed by the protein and

protein–solvent intermolecular potentials. There are no solvent–

solvent forces. These are accounted for by multiparticle

collisions at the times t as described above. This scheme allows

specific attractive and repulsive (hydrophilic and hydrophobic)

interactions with different protein beads to be taken into

account. It also can describe exclusion of solvent from the

interior of the protein or active site in certain protein

conformations. The second scheme is simpler and computation-

ally more efficient but cannot account for specific solvent–

protein effects. In this scheme the protein beads that lie in a

given MPC collision cell are simply included in the MPC

collision step.24 No protein–solvent forces need to be introduced

or computed. Both of these MD-MPC dynamical coupling

schemes conserve mass, momentum and energy. Consequently,

hydrodynamic interactions, which play an important role in

the large-scale protein conformational motions, are properly
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taken into account. In this paper we adopt the second coupling

scheme where explicit protein–solvent interactions are not

considered.

2.3 Stochastic MD-MPC dynamics

Given this specification of the basic interaction potentials and

dynamics, the full enzymatic cycle can be simulated by stochastic

MD-MPC dynamics which accounts for the changes in the protein

potential functions when ligand binding and release events occur.

As an example, consider the binding of a ligand to the protein

which leads to a protein–ligand complex. As the ligandmoves from

the environment to the binding pocket of the protein, new bonds

are formed and others are modified. This results in a new potential

function that is different from that of the protein and ligand before

the binding event. Our description of this binding process does

not explicitly consider the dynamics of the ligand and instead

focuses on the potential energy changes that result from such

ligand binding. We model ligand binding as a stochastic

process that changes the potential function to reflect the fact

that the ligand is now bound to the protein. Similar considera-

tions apply to the release of a ligand from the protein.

In more general terms, suppose that the enzymatic cycle,

which starts with substrate binding and, after final product

release, ends in the original unbound state, involves a sequence

of Ms ligand binding–unbinding events. As noted above, the

index l is used to label the protein potential function when the

protein is in a specified state of ligand binding. A transition

from one state l of ligand binding to another l0, l - l0, is
assumed to occur with probability pl,l0(R) per unit time, which

may depend on the instantaneous conformation R of the

protein. We shall be concerned with systems that are far from

equilibrium where substrates are fed into the systems and

products are removed. In these circumstances the transition

probabilities will not satisfy detailed balance. Equilibrium

systems can also be considered in our general framework but

we shall focus on systems that are far from equilibrium.

The full enzymatic dynamics is then as follows: given a

conformational state R and binding state l of the protein, the

system evolves byMD-MPC dynamics governed by forces derived

from the protein potential function VP(R;l) and a solvent–protein

potential if the explicit solvent–protein coupling scheme is used. In

the course of this trajectory, transitions to other protein states l0

are attempted with probability pl,l0(R(t)). If such a protein state

transition occurs, the protein potential function is changed to

VP(R;l0) and MD-MPC dynamics continues.25

Each stochastic trajectory provides a realization of the

dynamics of a single protein as it executes catalytic cycles.

As an illustration of this dynamical model, we now show how

it can be used to explore various generic features, including the

influence of hydrodynamic interactions, of the enzymatic

dynamics of adenylate kinase.

3. Adenylate kinase

The adenylate kinase enzyme (AKE) catalyzes the Mg-depen-

dent reversible conversion of ATP and AMP into two mole-

cules of ADP,

ATP + AMP ! 2ADP. (2)

This enzyme-catalyzed phosphotransfer regulates many

cellular signaling processes such as hormone secretion, cell

motility, the energetics of the cell cycle and DNA synthesis

and repair. It controls AMP levels whose high or low values

have been linked to human diseases such as diabetes, obesity

and hypertrophic cardiomyopathy.26

The enzyme consists of 214 amino acid residues and has

three mobile domains: the CORE domain with 133 residues,

the NMP domain with 38 residues and the LID domain with

43 residues (see Fig. 1). The LID domain binds ATP while

the NMP domain binds AMP; both domains undergo large

hinge motions in the course of the catalytic cycle. When no

substrates are bound the enzyme exists in an open conformation

where LID-CORE and NMP-CORE center of mass distances

are large. Conversely, when both substrates are bound the

protein exists in the fully closed conformation where these

distances are small. Fluorescent resonance energy transfer

(FRET) and NMR studies have indicated that the LID

domain exhibits large fluctuations so that a range of

LID-CORE distances, including distances comparable to

those of the closed conformation, are visited.27–30 The phos-

phoryl transfer reaction to form the two ADP molecules

occurs in the fully closed conformation where the solvent is

excluded from the active site. There has been a considerable

number of theoretical16,31–40 and experimental studies of this

enzyme.27–30,41–47

In addition to the fully open and fully closed conformations,

there are other prominent intermediate conformational binding

states: (LID-CORE closed, NMP-CORE open) and (LID-

CORE open, NMP-CORE closed). Thus, there are four

relevant states of the protein to consider, based on the open

or closed configurations of the LID and NMP domains.

We use the following notation to label these protein states:

let wa be a variable that takes the value wa = 1 for an

open conformation and wa = 0 for a closed conformation.

The index a = LC,NC and the variables wLC and wNC are

defined for the LID-CORE and NMP-CORE conformations,

respectively. Using this notation the four binding states of the

protein may be labeled by l = (wLC,wNC). In particular, the

state where both the LID-CORE and NMP-CORE domains

are open may be labeled by l1 = (1,1), and the remaining

states have the notation l2 = (0,1), l3 = (0,0) and l4 = (1,0).

The mechanism for the enzymatic reaction will involve passage

among these states.

Fig. 1 Adenylate kinase domains: CORE (green), LID (blue) and

NMP (light blue).
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We now describe how the potential energy function for the

coarse grained model of AKE that accounts for the different

binding states can be constructed. The potential function

incorporates elements that were used in earlier studies16,17 to

construct a potential for AKE that can describe the conforma-

tional changes that occur.

3.1 AKE potential energy function

The coarse grained model of adenylate kinase consists of 214

beads that represent the amino acid residues in the protein.

The protein potential energy functions VP(R;l) were

constructed from a network model where beads in the protein

are connected by bonds. The building blocks of our potential

function are the fully open conformation with no substrates

bound, and the fully closed conformation with both ATP

and AMP substrates bound. The equilibrium conformations

corresponding to these two open (o) and closed (c) states, R0
o

and R0
c, respectively, are known from experimental data.48,49

In a network model, the equilibrium open conformation

of the protein, R0
o, can be characterized by a set of equilibrium

bond lengths, {Rb
n,o|nA B}, where Rb

n,o denotes the equilibrium

bond length of bond n for the protein in the fully open

state and B denotes the set of bonds in the network. Similarly

we can define the set {Rb
n,c|n A B} for the fully closed state.

Elastic network models are easily constructed for each of these

two binding states. However, we cannot use these elastic

network models directly for the enzymatic dynamics since

there is partial unfolding of the LID and NMP domains in

the course of the enzymatic cycle. A variety of potential

models for AKE has been constructed.16,17,31,32 Our model is

similar in spirit to the plastic network model16 and uses a

combination of elastic network bonds and bonds described by

soft potentials for the open and closed conformations, along

with an interpolation function, to construct a network model

for AKE.

To build the mixed network model we assume that two

beads in the network are connected by a bond n if their

separation rn r 8.5 Å. We determine all bonds in the

fully open and closed conformations in this way and this

defines the set of bonds B= {n|nwith rn o 8.5 Å}. The distance

value 8.5 Å is the parameter that limits the number of bonds in

the B set. The bonds in this set are further classified as follows:

the bonds are divided into two sets Be and Bs, where

superscripts e and s indicate the type of bond, elastic and soft,

respectively, which will be associated with a given type of

potential energy of interaction. The bonds are classified

according to the criteria,

n A Be, if {Rb
n,o r 8.5 Å and Rb

n,c r 8.5 Å}

n A Bs, if {Rb
n,o r 8.5 Å or Rb

n,c r 8.5 Å} � Be (3)

We note that Bs is formed by union of all bonds with bead

distances smaller than 8.5 Å in open or closed conformation,

minus bonds in the Be set. Since a change in the binding state is

associated with a specific type of domain opening or closing,

the bonds in the set Bs may be further classified as LID-CORE

or NMP-CORE bonds. If a bond in this set connects a residue

in the LID domain with a residue in the CORE domain it is

classified as a LID-CORE bond. A similar procedure was used

to determine the NMP-CORE bonds.

We let VP
n(rn;w

n
a) to denote the potential energy function for

bond n in the network, where we use a parameter wna in the

bond potential function to determine the nature of that bond

depending on the binding state. For example, if a bond n is a

LID-CORE bond, then wna = wnLC. For those bonds in the B
e

set, we use elastic network potentials since these bonds are

common to both open and closed configurations and not

highly strained. For bonds n A Bs, we use an attractive

potential, similar to that proposed earlier.17 A detailed descrip-

tion of how these bond potential functions are constructed is

given in the Appendix. Once the bond potential functions are

specified, the total potential energy of the AKE network is

given by

VPðR; lÞ ¼
XnL
n¼1

VP
n ðrn; wnaÞ: ð4Þ

The sum is over all nL bonds in the network. The protein binding

state l is determined from the values of wLC and wNC that enter in

the specification of the bond potentials in the sum in eqn (4).

3.2 Transition rates

The transition rates between the different binding states

depend on the instantaneous conformation of the protein.

To account for the fact that binding and unbinding occur

primarily from a certain set of open and closed conformational

states, we assume that the AKE conformations can be

characterized by the distances between the centers of mass of

the LID and CORE domains, Rcm
LC, and NMP and CORE

domains, Rcm
NC, and use these collective variables to determine

when a binding or unbinding event occurs.31,32 Thus, the

transition probability per unit time for a state transformation

l - l0 has the functional dependence pl,l0(R
cm
LC,R

cm
NC) in our

model. As noted earlier, we shall be concerned with systems

that are far from equilibrium where substrates are fed into the

system and products removed so that the transition probabilities

will not satisfy detailed balance.

In order to investigate some aspects of AKE conformational

dynamics in solution in the course of enzymatic catalysis, we

consider two models for the transition probabilities. The first

model, termed the sequential binding (SB) model, assumes a

sequential passage through the different binding states. This

model is suggested by recent investigations that describe the

enzymatic cycle as a sequential series of domain closing and

opening events upon ligand binding and product release.31,32

In particular, in this mechanism the cycle starts with a con-

figuration where both the LID-CORE and NMP-CORE

domains are in an open configuration. As ATP binds, the

protein then passes to a state where the LID-CORE is closed

but NMP-CORE is still open. After binding of AMP the

NMP-CORE closes. As the ADP products are released, the

LID-CORE first opens, followed by opening of the NMP-

CORE, to yield the initial configuration. During these con-

formational changes partial unfolding of the LID and NMP

domains occurs. The binding states visited in the enzymatic

cycle described above can be indicated as l1 - l2 - l3 -

l4 - l1. This enzymatic cycle is shown in Fig. 2.
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To model this enzymatic cycle we compute the transition

probabilities as follows. To determine how the transition

probabilities depend on the protein conformation we compare

the values of Rcm
LC and Rcm

NC to functions of their values in the

fully open and closed conformations, Rcm
LC,o, R

cm
NC,o and Rcm

LC,c,

Rcm
NC,c, respectively, so that

pl1,l2(R) = pocy(dLC � Rcm
LC)y(R

cm
NC � dNC),

pl2,l3(R) = pocy(dLC � Rcm
LC)y(dNC � Rcm

NC),

pl3,l4(R) = pcoy(R
cm
LC � dLC)y(dNC � Rcm

NC),

pl4,l1(R) = pcoy(R
cm
LC � dLC)y(R

cm
NC � dNC). (5)

Here dLC = (Rcm
LC,o + Rcm

LC,c)/2 and dNC = (Rcm
NC,o + Rcm

NC,c)/2.

The Heaviside y functions account for the fact that ligand

binding and unbinding events may exploit large fluctuations in

the conformations. The probabilities per unit time, poc and pco,

account for factors other than the protein conformation that

influence the binding rates; for instance, they determine how

long the protein will remain in a given conformational state

once the domain distance criteria are satisfied and incorporate

the rates at which substrates encounter the active site of

the protein. Other variants of these transition rates can be

constructed to examine in further detail how protein confor-

mations influence binding and unbinding rates.

This model for the transition probabilities assumes a specific

order of cycling through the four binding states. Other

mechanisms have been proposed for the enzymatic cycle.26,46

For comparison, we also consider another model, termed the

random binding (RB) model, where the binding or unbinding

of a ligand does not depend on the binding state of the other

ligand. The transition probabilities for the RB model are then

given by,

pl1,l2(R) = pl4,l3(R) = pocy(dLC � Rcm
LC),

pl2,l3(R) = pl1,l4(R) = pocy(dNC � Rcm
NC),

pl3,l4(R) = pl2,l1(R) = pcoy(R
cm
LC � dLC),

pl4,l1(R) = pl3,l2(R) = pcoy(R
cm
NC � dNC). (6)

In this model there is no regular order for the opening and

closing of the domains.

4. Simulation of adenylate kinase dynamics

The simulations of AKE dynamics were carried out in a cubic

box containing the protein and solvent. Periodic boundary

conditions were employed. For the multiparticle collision

events, the simulation box was divided into (42)3 cubic cells

with side a. In the MPC algorithm, velocities were rotated

about randomly chosen axes by angles �p/2. Grid shifting

was implemented in the MPC step of the dynamics.50,51

Dimensionless units were used in the calculations: lengths

were measured in units of a, energy in units of e, mass in units

of m. The dimensionless mass of a solvent molecule was taken

to be m = 1 while the mass of a protein bead was mb = 5. In

these units other system parameters are: elastic network bond

force constant, k = 40; non-common soft bond energy

parameter, c = 0.4; potential parameters, D = 1.0 and

DV= 0.0; solvent average number density, ns = 7; and reduced

temperature kBT/e = 1/3. Time was expressed in units of the

multiparticle collision time t and in this time unit the MD time

step was Dt = 0.002. The probabilities that enter the transition

rate expressions are poc = 0.005 and pco = 0.0005.

All results will be reported in the dimensionless simulation

units given above. In these units the LID-CORE and

NMP-CORE equilibrium separations in the open and closed

states are Rcm
LC,o = 5.025, Rcm

LC,c = 3.49, Rcm
NC,o = 3.66,

Rcm
NC,c = 3.06. For reference, distances can be converted to

Angstrom units by taking the cell size to be a = 6 Å, and in

Angstrom units these distances are Rcm
LC,o = 30.15 Å, Rcm

LC,c =

20.95 Å, Rcm
NC,o = 21.95 Å, Rcm

NC,c = 18.35 Å, which

correspond to the experimental values.

4.1 Catalytic cycles

The AKE dynamics with transition probabilities given by the

SB model is shown in Fig. 3 for several catalytic cycles.52 In

this figure we see that the enzyme passes between the fully

open and fully closed conformations with average LID-CORE

and NMP-CORE center of mass distances close to their

experimental values. Large fluctuations occur in the domain

distances in the course of the catalytic cycle. The SB transition

probability rule in eqn (5) is constructed to exploit these

fluctuations so that binding predominantly takes place when

large fluctuations bring the system to a favorable

configuration.

As the system executes catalytic cycles it also visits inter-

mediate conformational states, with lower probability, where

one domain is in an open configuration while the other is in a

closed conformation. This can be seen in Fig. 4, which plots

the steady state probability density of the LID-CORE and

NMP-CORE distances, P(Rcm
LC,R

cm
NC). Enzyme conformations

Fig. 2 Conformational changes of AKE from the fully open (top left)

to fully closed (bottom right) conformations in the sequential binding

mechanism. Domain color coding: CORE (green), LID (blue) and

NMP (light blue).
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(LID (open), NMP (closed)), and vice versa, have probabilities

that are lower than fully open or fully closed conformations.

Also, the fully closed conformation is favored. The trajectories

that underlie this plot explore the configuration space region

indicated by blue color in the figure, similar to that in earlier

studies.17,32 Our stochastic rule for substrate binding and

unbinding, embodied in the forms of the transition probabilities

in eqn (5), was designed to capture these general features of the

sequential mechanism.

Further insight into the dynamics in the enzymatic cycle can

be gained by examining the potential energy of the protein

during its catalytic cycles. Fig. 5 shows a plot of the enzyme

potential energy versus Rcm
LC and Rcm

NC. The potential energy

variations in the protein reflect the conformational changes

that accompany the ligand binding and product release events

in the catalytic cycles. The figure, which was constructed from

200 realizations of the cyclic dynamics of the protein, shows

that there are substantial fluctuations in the potential energy,

whose magnitudes may be gauged by the dashed line in the

figure. The protein potential energy magnitudes in this figure

reflect the structure of the P(Rcm
LC,R

cm
NC) probability density

shown in Fig. 4. The minimum energy path, shown as a solid

line, is consistent with the states visited in the SB mechanism.

4.2 Influence of hydrodynamic interactions

In solution, the motion of the protein beads perturbs the local

solvent velocity field. These disturbances propagate through

the fluid by collective solvent viscous modes giving rise to

long-range hydrodynamic interactions among the beads. Since

MPC dynamics conserves mass, momentum and energy, these

hydrodynamic interactions are accurately described. Simulations

of polymer collapse,53–56 colloidal suspensions57 and molecular

machine dynamics15 using MPC dynamics have indicated the

importance of such long-range hydrodynamic interactions for

these systems.

In order to investigate the influence of hydrodynamic inter-

actions on the catalytic cycles of AKE, we performed a series

of simulations where such interactions were absent. Simulations

without hydrodynamic interactions are easily carried out in

the context of our formalism by replacing MPC dynamics with

an alternative collision rule that destroys solvent correlations.58

In this rule the explicit solvent particles are replaced by a heat

bath. Each protein bead is coupled to an effective solvent

momentum, P, which is chosen from a Maxwell–Boltzmann

distribution with variance mgkBT, where g is the average

number of solvent particles per cell. The center of mass

velocity of a cell containing a protein bead with velocity vb
used in theMPC collision step is then given byVx= (mbvb+ P)/

(mg + mb). Since momentum is no longer conserved

hydrodynamic interactions are destroyed and the protein

beads act as independent sources of friction. This effective

solvent without hydrodynamic interactions has properties

similar to the MPC solvent, e.g., the solvent viscosity, which

depends weakly on hydrodynamic interactions, is similar in

both solvents.58 The time series of the LID-CORE and NMP-

CORE distances are plotted in Fig. 6 for systems where

Fig. 3 Plots of the LID-CORE (top) and NMP-CORE (bottom)

center of mass distances, Rcm
LC and Rcm

NC, as a function of time in t units.
The dashed lines are the crystallographic values of Rcm

LC (top) and Rcm
NC

(bottom) for the open and closed configurations.

Fig. 4 The probability density P(Rcm
LC, R

cm
NC) versus R

cm
LC and Rcm

NC. The

color scale is indicated in the box on the right side.

Fig. 5 Plot of the potential energy, V(R;l), of the protein versus the

LID-CORE and NMP-CORE center of mass distances, Rcm
LC and Rcm

NC,

determined from an average over 200 realizations of the cyclic

dynamics of the protein. The dashed line denotes values of the

potential energy which correspond to 10% of the maximum value of

the potential energy probability density. This dashed line serves to

indicate the magnitude of the fluctuations in the protein potential

energy in the course of enzyme catalytic cycles. The solid line with

arrows shows the minimum energy path on this surface as the enzyme

executes a SB cycle.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

31
 M

ay
 2

01
1

Pu
bl

is
he

d 
on

 2
5 

M
ar

ch
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1C

P0
00

03
A

View Online

http://dx.doi.org/10.1039/c1cp00003a


This journal is c the Owner Societies 2011 Phys. Chem. Chem. Phys., 2011, 13, 10527–10537 10533

hydrodynamic interactions are suppressed. Visual comparison

of these time series with those in Fig. 3 shows that the enzymatic

cycle times are longer when hydrodynamic interactions are not

taken into account. This is expected since each protein bead

acts as an independent source of friction when hydrodynamic

interactions are ignored and the friction that a domain experi-

ences as it opens or closes is approximately equal to the

number of beads in the domain times the bead friction.

However, if hydrodynamic interactions are present the entire

domain experiences a friction that is proportional to its linear

size, and this leads to a much smaller friction on the domain.

Consequently, domain motions in solution are more rapid. In

addition, when hydrodynamic interactions are absent, the

slower time scale of domain motions can lead to differences

in the binding and unbinding rates since these depend on

the instantaneous conformational state of the protein. The

histograms of the cycle times for MPC dynamics and dynamics

without hydrodynamic interactions are shown in Fig. 7. Analysis

of the data shows that the average cycle time, tC, for MPC

dynamics is tC = 15 000 � 300, while it is tNH
C = 18 300 � 400

when hydrodynamic interactions are suppressed. (Here and

henceforth the errors refer to � one standard deviation.)

While there is a modest increase in the cycle time when hydro-

dynamic interactions are suppressed (tNH
C /tC E 1.2), the

histograms show a broader distribution with a longer tail of

long cycle times than the MPC results. The tC values reflect

both the change in time scales of protein conformational

changes and the changes in the frequencies of transition

events.

Another more detailed measure of the influence of hydro-

dynamic interactions is provided by the decay of the auto-

correlation of the LID-CORE or NMP-CORE fluctuations.

These correlation functions focus explicitly on the time scale of

the domain motions, which occur during the catalytic cycle.

If we define the domain distance fluctuations by dRcm
a =

Rcm
a � hRcm

a i, with a = LC,NC, then the time autocorrelation

function of this quantity is,

Ca(t) = hdRcm
a (t)dRcm

a (0)i, (7)

where the angle brackets signify a time average and an average

over realizations for the different types of protein dynamics. In

Fig. 8 we see that the decay of CLC(t) for the MPC dynamics

(solid line) occurs on a much shorter time scale than when

hydrodynamic interactions are absent (dashed line). When the

data for Ca(t) are fit to an exponential form, Ca(t) = Ca(0)e
�t/ta,

we find the results for tLC shown in Table 1. The tLC values in

the table are for the enzyme undergoing catalytic cycles by the

SB and RB mechanisms and also for the enzyme in its four

binding states. The ratio tNH
LC /tLC for the enzyme undergoing

catalytic cycles has values similar to that for the ratio of

catalytic cycle times discussed above. However, when this ratio

is computed for the enzyme in specific binding states, we see

from the table that hydrodynamic effects are considerably

larger. These results reflect the different natures of the LID-

CORE fluctuations in the various conformational binding

states of the protein. Analogous results were obtained for

the NMP-CORE distance correlation times, tNC.

We can conclude that simple Langevin models of the

dynamics that ignore hydrodynamic interactions will not be

able to capture all important aspects of the enzyme catalytic

dynamics. Langevin models that incorporate a space depen-

dent friction tensor using the Oseen approximation or other

Fig. 6 Plots of the LID-CORE (top) and NMP-CORE (bottom)

center of mass distances, Rcm
LC and Rcm

NC, as function of time for AKE

dynamics without hydrodynamic interactions. The dashed lines are the

crystallographic values of Rcm
LC (top) and Rcm

NC (bottom) for the open

and closed configurations.

Fig. 7 Histograms H(tC) of the cycle times for MPC dynamics (top)

and dynamics without hydrodynamic coupling (bottom).

Fig. 8 Plot of the autocorrelation function of the LID-CORE

fluctuations as a function of time: MPC dynamics (solid line) and

dynamics without hydrodynamic interactions (dashed line) for the

protein in the binding state l3 = (1,0); i.e., LID-CORE open and

NMP-CORE closed. The fits to exponential decay are also shown as

(nearly indistinguishable) dotted lines.
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approximate forms will be able to capture a portion of these

effects but are not quantitatively accurate.15

4.3 Comparisons with random binding mechanism

It is interesting to compare the catalytic dynamics of AKE

when it visits the four binding states in a regular order, l1 -
l2 - l3 - l4 - l1, with the dynamics when the opening or

closing of a domain does not depend on the state of the other

domain. This leads to an irregular pattern of binding states.

We have carried out simulations of the AKE dynamics using

the transition probabilities in eqn (6). Fig. 9 shows histograms

H(Rcm
LC) and H(Rcm

NC) of the LID-CORE and NMP-CORE

distances, Rcm
LC and Rcm

NC determined from the enzymatic

dynamics. The SB and RB models are compared in the figure,

and there are differences in the histograms for these two

models. In particular, the closed conformations are more

highly favored when there is random binding than when there

is sequential binding. This feature can be understood from the

fact that in the RB model there are additional routes to reach

the more stable closed conformation, since the unidirectional

cyclic nature of the SB mechanism is destroyed.

4.4 Transport properties

The transport properties of AKE, such as its center of mass

diffusion coefficient and orientational relaxation, are influenced

both by the conformational dynamics of the protein as it

executes catalytic cycles and hydrodynamic interactions with

the solvent. The diffusion coefficient, D, was estimated from

the slope of the mean square displacement (MSD) versus time t,

MSD(t) = h|Rcm
P (t)� Rcm

P (0)|2i= 6Dt, where Rcm
P is the center

of mass of the protein. A crude estimate of the diffusion

coefficient can be obtained by assuming that AKE is a sphere

with an effective radius RP. The diffusion coefficient may then

be written approximately as a sum of microscopic and hydro-

dynamic contributions,59 D E Dm + Dh, where Dm is a

microscopic contribution andDh is a hydrodynamic contribution.

Using expressions for D obtained for a network of beads,60,61

we may write Dm = D0/Nb = kBT/Nbz0, where D0 is the single

bead diffusion coefficient,22,23 Nb is the number of beads in

AKE and z0 is the single bead friction coefficient, and Dh =

kBT/zh with zh = 6pZRP. Since Dm scales as R�3P and Dh scales

as R�1P , the diffusion coefficient will be dominated by the

hydrodynamic contribution. Assuming Oseen interactions,

the effective radius is given by conformation-dependent factor

times the average radius of gyration.60

In Table 2 we list several properties of AKE, including the

diffusion coefficients, the average radius of gyration Rg and the

ratio of Rg to the effective radius RP. As expected from protein

size considerations, the diffusion coefficients for the SB and

RB models are approximately the same, D for the fully open

conformation has the smallest value while the fully closed

conformation has the largest value of D. Consistent with these

D values, the average radius of gyration, Rg, is approximately

the same for the SB and RB mechanisms. This is reasonable

since in both cases the protein visits all four conformational

binding states.62 The results for the fully open and closed

protein conformations are also in accord with expectations: Rg

is smaller for the closed conformation than for the open

conformation. The values of RP used to compute the ratio

Rg=RP were determined from the approximate expression for

D, taking the measured values of D and the viscosity Z from

the known analytical expressions for this transport coefficient

for MPC dynamics.63–65 We see that the values of RP are

similar to Rg and the ratio Rg=RP is roughly constant. We have

also computed the diffusion coefficients for dynamics without

hydrodynamic interactions (DNH) and the table gives the

values of ratio DNH/D. Hydrodynamic interactions have a

substantial effect on these values, with DNH more than a factor

of ten times smaller than D. Also, while the D values reflect the

characteristic sizes of the protein in the different

Table 1 LC domain correlation times

State tLC � 10�2 tNH
LC � 10�2 tNH

LC /tLC

SB 45 � 3 60 � 3 1.33
RB 32 � 3 39 � 6 1.22
l1 3.3 � 0.4 4.7 � 0.8 1.42
l2 0.51 � 0.01 1.40 � 0.02 2.74
l3 0.20 � 0.01 0.51 � 0.02 3.53
l4 0.34 � 0.01 1.20 � 0.01 2.55

Fig. 9 Histograms H(Rcm
LC) (top) and H(Rcm

NC) (bottom) of the LID-

CORE and NMP-CORE distances: SB model (solid line), RB model

(dashed line) determined from MPC dynamics.

Table 2 Diffusion coefficient and protein radius

State D � 103 DNH/D Rg Rg=RP

SB 4.9 � 0.4 0.08 � 0.02 2.93 0.98
RB 5.2 � 0.5 0.08 � 0.02 2.90 1.05
l1 4.2 � 0.3 0.10 � 0.02 3.14 0.89
l3 5.3 � 0.4 0.06 � 0.04 2.81 1.02
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conformations, the values of DNH only depend on the number

of beads. They are approximately the same for the different

conformational states and in accord with the approximate

expression for Dm.

The rotational motion of the protein is also strongly influenced

by hydrodynamic interactions. To characterize the rotational

dynamics of the protein we consider a vector r in the CORE

domain directed between beads corresponding to residues 4

and 111. The CORE domain beads do not undergo large

relative motions when the LID and NMP domains open or

close, so the dynamics of this vector provides information on

the overall rotational motion of the protein. The rotational

dynamics may be characterized by the decay of the auto-

correlation function,

Cy(t) = hr(t)�r(0)i. (8)

This correlation function is plotted in Fig. 10 forMPC dynamics

and dynamics with hydrodynamic interactions suppressed. The

correlation function exhibits exponential decay to a good

approximation and the orientational correlation times were

determined by fits to the form, Cy(t) = Cy(0)exp(�t/ty). The
results are presented in Table 3. Trends similar to those seen in

the translational diffusion data are also apparent in the orienta-

tional correlation times. Without hydrodynamic interactions,

orientational correlation times are more than five times longer

than those for MPC dynamics. In general, for MPC dynamics

that includes solvent correlated motions, one would expect this

time correlation function, after an initial exponential decay, to

exhibit a power law long time tail due to coupling of the protein

orientational and solvent velocity collective motions. For linear

molecules this orientational correlation function is predicted to

decay as Cy(t) E t�7/2 with a small amplitude.66 Our data are

described by exponential decay within our statistical uncer-

tainty, suggesting that the power law contribution is small.

5. Conclusions

The particle-based mesoscopic description of protein dynamics

during enzymatic catalysis presented in this paper combines a

number of different coarse graining strategies. The protein is

described at a coarse grained level as a network of beads

representing amino acid residues; such protein models are in

common use. In addition, binding and release of ligands are

modeled by changes in the nature of the network bonds

instead of explicitly considering the details of the binding

and unbinding events including the ligands explicitly. The

solvent is described at a mesoscopic level using MPC dynamics

which coarse grains the effects of many collisions into single

multiparticle collision events. Inclusion of the solvent at the

coarse grained particle level has a number of advantages. In

particular, hydrodynamic interactions among the protein

beads are taken into account without having to specify

approximate forms of space dependent friction tensors, and

the algorithms for simulating the dynamics are simpler than

those for Langevin equation methods with space dependent

friction tensors. Such hydrodynamic interactions were shown

to play an important role in the dynamics of proteins executing

catalytic cycles.

Certain aspects of the description are easily generalized. For

example the stochastic rules that specify binding and unbinding

of ligands without explicitly considering these species can be

replaced by more microscopic descriptions that explicitly

include these species and account for their diffusion through

the MPC solvent and binding with the enzyme.14 The simple

coupling of the solvent to the enzyme considered in this paper,

where the protein beads are included in the MPC collision step,

can be replaced by specific protein bead–solvent interactions that

model hydrophobic or hydrophilic portions of the protein. In

this way exclusion of solvent from parts of the protein, in

particular in the binding pocket where reactions take place,

can be modeled. Consequently, coarse-grained models of

protein enzymatic dynamics of the sort described in this paper

and their generalizations provide a way to study solvent effects

on the dynamics of proteins acting as catalysts for biochemical

reactions.

Appendix: AKE potential function

For those bonds in the Be set, we use elastic network potentials

since these bonds are common to both open and closed

configurations and not highly strained. The potential energy

takes the form

Vn(rn|R
b
n,l) =

1
2
k(rn � Rb

n,l)
2, if n A Be (9)

where rn is the internuclear distance of bond n, k is the force

constant that is common to all elastic network bonds and

l = l1 � o, l3 � c.

For bonds n A Bs, we use an attractive potential, similar to

that proposed earlier,17 which has been used successfully to

model nonlocal native attractive interactions in proteins. In

Fig. 10 Plot of the orientation autocorrelation function Cy(t) versus

time for MPC dynamics (rapidly decaying set of curves) and dynamics

without hydrodynamic interactions (slowly decaying set of curves):

(solid lines) SB model; (points) RB model; (short dashed lines) fully

open conformation; (long dashed lines) fully closed conformation. The

error bars denote � one standard deviation.

Table 3 Orientational correlation times

State ty tNH
y tNH

y /ty

SB 878 � 9 4800 � 900 5.47 � 1.02
RB 875 � 6 4900 � 300 5.60 � 0.34
l1 1003 � 3 6800 � 200 6.78 � 0.20
l3 784 � 4 4800 � 300 6.12 � 0.38
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our implementation, it depends on the parameter wa that enters
in the specification of the binding state l of the protein. Since a
change in the binding state is associated with a specific type of

domain opening or closing, the bonds in the set Bs may be

further classified as LID-CORE bonds or NMP-CORE bonds.

We use a parameter wna in the bond potential functions to

determine the nature of that bond depending on the binding

state. For example, if a bond n is a LID-CORE bond, then

eqn (10)–(12) below are applied with wna = wnLC.
For bonds in the Bs set from the fully closed configuration

we have

VnðrnjRb
n;c; w

n
aÞ

¼ ce
5

Rb
n;c

rn

 !12

�6
Rb

n;c

rn

 !10

þ1 wna ¼ 0

0; wna ¼ 1:

8>><
>>: ;

ð10Þ

For bonds in the Bs set from the fully open configuration

we take

VnðrnjRb
n;o; w

n
aÞ

¼ cemin wna; 5
Rb

n;o

rn

 !12

�6
Rb

n;o

rn

 !10

þ1

8<
:

9=
;;

ð11Þ

if rn4
ffiffiffiffiffiffiffiffi
5=6

p
Rb

n;c, and

VnðrnjRb
n;o; w

n
aÞ

¼ ce
5

Rb
n;c

rn

 !12

�6
Rb

n;c

rn

 !10

þ1; wna ¼ 1

0; wna ¼ 0

8>><
>>:

ð12Þ

if rn �
ffiffiffiffiffiffiffiffi
5=6

p
Rb

n;c. Here e is the common energy parameter

used later in the specification of dimensionless units and the

parameter c is a constant used to gauge the strength of the

interactions.

Finally, knowing the bond potentials for the open and

closed configurations, we need to be able to interpolate

between these two conformations in order to represent all

intermediate bonding states of the protein in the enzymatic

cycle. For this purpose we use the empirical valence bond

combinations rule to obtain the final bond potentials:16

VP
n(rn;w

n
a) =

1
2
(Vn(rn|R

b
n,o,w

n
a) + (Vn(rn|R

b
n,c,w

n
a) + DV)

� 1
2
{(Vn(rn|R

b
n,o,w

n
a) � Vn(rn|R

b
n,c,w

n
a)

� DV)2 + 4D2}1/2, (13)

although there are other methods for combining such

potentials.68,69 The parameter DV is introduced to vary the

relative stability of the two states and the constant D determines

the magnitude of the energy barrier separating the states.
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