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Synthetic chemically-powered motors with various geometries have potentially new applications involving

dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on

geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and

noncatalytic spheres, display more complex versions of such fields, compared to the often-studied

spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we

determine the concentration fields, and both the complex structure of the near-field and point-force

dipole nature of the far-field behavior of the solvent velocity field that are important for studies of

collective motor motion. We derive the dependence of motor velocity on geometric factors such as

sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.
1 Introduction

Synthetic nanomotors that use chemical energy to produce
directed motion are under active investigation because the
autonomous motion of these motors can be exploited in new
applications involving dynamics on very small scales. Starting
with the rst bimetallic rod nanomotors that move through self-
electrophoresis as a result of an asymmetric distribution of
catalytic activity,1,2 motors made from a variety of materials with
various shapes and operating by different mechanisms were
constructed.3 Experiments demonstrated their potential uses as
cargo transport vehicles and as elements in microuidic
devices, to name two of their many possible applications.3–5

The motion of an individual nanomotor and the interactions
among many motors depend on the chemical gradients that
arise from asymmetrical chemical activity and the uid ows
generated by motor motion. Both of these factors are integral
parts of phoretic propulsion mechanisms and are strongly
inuenced by motor geometry. Janus motors with catalytic and
noncatalytic faces have been studied extensively because these
motors have a simple spherical geometry that facilitates theo-
retical modeling and fabrication.6–10 For motors with more
complex shapes it is important to understand how geometry
inuences motor motion and the dynamics of motor ensem-
bles. In an effort to understand the role of geometry more
thoroughly, we present a detailed study of a motor with a more
complex but still analytically tractable chemical shape: a
sphere-dimer motor where the catalytic and noncatalytic
regions are conned to two linked spheres.11 While suchmotors
nt of Chemistry, University of Toronto,

ail: sreigh@chem.utoronto.ca; rkapral@

hemistry 2015
have been made and studied in the laboratory,12 their theoret-
ical analysis is quite involved and the details of the propulsion
mechanism differ from those of Janus motors.

Studies of small motors present challenges for theory since
they operate out of equilibrium and oen in the regime that lies
on the borderline where macroscopic descriptions of their
motion may break down. The macroscopic continuum theory
for the self-diffusiophoretic motion of sphere-dimer motors is
presented and tested against coarse-grained microscopic
dynamics. The basis of the theoretical description has its
antecedents in early work of Stimson and Jeffery,13 and more
recent work of Popescu, Tasinkevych and Dietrich.14 The theo-
retical description is generalized to treat spheres of arbitrary
size with reactive boundary conditions that can account for
both diffusion and reaction control. The characteristics of the
ow eld that arises in diffusiophoretic motion are computed.
Our results show how various factors such as catalytic and
noncatalytic sphere sizes, dimer bond length and reaction rates
can be used to tune the motor velocity. The concentration and
ow eld results provide information that is needed to describe
the nature of the propulsion of single motors as well as the
collective interactions of many dimer motors.
2 Continuum theory

Consider a sphere-dimer motor where a catalytic (S1) sphere
with radius r1 is linked by a rigid bond of length d to a non-
catalytic (S2) sphere with radius r2. The surrounding uid is
composed of A and B molecules and these species undergo the
chemical reaction A + S1/ B + S1 on the catalytic sphere with an
intrinsic rate constant k0. The chemical species interact with the
catalytic and noncatalytic spheres in the dimer through inter-
molecular potentials, U1,a and U2,b (a ¼ A, B), respectively. We
Soft Matter, 2015, 11, 3149–3158 | 3149
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choose the interactions of A and Bmolecules with the S1 sphere
to be the same and those with the S2 sphere to be different, but
other choices are possible. For this choice the reaction at the S1
sphere produces an inhomogeneous distribution of A and B
species and the gradient of these species around the S2 sphere is
responsible for the propulsion of the motor. We assume that
there is a large supply of the “fuel” A far from the motor so that
the concentration of A has the value cA ¼ c0 far from the motor.

The sphere dimer is described in bispherical coordinates
(q, h, f), 0 # q # p, �N # h # N, and 0 # f # 2p, shown in
Fig. 1, which are related to the Cartesian coordinates (x, y, z) by
the relationships, x ¼ x sin q cos f/(cosh h � cos q),
y ¼ x sin q sin f/(cosh h � cos q) and z ¼ x sinh h/(cosh h �
cos q), where x (>0) is a scale factor.15,16 The S1 and S2 spheres are
represented by the parameters h ¼ h1 (>0) and h ¼ h2 (<0),
respectively. By choosing values of sphere radii of the S1 and S2
spheres, r1 and r2, and any separation distance, d, greater than
the sum of their radii, the bispherical coordinate parameters x,
h1 and h2 are given by

x ¼ 1

2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 � r12 � r22Þ2 � 4r12r22

q
;

h1 ¼ ln

�
x=r1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx=r1Þ2

q �
;

h2 ¼ �ln

�
x=r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx=r2Þ2

q �
:

(1)

Diffusiophoretic propulsion

The dimer velocity and the uid ows associated with motor
motion can be computed in the context of the diffusiophoretic
mechanism.14 In the continuum theory for diffusiophoretic self-
propulsion,17–20 the self-generated concentration gradient gives
rise to a uid ow that results in a “slip” velocity at the outer
edge of a boundary layer beyond which forces vanish. For the
sphere dimer model we consider here, the catalytic reaction at
the S1 sphere is the source of this concentration gradient and its
effect is felt at the noncatalytic S2 sphere where the interaction
potentials of the A and B species differ.
Fig. 1 Bispherical coordinate system (q, h, f) with the base unit
vectors, q̂, ĥ, f̂, for the sphere-dimer motor. The labels S1 (h ¼ h1) and
S2 (h ¼ h2) represent the surfaces of the catalytic and noncatalytic
spheres with radii r1 (red) and r2 (blue), respectively. The spheres with
centers z1 and z2 are separated by a bond distance d.

3150 | Soft Matter, 2015, 11, 3149–3158
The cA concentration eld can be found by solving the steady-
state diffusion equation, V2cA ¼ 0, where the advection term is
considered to be negligible. For the sphere dimer this equation
must be solved subject to the boundary conditions,

ðJ$ĥÞh¼h1
¼ k0cAðh ¼ h1Þ;

ðJ$ĥÞh¼h2
¼ 0; (2)

at the catalytic and at noncatalytic spheres, respectively, where
J ¼ �DVcA is the ux of the A concentration eld, �k0 ¼ k0/(4pr

2
1),

and D is the common diffusion constant of the A and B species.
The direction of ĥ is the normal to the surface of the spheres.
The cB eld can be found from the conservation condition, cA +
cB ¼ c0, and is given by15

cBðq; hÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh h� m

p XN
l¼0

�
Ale

lþ 1
2

� �
h þ Ble

� lþ 1
2

� �
h
�
PlðmÞ;

(3)

where Pl(m) is a Legendre function and m ¼ cos q. The Al and Bl
coefficients can be determined from the boundary conditions
by solving a set of linear matrix equations (see Appendix).

Given this concentration eld, the slip velocity of the uid
at the outer edge of a boundary layer can be written as
vs ¼ �kVqcB,18,19 where k ¼ (kBT/�m)L and

L ¼
ðN
0

r
h
e�U2;BðrÞ=ðkBTÞ � e�U2;AðrÞ=ðkBTÞ

i
dr; (4)

with �m being the shear viscosity, kB the Boltzmann constant, and
T the temperature. The uid ow eld outside of the interfacial
region is governed by the Stokes equation, Vp ¼ �mV2v, with the
incompressibility condition, V$v ¼ 0, where p is the pressure
and v is the uid velocity eld. The uid velocity may be
expressed in terms of Stokes’ stream function j from v ¼ f̂/r �
Vj,16 where r ¼ x sin q/(cosh h � m). The stream function
satises E4(j) ¼ 0, where E4 ¼ E2(E2) and E2 ¼ (cosh h � m)/x2

[v/vh{(cosh h � m)v/vh} + (1 � m2)v/vm{(cosh h � m)v/vm}].13,16

In the laboratory frame where the motor moves with velocity
V, the boundary conditions at the outer edges of interfacial
regions around the S1 and S2 spheres are given by�

jþ 1

2
r2V

�				
h¼h1 ;h2

¼ 0;

v=vh

�
jþ 1

2
r2V

�				
h¼h1

¼ 0;

v=vh

�
jþ 1

2
r2V

�				
h¼h2

¼ krvcB


vq
		
h¼h2

:

(5)

The stream function equation can be exactly solved and the
solution is13

j ¼ ðcosh h� mÞ� 3
2

XN
l¼1

WlðhÞVlðmÞ; (6)

where WlðhÞ ¼ al cosh
�
l � 1

2

�
hþ bl sinh

�
l � 1

2

�
hþ cl cosh�

l þ 3
2

�
hþ dl sinh

�
l þ 3

2

�
h and Vl(m) ¼ Pl�1(m) � Pl+1(m).
This journal is © The Royal Society of Chemistry 2015
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The coefficients al, bl, cl, and dl are determined by the boundary
conditions (see Appendix).

Since no external forces act on the system and the sphere-
solvent forces are zero outside the interfacial zone, we have

Fz ¼
ð
S1

Pz$n̂dS þ
ð
S2

Pz$n̂dS ¼ 0; (7)

where P is the stress tensor, Pz ¼ ẑ$P, n̂ is the surface normal
vector and the surface integrals are taken at the outer edge of
the interfacial zone. The system is symmetric around the
azimuthal angle f and only the force in the z-direction needs to
be considered. The velocity of the sphere dimer follows from
this condition and is

V ¼ xk

XN
l¼1

ð2l þ 1ÞFlXl=Dl

XN
l¼1

ð2l þ 1Þflðal þ clÞ=Dl

; (8)

where the coefficients in this equation are given in the
Appendix.
3 Microscopic dynamics

In the microscopic model the uid (solvent) comprising A and B
species is represented by Ns particles of mass m with positions
ri(t) and velocities vi(t), where i ¼ 1, ., Ns. We consider a single
sphere-dimer motor. The spheres in the dimer motor interact
with the A and Bmolecules through repulsive Lennard–Jones (LJ)
potentials, U¼ 43[(s/r)12� (s/r)6] + 3 for r < 21/6s and U¼ 0 for r$
21/6s, with energy 3 and distance s parameters. As noted earlier,
we choose the interaction energies of A and Bmolecules with the
S1 sphere to be the same (3A¼ 3B¼ 3) and those with the S2 sphere
to be different (3B < 3A¼ 3). For 3B < 3A the dimermotormoves with
the S1 sphere at its head. An irreversible chemical reaction A/ B
occurs at the catalytic sphere S1 whenever A encounters S1.
Collisions of A or B molecules with the noncatalytic sphere S2 do
not lead to reactions. Tomaintain a large supply of the “fuel” A far
from the motor, B is converted to A at a distance dp.

The dynamics of this system is simulated using a hybrid
method that combines molecular dynamics (MD) for sphere
dimers and multiparticle collision (MPC) dynamics for the uid
particles.21 In this method there are no explicit intermolecular
potentials among the solvent particles; these interactions are
accounted for by multiparticle collisions. The dynamics
consists of alternating streaming and collision steps. In the
streaming step, the particles move by Newton’s equations of
motion. At time intervals h, called the collision time, the solvent
particles are sorted into cubic cells of side length a and their
relative velocities, with respect to the center-of-mass velocities
of each cell, are rotated around a randomly oriented axis by a xed
angle a. The particle velocity aer collision is given by vi(t + h) ¼
vcm(t) + R (a)(vi(t) � vcm(t)), where R (a) is the rotation matrix

and vcm ¼
XNc

j¼1

vj=Nc is the center-of-mass velocity of the parti-

cles in the cell to which the particle i belongs, and Nc is the
number of particles in that cell. A random shi of the collision
This journal is © The Royal Society of Chemistry 2015
lattice is applied at every collision step to ensure Galilean
invariance.22

All quantities are reported in dimensionless units where
length, energy, mass and time are measured in units of the MPC

cell length a ¼ s, 3, the solvent mass m, and s
ffiffiffiffiffiffiffiffiffi
m=3

p
, respec-

tively. Multiparticle collisions are carried out by dividing the
cubic simulation box with linear dimension L into L3 ¼ 603 �
1203 cubic cells and performing velocity rotations by an angle
a¼ 130� about randomly chosen axes at time intervals of h¼ 0.1
for the MPC collision steps. The average solvent number density
is c0 ¼ 10 and the temperature is kBT ¼ 1. The MD time step is
Dt ¼ 0.01. The parameters in the S2 sphere-solvent repulsive LJ
potentials are 3A ¼ 1.0 and 3B ¼ 0.1 for A and B, respectively,
while 3A ¼ 3B ¼ 1.0 for the S1 sphere. The si (i ¼ 1, 2) values x
the sizes of the S1 and S2 spheres. The sphere mass is Mi ¼
4p(21/6si)

3c0/3 (i ¼ 1, 2). The transport properties of the uid
depend on h, a, and Nc and these parameters were chosen to
model uids with a high Schmidt number Sc and low Reynolds
number Re. The uid viscosity is �m ¼ mNcn ¼ 8.7, where n is the
kinematic viscosity, the diffusion constant is given by D ¼
0.0514 and the Schmidt number is Sc¼ v/D¼ 17, which ensures
that momentum transport dominates over mass transport. In
addition, the small value of the Péclet number, Pe ¼ Va/D < 1,
implies that diffusion is dominant over advection.
4 Comparison of continuum and
microscopic dynamics

The continuum cB concentration eld is shown in Fig. 2(a) in
the xz-plane. It is not spherically symmetrical around the cata-
lytic sphere, and gives rise to the concentration gradient around
the noncatalytic sphere which is responsible for propulsion.
Fig. 2(c) and (d) show the cB eld in more quantitative detail in a
specic region of the w ¼ 90� plane with respect to the catalytic
sphere, where w ¼ cos�1(z/r) is the polar angle in spherical
polar coordinates, (r, w, f); x ¼ r sin w cos f, y ¼ r sin w sin f,
and z ¼ r cos w. It decays with distance and for large r one has

cB � � ffiffiffi
2

p
x
XN
l¼1

ðAl þ BlÞ=r þ O ð1=r2Þ, with a r�1 decay as expec-

ted for the solution of a diffusion equation.
The simulated cB eld is shown in Fig. 2(b) (cf. Fig. 2(a)) and

compared with the continuum theory in panel (c). One can see
that theory and simulation agree very well, but there are
discrepancies at distances far from the dimer that can be
ascribed to nite-size effects. From Fig. 2(c) and (d) one
observes that as the system size increases, the simulation
results approach the theoretical curve.

The sphere sizes, uid transport coefficients and boundary
condition parameters that enter the theoretical formulas must
be specied tomake such comparisons. The results in the gure
are for a dimer with s1 ¼ 2 and s2 ¼ 4 and bond length d ¼ 6.5,
and these values were used as radii and bond distance in the
theoretical equations. Due to the so nature of the repulsive LJ
potentials there is some ambiguity, of the order of the boundary
layer thickness, in the precise choice of radius. The intrinsic
reaction rate constant can be estimated from simple collision
Soft Matter, 2015, 11, 3149–3158 | 3151
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Fig. 2 Normalized (cB/c0) cB field in the xz plane (y ¼ 0) from (a) the
continuum theory and (b) MD-MPCD simulations; dashed circle indi-
cates where the potential goes to zero. (c) Plot of cB versus r in the w¼
90� plane in the spherical polar coordinate (r, w, f) from the center of
S1; continuum theory (black solid line), its asymptote (dotted lines); and
simulation results for different system sizes: L ¼ 60 (dp ¼ 28) (green
line), L ¼ 90 (dp ¼ 43) (blue line), and L ¼ 120 (dp ¼ 58) (red line). (d)
Log–log plot showing the asymptotic decay of cB. Color coding is the
same as in (c).

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
9 

Fe
br

ua
ry

 2
01

5.
 D

ow
nl

oa
de

d 
by

 F
ri

tz
 H

ab
er

 I
ns

tit
ut

 d
er

 M
ax

 P
la

nc
k 

G
es

el
ls

ch
af

t o
n 

14
/0

4/
20

15
 0

6:
18

:0
2.

 
View Article Online
theory as k0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=2pm

p � 0:4, and this approximate value
was used in the boundary condition.

Fig. 3 plots the motor velocity V for various sphere sizes and
bond distances d ¼ r1 + r2 + D. Experiments and earlier simu-
lations suggested that V exhibits a maximum as r1 (catalytic
sphere) increases for xed r2 and D.12 Panel (a) shows that the
continuum theory predicts such a maximum and also provides
the shape of the curve for the entire range of radius values. The
extensive MPC simulation results are in good agreement with
the theoretical results. By contrast, for xed r1 one nds that V
Fig. 3 (a) Plot of V versus r1/r2 for r2 ¼ s2 ¼ 3: continuum theory (solid
line), simulation (bullets). (b) Plot of V versus d for several different
dimers: continuum theory (solid lines), simulation (symbols). The
parameter values are given in the text.

3152 | Soft Matter, 2015, 11, 3149–3158
increases approximately logarithmically with increasing r2. The
theory is also able to describe the variation of V with d for xed
r1 and r2 (ref. 14), including the d

�2 decay at large distances (see
Fig. 3(b)); however, there are small discrepancies in the absolute
magnitude of the velocity, especially for motors with spheres of
unequal size. The continuum theory does not fully describe
microscopic details within the boundary layer and the boundary
conditions involve input parameters that can be specied only
approximately. Nor does it account for the presence of thermal
uctuations. Nevertheless, the general trends of the variations
of V with d are captured by the continuum theory.
5 Fluid flow fields

The streamlines describing uid motion may be constructed
from the stream function by setting j ¼ constant. The uid
velocity may also computed from the stream functions using v¼
f̂/r � Vj.

Fig. 4 shows the uid streamlines and velocity elds near to
and far from the dimer. In the near-eld, one sees a complex
uid ow eld with several vortices. Fluid is pushed from the
front of the catalytic sphere and, as a result of local circulation,
it returns to the rear of this sphere. This inux of uid is
strongly expelled in a direction tangential to the noncatalytic
sphere, and then again returns to the rear of the sphere. This
picture of the near-eld uid ow was partially captured in
earlier simulations.23–25 The far-eld ow is more difficult to
obtain from simulations because of nite-size limitations. Our
analytical results show that uid ows toward the sphere dimer
from both the front and back, and moves away from the dimer
in the lateral directions, a pattern characteristic of a point-force-
Fig. 4 Fluid streamlines for a dimer motor with radii, r1 ¼ 2, r2 ¼ 4, and
bond length d ¼ 6.5 are shown in the near field (upper left) and in the
far field (lower left) for 3B < 3A. The corresponding velocity fields are
shown in the near field (upper right) and in the far field (lower right).

This journal is © The Royal Society of Chemistry 2015
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Fig. 6 Plots of the magnitude of the fluid velocity, v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vq2 þ vh2

p
, for

dimers with bond lengths (a) d ¼ 6.8 and (b) d ¼ 13, in the forward
(black, w ¼ 0�), backward (blue, w ¼ 180�), and side (red, w ¼ 90�)
directions as a function of distance r from the origin (w is the polar
angle in the spherical polar coordinate system); (dotted lines)
asymptotic limits (see text). A stagnation region is seen due to the fluid
circulation shown in Fig. 5. The magnitude of fluid velocity versus r for
dimers with different bond lengths are shown in (c) w ¼ 0� directions
and (d) w ¼ 180� directions.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
9 

Fe
br

ua
ry

 2
01

5.
 D

ow
nl

oa
de

d 
by

 F
ri

tz
 H

ab
er

 I
ns

tit
ut

 d
er

 M
ax

 P
la

nc
k 

G
es

el
ls

ch
af

t o
n 

14
/0

4/
20

15
 0

6:
18

:0
2.

 
View Article Online
dipolar ow eld, �fd0(3 cos2 w � 1)r̂/(8p�mr2), where f is the
magnitude of force, d0 is the separation between the point
forces, and r is the distance from the force dipole. (See also
Hernandez-Ortiz, et al.26)

Fig. 5 shows the uid streamlines for various motor bond
lengths. When the bond length is small (d( 9), the streamlines
and the velocity eld are similar to those discussed in Fig. 4. As
the bond length increases, the circulation of uid with a stag-
nation region in front of the catalytic sphere (seen in the panel
(a)) retreats from the catalytic sphere. For a bond length d � 9
(Fig. 5 (b)), the streamlines have a symmetric form with several
local circulation regions and no stagnation region. As the bond
length increases to even larger values (d T 9) (Fig. 5(c)), a
stagnation region appears in the vicinity of the noncatalytic
sphere. Fluid enters in the lateral directions and is pushed to
the frontward and backward directions as a result of local
circulation. When the bond length increases further (d � 13)
(Fig. 5(d)), the dimer motor behaves approximately as two
independent spheres subject to forces. The uid eld around
the catalytic sphere displays a pattern characteristic of sedi-
mentation, and the uid ow around the noncatalytic sphere
shows a dipolar eld pattern similar to a spherical Janus motor.

Fig. 6 plots the magnitude of the uid velocity versus distance
from the dimer. If v is written in the form v ¼ vqq̂ + vhĥ, and its
components are expanded in terms of the distance r from the
origin, then, from the force-free condition, we obtain the asymp-
totic expressions: vq ¼ � ffiffiffi

2
p

sin wð1� 3 cos2 wÞU=r2 þ O ð1=r3Þ
and vh ¼ 2

ffiffiffi
2

p
cos w

�
1� 3

2
sin2 w

�
U=r2 þ O ð1=r3Þ, where

U ¼
XN
l¼1

ð2l þ 1Þfðl � 1=2Þbl þ ðl þ 3=2Þdlg. Thus, v decays as

r�2, consistent with recent simulations.25 Two representative
examples of the variation of the magnitude of the uid
velocity with r for small (d ¼ 6.8) and large (d ¼ 13) bond
Fig. 5 Fluid streamlines for the various dimer bond lengths: (a) d ¼ 7,
(b) d ¼ 9, (c) d ¼ 13, and (d) d ¼ 18.

This journal is © The Royal Society of Chemistry 2015
lengths are shown in Fig. 6(a) and (b). A stagnation region
(sharp dip in curve) appears only in front of the catalytic
sphere (w ¼ 0�) for the small bond length dimer (d ¼ 6.8)
(Fig. 6(a) and see also Fig. 5(a)) and only behind the non-
catalytic sphere (w ¼ 180�) for the large bond length dimer
(d ¼ 13) (Fig. 6(b) and also Fig. 5(c)). When the bond length is
smaller than a certain critical length (d � 9), the stagnation
point moves to larger r as the bond distance increases
(Fig. 6(c)). However, when the bond length is larger than this
critical value, the stagnation point moves to smaller r as the
bond length increases (Fig. 6(d)).

6 Propulsion force

In the diffusiophoretic mechanism the self-generated concen-
tration gradient that arises from the asymmetrical motor cata-
lytic activity leads to a body force on the motor. Since the entire
system is force-free, momentum conservation requires that
uid ows are generated in the system, and these ows are an
integral part of the propulsion mechanism. Our detailed
calculations have shown how the motor velocity can be deter-
mined from this picture of the dynamics. The forces that the
motor experiences are very different from those that give rise to
Stokes law friction coefficients when a colloidal particle is
subject to an external force.

The body force on the motor is a well-dened mechanical
quantity that is determined by the intermolecular interactions
of the solvent species with the motor, and it depends on the fuel
and product concentration elds in the vicinity of the motor. It
is ultimately this force that is the origin of the propulsion.
Through total momentum conservation this force is opposite to
the total force on the solvent. If U(rN) is the total potential
Soft Matter, 2015, 11, 3149–3158 | 3153
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Fig. 7 Plots of the ratio (Fp/V) versus bond length d for dimer motors
with the various radii. The solid lines are analytic calculations and the
dashed lines indicate 4p�m(r1 + r2). The black, red, green, blue, magenta
lines correspond to radii (r1, r2) ¼ (2, 2), (1, 4), (3, 3), (3, 4), (4, 4),
respectively.
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energy, the body force exerted on the motor by interactions with

the uid is F ¼
XN
i¼1

vU=vri where ri is the position of uid

particle i. Momentum conservation was used to express this
force in terms of derivatives with respect to solvent coordinates.
The steady state average value of this force projected along the
propagation direction, Fp, is dened to be the propulsion force.

We rst consider a spherical Janus particle where catalytic
reactions on one side of the particle convert fuel A to product B,
A / B. The A and B species interact with the Janus particle
through central intermolecular potentials UJ,A and UJ,B. The
diffusiophoretic velocity along the propagation direction of the
motor, ẑ, can be determined from the surface average, h.iS , of
the slip velocity, V ¼ �hẑ$vsiS , where the slip velocity at the
outer edge of the boundary layer surrounding the Janus particle
is given by vs ¼ �(kBT/�m)LJVqcB(rJ, w), with LJ dened by

LJ ¼
ðN
0

r
h
e�UJ;BðrÞ=ðkBTÞ � e�UJ;AðrÞ=ðkBTÞ

i
dr: (9)

The surface average of the slip velocity can be re-expressed
using integration by parts to give,

V ¼ kBT

mrJ
LJ

ð1
�1

dmmcBðrJ;mÞ; (10)

where m is now given by m ¼ cos w in the spherical polar coor-
dinate system. The Janus particle propulsion force can be
written in a similar form,

Fp ¼ 4pkBTLJ

ð1
�1

dmmcBðrJ;mÞ: (11)

Since both the average velocity and propulsion force for the
Janus particle are known, we may use the ratio, zJ ¼ Fp/V, which
is simply another expression for total momentum conservation,
to dene an effective friction coefficient, zJ. Using the above
equations, this ratio, Fp/V ¼ 4p�mrJ, is 2/3 of the stick Stokes
friction, zS¼ 6p�mrJ. As expected, the effective friction coefficient
dened in this way is not equal to the friction coefficient for the
particle subject to an external force.

The propulsion force for the sphere dimer may be computed
explicitly11 and its value depends on the intermolecular poten-
tials and steady state concentration elds. It may be written as

Fp ¼ 4pkBTL

ð1
�1

dmmcBðm; h2Þ; (12)

where m ¼ cos q in bispherical coordinates. Since the average
velocity of the dimer is known (the expression for this quantity
is given in eqn (8)), we may use the ratio, z(r1, r2, d) ¼ Fp/V, to
dene an effective friction coefficient for the dimer motor. This
ratio, which now also depends on the dimer bond length as well
as the sphere radii, is plotted versus d in Fig. 7 for various values
of r1 and r2. For large bond lengths, z(r1, r2, d) becomes inde-
pendent of d and approaches z ¼ z1 + z2, the sum of individual
friction coefficients of the two spheres, where zi ¼ 4p�mri. As the
bond length d decreases, z(r1, r2, d) increases sharply, and this
3154 | Soft Matter, 2015, 11, 3149–3158
reects the change in the character of the uid ow elds as the
dimer bond length changes, which was discussed in the
previous section.

7 Conclusions

Motor geometry can strongly affect motor velocity, concentra-
tion gradients and hydrodynamics ow elds. In particular, we
have shown how changes in the sphere sizes and dimer bond
length can inuence the magnitude of the motor velocity. The
force dipolar ow eld and r�2 power law decay for dimer
motors with small bond lengths resemble those of microor-
ganisms such as C. reinhardtii (puller) that can also be described
as a point-force-dipole and exhibit the same power law decay.27

Also, when 3B > 3A, the sphere dimer will reverse direction and
the ow eld will be characteristic of a pusher, similar to that of
E. coli.28 Thus, sphere dimers exhibit far-eld hydrodynamic
effects similar to those of biological swimmers and different
from the r�3 decay of spherical Janus motors. Moreover, it is
notable that the far-eld ow pattern reverses as the bond
length changes. For small bond lengths, the far-eld ow
pattern is characteristic of a puller as noted above, but it
changes to a pattern characteristic of a pusher for large dimer
bond lengths. Consequently, depending on its bond length, a
dimer motor can exhibit ow patterns that are similar to those
of pusher or puller biological swimmers. More generally, we
have seen that the short and long range structures of the cB and
v elds are very different and this, in turn, will lead to
phenomena that depend in non-trivial ways on the concentra-
tion of motors when the collective behavior of the sphere-dimer
and other complex motors is studied.29–32

8 Appendix: derivation of solutions
Concentration distribution

The steady-state cA eld around the sphere dimer satises the
diffusion equation, V2cA ¼ 0, subject to the radiation and
reecting boundary conditions for the S1 and S2 spheres given
This journal is © The Royal Society of Chemistry 2015
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Table 1 The elements of matrices and vectors in eqn (17) (l $ 1)

Ml;l ¼ fsinh h1 þ ð2l � 1Þcosh h1 þ 2xk0=Dge
�
l� 1

2

�
h1

Mlþ1;l ¼ �le

�
l� 1

2

�
h1

Ml;lþ1 ¼ �le

�
lþ 1

2

�
h1

ℕl;l ¼ fsinh h1 � ð2l � 1Þcosh h1 þ 2xk0=Dge�
�
l� 1

2

�
h1

ℕlþ1;l ¼ le
�
�
l� 1

2

�
h1

ℕl;lþ1 ¼ le
�
�
lþ 1

2

�
h1

Ol;l ¼ fsinh h2 þ ð2l � 1Þcosh h2ge
�
l� 1

2

�
h2

Olþ1;l ¼ �le

�
l� 1

2

�
h2

Ol;lþ1 ¼ �le

�
lþ 1

2

�
h2

ℙl;l ¼ fsinh h2 � ð2l � 1Þcosh h2ge
�
�
l� 1

2

�
h2

ℙlþ1;l ¼ le
�
�
l� 1

2

�
h2

ℙl;lþ1 ¼ le
�
�
lþ 1

2

�
h2

Al ¼ Al�1

Bl ¼ Bl�1

El ¼ � 2
ffiffiffi
2

p
xk0C0

D
e
�
�
l� 1

2

�
h1

Ol ¼ 0
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in eqn (2). The general solution of the cA concentration eld can
be expressed in the form given in eqn (3) using cA + cB ¼ c0.

The coefficients Al and Bl in this equation can be determined
as follows: the boundary conditions, eqn (2), can be rewritten in
terms of the Legendre functions using the formula,15

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh h� m

p ¼
ffiffiffi
2

p XN
l¼0

e
�
�
lþ 1

2

�		h		
PlðmÞ; (13)

and the recurrence relation,33

(2l + 1)mPl ¼ (l + 1)Pl+1 + lPl�1. (14)

We obtain the following equality for the lth term (l$ 1) in the
Legendre series from the radiation boundary condition in eqn
(2),

� le

�
l� 1

2

�
h1
Al�1 þ le

�
�
l� 1

2

�
h1
Bl�1

þ
h
sinh h1 þ ð2l þ 1Þcosh h1 þ 2xk0=D

i
e

�
lþ 1

2

�
h1
Al

þ
h
sinh h1 � ð2l þ 1Þcosh h1 þ 2xk0=D

i
e
�
�
lþ 1

2

�
h1
Bl

� ðl þ 1Þe
�
lþ 3

2

�
h1
Alþ1 þ ðl þ 1Þe�

�
lþ 3

2

�
h1
Blþ1

¼ � 2
ffiffiffi
2

p
xk0

D
C0e

�
�
lþ 1

2

�
h1
: (15)

From the reecting boundary condition in eqn (2), we obtain

� le

�
l� 1

2

�
h2
Al�1 þ le

�
�
l� 1

2

�
h2
Bl�1

þ
h
sinh h2 þ ð2l þ 1Þcosh h2

i
e

�
lþ 1

2

�
h2
Al

þ
h
sinh h2 � ð2l þ 1Þcosh h2

i
e
�
�
lþ 1

2

�
h2
Bl

� ðl þ 1Þe
�
lþ 3

2

�
h2
Alþ1 þ ðl þ 1Þe�

�
lþ 3

2

�
h2
Blþ1 ¼ 0: (16)

In eqn (15) and (16), the coefficients Al and Bl may be solved
by writing the equations as innite matrix formulas,34

MAþ ℕB ¼ E;
OAþ ℙB ¼ O;

(17)

whereM, N,O and P are the tridiagonal innite matrices and A,
B, E, and O are the innite column vectors. The elements of
these matrices and vectors are given in Table 1. By formally
inverting the matrices, the vectors A and B are found to be

A ¼ 
M� ℕℙ�1

O
��1

E;

B ¼ �ℙ�1
O

M� ℕℙ�1

O
��1

E:
(18)
This journal is © The Royal Society of Chemistry 2015
Propulsion velocity

If we dene c ¼
XN
l¼1

WlðhÞVlðmÞ, the boundary conditions in

eqn (5) are given by

cjh¼h1 ;h2
¼ � x2Vð1� m2Þ

2ðcosh h� mÞ1=2
					
h¼h1 ;h2

;

vc

vh

				
h¼h1

¼ x2Vð1� m2Þsinh h

4ðcosh h� mÞ3=2
					
h¼h1

;

vc

vh

				
h¼h2

¼ x2Vð1� m2Þsinh h

4ðcosh h� mÞ3=2
					
h¼h2

þ xk
XN
l¼0

"
Ale

�
lþ 1

2

�
h

þBle
�
�
lþ 1

2

�
h
#�

� ð1� m2ÞPl

2

þðcosh h� mÞ�1� m2
� vPl

vm

�				
h¼h2

: (19)

Using the relations,13,33
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Table 2 The coefficients for the motor velocity in eqn (8) and the fluid
stream function in eqn (24)

Fl ¼� lðl þ 1Þ
2ð2l þ 1Þ

(
e

�
l� 1

2

�
h2

Al�1�ð2 cosh h2Þe
�
lþ 1

2

�
h2
Al þ e

�
lþ 3

2

�
h2
Alþ1

þ e
�
�
l� 1

2

�
h2

Bl�1 � ð2 cosh h2Þe
�
�
lþ 1

2

�
h2

Bl þ e
�
�
lþ 3

2

�
h2

Blþ1

)

Dl ¼ 4 sinh2

�
l þ 1

2

�
ðh1 � h2Þ � ð2l þ 1Þ2sinh2ðh1 � h2Þ

fl ¼ x2lðl þ 1Þ
.n ffiffiffi

2
p

ð2l � 1Þð2l þ 1Þð2l þ 3Þ
o

al ¼ð2l þ 3Þ
(
4e

�
�
lþ 1

2

�
ðh1 � h2Þ sinh

�
l þ 1

2

�
ðh1 � h2Þ

þ ð2l þ 1Þ2eðh1 � h2Þ sinhðh1 � h2Þ

þ 2ð2l � 1Þsinh
�
l þ 1

2

�
ðh1 � h2Þcosh

�
l þ 1

2

�
ðh1 þ h2Þ

� 2ð2l þ 1Þsinh
�
l þ 3

2

�
ðh1 � h2Þcosh

�
l � 1

2

�
ðh1 þ h2Þ

� ð2l þ 1Þð2l � 1Þsinhðh1 � h2Þcoshðh1 þ h2Þ
)

bl ¼� ð2l þ 3Þ
�
2ð2l � 1Þsinh

�
l þ 1

2

�
ðh1 � h2Þsinh

�
l þ 1

2

�
ðh1 þ h2Þ

� 2ð2l þ 1Þsinh
�
l þ 3

2

�
ðh1 � h2Þsinh

�
l � 1

2

�
ðh1 þ h2Þ

þ ð2l þ 1Þð2l � 1Þsinhðh1 � h2Þcoshðh1 þ h2Þ
�

cl ¼� ð2l � 1Þ
(
4e

�
�
lþ 1

2

�
ðh1 � h2Þ sinh

�
l þ 1

2

�
ðh1 � h2Þ

� ð2l þ 1Þ2e�ðh1 � h2Þ sinhðh1 � h2Þ

þ 2ð2l þ 1Þsinh
�
l � 1

2

�
ðh1 � h2Þcosh

�
l þ 3

2

�
ðh1 þ h2Þ

� 2ð2l þ 3Þsinh
�
l þ 1

2

�
ðh1 � h2Þcosh

�
l þ 1

2

�
ðh1 þ h2Þ

þ ð2l þ 1Þð2l þ 3Þsinhðh1 � h2Þcoshðh1 þ h2Þ
)

dl ¼ð2l � 1Þ
�
2ð2l þ 1Þsinh

�
l � 1

2

�
ðh1 � h2Þsinh

�
l þ 3

2

�
ðh1 þ h2Þ

� 2ð2l þ 3Þsinh
�
l þ 1

2

�
ðh1 � h2Þsinh

�
l þ 1

2

�
ðh1 þ h2Þ

þ ð2l þ 1Þð2l þ 3Þsinhðh1 � h2Þsinhðh1 þ h2Þ
�

zl
1 ¼� ð2l þ 3Þsinh

�
l � 1

2

�
h1 cosh

�
l þ 3

2

�
ðh1 � h2Þ

þ ð2l þ 3Þsinh
�
l � 1

2

�
h2

þ ð2l � 1Þcosh
�
l � 1

2

�
h1 sinh

�
l þ 3

2

�
ðh1 � h2Þ

Table 2 (Contd. )

zl
2 ¼ð2l þ 3Þcosh

�
l � 1

2

�
h1 cosh

�
l þ 3

2

�
ðh1 � h2Þ

� ð2l þ 3Þcosh
�
l � 1

2

�
h2

� ð2l � 1Þsinh
�
l � 1

2

�
h1 sinh

�
l þ 3

2

�
ðh1 � h2Þ

zl
3 ¼ð2l þ 3Þsinh

�
l � 1

2

�
ðh1 � h2Þcosh

�
l þ 3

2

�
h1

þ ð2l � 1Þsinh
�
l þ 3

2

�
h2

� ð2l � 1Þcosh
�
l � 1

2

�
ðh1 � h2Þsinh

�
l þ 3

2

�
h1

zl
4 ¼� ð2l þ 3Þsinh

�
l � 1

2

�
ðh1 � h2Þsinh

�
l þ 3

2

�
h1

� ð2l � 1Þcosh
�
l þ 3

2

�
h2

þ ð2l � 1Þcosh
�
l � 1

2

�
ðh1 � h2Þcosh

�
l þ 3

2

�
h1

Xl ¼ 1

2

�
zl

1 þ zl
3
�
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ð1� m2ÞPl ¼ ðl þ 1Þðl þ 2Þ
ð2l þ 1Þð2l þ 3ÞVlþ1 � lðl � 1Þ

ð2l þ 1Þð2l � 1ÞVl�1;

ð1� m2ÞdPl

dm
¼ lðl þ 1Þ

ð2l þ 1ÞVl ;

mVl ¼ l � 1

2l � 1
Vl�1 þ l þ 2

2l þ 3
Vlþ1;

(20)

and eqn (13), we may expand the right hand sides of eqn (19) in
a series of Vl as

c ¼ � x2Vffiffiffi
2

p
XN
l¼1

lðl þ 1Þ
2l þ 1

e
H

�
l� 1

2

�
h

2l � 1
� e

H

�
lþ 3

2

�
h

2l þ 3

2
664

3
775Vl ; (21)

for h ¼ h1, h2 and

vc

vh
¼ � x2V

2
ffiffiffi
2

p
XN
l¼1

lðl þ 1Þ
2l þ 1

e
H

�
l� 1

2

�
h � e

H

�
lþ 3

2

�
h

2
4

3
5Vl þ G; (22)

where G ¼ 0 for h ¼ h1 and G ¼ xk
XN
l¼1

FlVl for h ¼ h2. The upper

sign and lower sign are taken for h¼ h1 and h¼ h2, respectively.
Since both sides of eqn (21) and (22) are expanded in a series of
Vl, we can determine the unknown coefficients of Wl(h) in eqn
(6) from the following equations:
where gl ¼ flV. The solution of the above equations for the
unknown coefficients al, bl, cl, dl is given by

DlX ¼ glY � 1

2
xkFlZ; (24)
This journal is © The Royal Society of Chemistry 2015
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al cosh

�
l � 1

2

�
h1 þ bl sinh

�
l � 1

2

�
h1 þ cl cosh

�
l þ 3

2

�
h1 þ dl sinh

�
l þ 3

2

�
h1 ¼ �gl ð2l þ 3Þe�

�
l� 1

2

�
h1 � ð2l � 1Þe�

�
lþ 3

2

�
h1

8<
:

9=
;;

al cosh

�
l � 1

2

�
h2 þ bl sinh

�
l � 1

2

�
h2 þ cl cosh

�
l þ 3

2

�
h2 þ dl sinh

�
l þ 3

2

�
h2 ¼ �gl ð2l þ 3Þe

�
l� 1

2

�
h2 � ð2l � 1Þe

�
lþ 3

2

�
h2

8<
:

9=
;;

ð2l � 1Þ
�
al sinh

�
l � 1

2

�
h1 þ bl cosh

�
l � 1

2

�
h1

�
þ ð2l þ 3Þ

�
cl sinh

�
l þ 3

2

�
h1 þ dl cosh

�
l þ 3

2

�
h1

�

¼ ð2l � 1Þð2l þ 3Þgl e
�
�
l� 1

2

�
h1 � e

�
�
lþ 3

2

�
h1

8<
:

9=
;;

ð2l � 1Þ
�
al sinh

�
l � 1

2

�
h2 þ bl cosh

�
l � 1

2

�
h2

�
þ ð2l þ 3Þ

�
cl sinh

�
l þ 3

2

�
h2 þ dl cosh

�
l þ 3

2

�
h2

�

¼ �ð2l � 1Þð2l þ 3Þgl e

�
l� 1

2

�
h2 � e

�
lþ 3

2

�
h2

8<
:

9=
;þ 2xkFl ;

(23)
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where X¼ {al, bl, cl, dl}, Y¼ {āl, �bl, �cl, �dl}, and Z¼ {zl
1, zl

2, zl
3, zl

4}.
The elements of the vectors are given in Table 2. If the motor is
not self-propelled, the slip velocity does not exist. By taking k ¼
0, we obtain X ¼ glY/Dl, which is the solutions for the motion of
two linked spheres with the velocity V derived by Stimson and
Jeffery.13

In the bispherical coordinate system,13,16 the forces on indi-
vidual spheres given in eqn (7), and denoted here as F1 at the S1
sphere (h ¼ h1) and F2 at the S2 sphere (h ¼ h2), are given by

F1 ¼ 2
ffiffiffi
2

p
pm

x

XN
l¼1

ð2l þ 1Þðal þ bl þ cl þ dlÞ;

F2 ¼ 2
ffiffiffi
2

p
pm

x

XN
l¼1

ð2l þ 1Þðal � bl þ cl � dlÞ:
(25)

Thus, the total force is

Fz ¼ 4
ffiffiffi
2

p
pm

x

XN
l¼1

ð2l þ 1Þðal þ clÞ: (26)

From the force-free condition, Fz ¼ 0, and eqn (24), we can
nd the propulsion velocity of the dimer motor given in eqn (8).
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