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Abstract – In addition to self-propulsion by phoretic mechanisms that arises from an asymmet-
ric distribution of reactive species around a catalytic motor, spherical particles with a uniform
distribution of catalytic activity may also propel themselves under suitable conditions. Reactive
fluctuation-induced asymmetry can give rise to transient concentration gradients which may per-
sist under certain conditions, giving rise to a bifurcation to self-propulsion. The nature of this
phenomenon is analyzed in detail, and particle-level simulations are carried out to demonstrate
its existence.

Copyright c© EPLA, 2013

Synthetic chemically-powered self-propelled micron and
nano-scale motors are interesting because of their po-
tential applications and the fundamental challenges they
present as small objects that operate in the far-from-
equilibrium domain in the presence of strong fluctuations.
In addition to synthetic motors that move by using
chemical energy to drive nonreciprocal conformational
changes, similar to many biological motors, synthetic mo-
tors without moving parts that utilize asymmetric chem-
ical reactivity to produce motion have been constructed
and studied (for reviews, see refs. [1–5]). Such motors op-
erate by phoretic mechanisms where the gradient of the
concentration (or other) field due to asymmetric catalysis
gives rise to a force that couples to fluid flow and leads to
directed motion [6–8].

Even a spherical particle with uniform catalytic ac-
tivity on its surface can propel itself as a result of a
symmetry-breaking bifurcation if the right conditions are
met [9,10]. A qualitative understanding of the origin
of the phenomenon can be obtained from the following
considerations. Suppose the catalytic reaction A → B
occurs on the sphere and further suppose both the reac-
tant A and product B molecules interact with the sphere

through repulsive potentials but the B potential is more
strongly repulsive than that of A (see footnote 1). Local
concentration fluctuations can produce a transient asym-
metry; however, diffusion will tend to restore symmetry
on a time scale tD ∼ R2/D, where R is the radius and D
is the diffusion coefficient of the reactive molecules. Sup-
pose a reactive fluctuation occurs locally that increases
the concentration of product species B and decreases the
concentration of reactant species A near a portion of the
surface of the catalytic sphere. Since B particles inter-
act with the sphere with a stronger repulsive potential
than A particles, the sphere will experience a net force di-
rected away from the area of local high B concentration.
(Note that since total momentum is conserved, this force
is balanced by a corresponding force on the fluid.) If the
catalytic sphere moves with velocity V as a result of this
effect, it will travel a distance R in a time tV ∼ R/V .
When tV � tD there will be insufficient time for diffusion
to homogenize the concentration field around the sphere,
the concentration inhomogeneity will persist and an in-
stability can occur that gives rise to directed motion. The

1A similar argument can be given for attractive intermolecular
interactions.
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velocity V depends on the reaction rate, particle size, and
the strength and range of the interactions of the reactive
species with the sphere. As these parameters vary there
should be a critical condition beyond which self-propelled
motion is observed. By contrast, if the product B parti-
cles interact less strongly with the catalytic sphere than
the A reactant particles, the motion of the sphere induced
by the fluctuation will be directed towards the local high
B concentration area and this will assist homogenization
of the concentration field around the sphere by diffusion.
In this case conditions are not favorable for the onset of
the instability.

Self-propulsion of beads driven by actin polymeriza-
tion has been observed and has some general features in
common with the phenomenon described above. Spher-
ical polystyrene beads uniformly coated with a protein
that catalyzes actin polymerization can undergo a sponta-
neous symmetry-breaking process to induce directed mo-
tion [11]. For small beads spontaneous fluctuations are
sufficient to induce symmetry breaking while larger beads
move only if surface asymmetry is intentionally intro-
duced. The symmetry-breaking mechanism has been in-
vestigated in experiments [11,12] and models [13–15] and
depends on the detailed nature of the polymerization pro-
cess. The spherical catalyst in our study is propelled
by a diffusiophoretic mechanism and the symmetry-
breaking mechanism differs from the actin propulsion
mechanism.

The aims of this letter are to demonstrate the exis-
tence of self-propulsion of spherical catalytic particles by
a symmetry-breaking mechanism through particle-based
simulations of the dynamics, to quantitatively character-
ize its properties, and to provide a theoretical description
of the origin of the effect [16]. To this end, we consider a
mesoscopic model of a chemically-active spherical particle
C in a fluid comprising A and B particles. The A and
B molecules interact with the C sphere through repulsive
central Lennard-Jones potentials,

VCα(r) = 4εCα

((σ

r

)12

−
(σ

r

)6

+
1
4

)
θ(rc − r), (1)

where α ∈ {A,B}, θ(r) is the Heaviside function and
rc = 21/6σ. The energy and distance parameters are
εCA, εCB and σ, respectively. In addition to these di-
rect interactions, the C sphere catalyzes the reaction
A+C → B+C. To implement this reaction an interaction
zone around the catalytic sphere is identified and every
A particle that enters the interaction region is triggered
for reaction. Specifically, after an A particle encounters
the catalytic sphere by passing through the interaction
zone, its identity is changed from A to B as it leaves this
zone. By carrying out the reaction in this way there are
no changes in intermolecular potentials.

The solvent particles interact among themselves
through multiparticle collision (MPC) dynamics [17–19]
where particles stream and undergo effective collisions at

discrete time intervals τ . The multiparticle collisions are
carried out by dividing the system into a grid of cells and
assigning rotation operators ω̂ξ, chosen from a set of ro-
tation operators, to each cell of the system at the time
of collision. Particles within each cell undergo collisions
that change their velocities. The postcollision velocity of
particle i in a cell ξ is given by v′

i = Vξ + ω̂ξ(vi − Vξ),
where Vξ is the center of mass velocity of particles in the
cell and ω̂ξ is the rotation operator of the cell ξ. The irre-
versible chemical reaction A + C → B + C will eventually
consume all of the A fuel. In order to maintain a steady
state a bulk phase reaction B → A is introduced. MPC
dynamics has been generalized to incorporate such bulk
phase reactions [20]. Specifically, at each MPC time step
τ the reaction B → A is taken to occur probabilistically in
a way that depends on the occupancy of the collision cell.
The full dynamics of the reacting solvent interacting with
the catalytic sphere is described by combining molecular
dynamics (MD) for the sphere with reactive MPC dynam-
ics for the solvent [21]. We also observe that rotational
Brownian motion of the sphere is absent since the par-
ticles are structureless and central interaction potentials
are employed. The hybrid MD-MPC dynamics includes
fluctuations, conserves mass, momentum and energy, and
accounts for coupling between the C sphere motion and
fluid flows.

Simulations were carried out in a cubic box with peri-
odic boundary conditions containing the active C sphere
and solvent particles. For multiparticle collisions, carried
out at intervals τ = 0.5tsim, the box was partitioned into
Nc cubic cells of linear size a. Other parameters are: the
average number of solvent particles per cell, n0 = 10; tem-
perature, kBT = 1/3; solvent mass, mA = mB = m = 1;
bulk reaction rate constant, k2 = 10−3. Units of length
a, mass m, energy εsim and time

√
ma2/εsim ≡ tsim are

used in the simulations. The C sphere mass is M =
4
3πn0σ

3. Averages were obtained from 40 realizations of
the dynamics.

By fixing the interaction energies so that εCA � εCB

and changing the sphere size σ, the possibility of a bifur-
cation leading to self-propulsion can be explored. Figure 1
presents a comparison of the simulated speed distribu-
tions, P (V ′) for various values of σ (or mass M). The
speed is scaled, V ′ = V/

√
kBT/M , so that the equilib-

rium speed distributions are the same for all σ. For σ = 3
the equilibrium and simulated distributions nearly coin-
cide (see inset) but as σ increases large-magnitude devi-
ations are observed. At the largest value of σ = 9, the
peak of the nonequilibrium speed distribution differs con-
siderably from that of its equilibrium counterpart. These
results are consistent with a velocity probability distribu-
tion that is a Gaussian P (V′) ∼ exp (−|V′ − V′

C |2/2w2).
The direction of the velocity will not persist, since strong
enough fluctuations will be able to destroy the local con-
centration inhomogeneity. A new fluctuation will cause
the instability to re-occur with the local concentration in-
homogeneity near a different portion of the sphere surface.
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Fig. 1: (Colour on-line) Speed distributions P (V ′) for spheres
of various sizes. The binned data is from reactive simulations
with εCA = 0.1, εCB = 1 and Nc = 643 and the red lines are
fits using eq. (2). Other parameters are given in the text, with
εsim = εCB . Curves from left to right: σ = 3, 5, 7 and 9. Inset:
the binned data is from reactive simulations and the red dashed
line is the equilibrium Maxwellian distribution. For σ = 3, the
simulation data is close to the Maxwellian.

For this reason the observable that most robustly captures
the effect and is easily extracted from the simulations is
the speed. The speed distribution derived from the veloc-
ity distribution is

P (V ′) =
1√
2πw

V ′

V ′
C

(
e−(V ′−V ′

C)2/2w2 − e−(V ′+V ′
C)2/2w2

)
,

(2)
where both V ′

C and w vary with the sphere size. As shown
in the figure, the fits of this equation, with parameters
V ′

C and w given in table 1, are indistinguishable from the
simulation data.

In fig. 2 we compare the average speeds 〈V ′〉 for reac-
tive and nonreactive spheres of varying size. The non-
reactive simulations were carried in a solvent consisting
only of species A fluid particles. Without reactive events,
the system, consisting of the fluid and the sphere, is at
equilibrium and one expects the average speed to be given
by V ′

th =
√

8/π, which is indeed seen in the figure. For
the nonequilibrium reactive systems a strong departure of
〈V ′〉 from the thermal value is observed as σ increases.
The average speed computed from eq. (2) is

〈V ′〉 =

√
2
π

we−V ′2
C /2w2

+
V ′2

C + w2

V ′
C

erf(V ′
C/

√
2w), (3)

which varies from the thermal speed, V ′
th, when σ is small

and V ′
C = 0, to V ′

C for large σ. These results are consistent
with a bifurcation to self-propelled motion for sufficiently
large sphere sizes between σ = 4 and 5.

The nature of the instability and an estimate of the
sphere size σ at which it occurs can be obtained by con-
sidering the force on the sphere at coordinate R. The
instantaneous microscopic force on the sphere is F =∑

α∈{A,B}
∫

dr ρα(r; rN )(∂VCα(|r − R|)/∂r), where the
microscopic density of species α at point r is ρα(r; rN ) =

Table 1: Speed distribution parameters, and ballistic and dif-
fusive components of the MSD. Parameters are the same as in
fig. 1.

σ 3 4 5 6 7 8 9
V ′

C 0.04 0.4 0.6 0.9 1.3 2.6 5.9
w 1.1 1.1 1.1 1.2 1.4 1.7 1.8
〈V ′〉 1.7 1.8 1.9 2.1 2.6 3.7 6.5
V ′

B 1.7 1.9 1.8 2.0 2.6 3.8 6.5
DC

10−3 11.4 12.6 16.2 24.0 55.9 223.4 843.3
DN

C

10−3 5.64 3.28 2.95 1.80 1.41 1.35 0.93

Fig. 2: The average velocity 〈V ′〉 of spheres of varying sizes de-
termined from simulation of reactive nonequilibrium and non-
reactive equilibrium systems. Parameters are the same as in
fig. 1. The full line is the average thermal velocity, V ′

th, on
which all equilibrium simulations fall.

∑Nα

i=1 δ(r − riα) and riα is the coordinate of particle i
of species α. A microscopic boundary layer surrounds
the sphere within which the intermolecular forces on the
sphere act. Due to momentum conservation and the fi-
nite range of the potentials, the sphere plus solvent in the
boundary layer is force free, which has been used to write
this expression for the force.

Although a full theoretical description of the instability
would have to account for fluctuations and the particle-
based nature of the simulations, a deterministic descrip-
tion that utilizes a reaction-diffusion description of the
concentration fields can be used to describe the basic
underlying mechanism for the instability in theoretical
terms and make rough predictions of when it should oc-
cur. Consider the average of the force on the sphere over
a nonequilibrium ensemble where the sphere has position
R and velocity V and the force 〈F〉 is given by

〈F〉 = V̂
∑

α∈{A,B}

∫
du ρα(u,V)(V̂ · û)

dVCα(u)
du

, (4)

where u = r − R, V̂ is a unit vector in the direc-
tion of V and ρα(u,V) = 〈ρα(r; rN )〉 is the nonequi-
librium average of the microscopic density of species α.
Outside the boundary layer with outer radius R0, a
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continuum description of the solvent is assumed to be
appropriate. Consequently, we approximate the density
as ρα(u,V) = nα(u,V) for u > R0, and ρα(u,V) =
exp (−βVCα(u))nα(ûR0,V) for u ≤ R0, where nα(u,V)
can be found from the solution to a reaction-diffusion
equation. The nonequilibrium average force then takes
the form, 〈F〉 = V̂ 2

β λ2
∫

dû nB(R0û,V)(V̂ · û), where

λ2 =
∫ 21/6σ

0
du u

(
e−βVCB(u) − e−βVCA(u)

)
accounts for in-

teractions between the reactive species and the sphere.
The location of the instability can be determined fol-

lowing the analysis in refs. [9,10]. For a sphere at position
R(t) the B density field at a point r outside the boundary
layer satisfies

∂tnB(r, t) = D∇2nB(r, t) − k2nB + S(r, t). (5)

Near the onset of the instability where the velocity is small
the Peclet number Pe = V R/D will not be very large
and advective terms can be neglected. The source term
S(r, t) = (4πR2

0)
−1k0nA(r, t)δ(|r − R(t)| − R0), where k0

is the intrinsic reaction rate coefficient for the reaction
A → B on the C sphere. The formal solution of eq. (5) is

nB(r, t) =
∫

dr′dt′G(r − r′, t − t′)S(r′, t′), (6)

where G(r, t) = (4πDt)−3/2 exp(−(r2/4Dt + k2t)) is the
Green function. In order to obtain an approximate ex-
pression for nB(r, t) we replace the source term by its
lowest order term in the multipole expansion, S(r, t) ≈
S0δ(r−R(t)). Substitution into eq. (6) and evaluation of
the integrals, along with the assumption that the sphere
moves at a constant velocity, yields an asymmetrical B
concentration field,

nB(r) =
S0

4πDu
e−u·Ṽe−

√
κ2+Ṽ 2u, (7)

where Ṽ = V/(2D) and κ =
√

k2/D. The A density
is given by nA(r) = n0 − nB(r), assuming total density
n0 variations are negligible. Using these results, for small
sphere velocities where our approximations are valid, the
nonequilibrium average force on the sphere to order V 3

is β〈F〉 = A(1 − BV 2)V, where A = 4π
3

R2
0

D2 |λ2|rf , with
rf = (4πR2

0)
−1k0kDn0/(k0 + kD(1 + κR0)) the reaction

rate per unit area, kD = 4πDR0 the Smoluchowski rate
coefficient, and B = κR0(1 − κR0/5)/(8k2D). In writing
the expression for the force we used the fact that for our
instability condition εCB > εCA and λ2 < 0, and have
taken the source strength to be S0 ≈ k0kDn0e

κR0/(k0 +
kD(1 + κR0)), its value for a stationary sphere.

The instability threshold is determined from the con-
dition where 〈F〉 exceeds the frictional force leading to
a growth of the velocity instead of its decay. Letting
〈F〉/ζ = CV, where ζ is the friction coefficient and

C =
4π

3
kBT

ζ

R2
0

D2
|λ2|rf , (8)

Fig. 3: Log-log plot of ΔL2(t) vs. t for active spheres with
σ = 3 and 7 from an average over 40 realizations of the dynam-
ics. The straight dashed and dotted lines indicate the ballistic
and diffusive regimes, respectively. Their intersection yields an
estimate of the crossover time tc.

the instability condition is C = 1, with instability for
C > 1. For our fixed potential parameters the instability
occurs at σ ≈ 4.7, which is consistent with the thresh-
old range estimated from the simulations in fig. 2. The
friction coefficient was found from the decay of the sphere
velocity correlation function for nonreactive systems.

Nonlinear terms in the expression for 〈F〉 will lead to
saturation of the instability and the final self-propelled
velocity of the sphere. Beyond but close to the instability
threshold the velocity is given by V 2

C = (C − 1)/(CB).
The sphere velocities for several σ values, including values
far beyond the instability threshold where the analytical
estimates break down, are given in table 1. For example,
for σ = 5 the theoretical estimate gives V ′

C ≈ 1.9, which
is comparable to but higher than V ′

C = 0.6 and is close to
〈V ′〉 in the table for this σ.

The velocity of the sphere is not constant as assumed
in these theoretical estimates and it experiences fluctu-
ations in its norm (cf. fig. 1) and direction as a result
of local concentration fluctuations. Consequently, diffu-
sive motion will be observed on long time scales. The
mean square displacement (MSD), ΔL2(t), was used to
characterize the short-time ballistic motion and long-time
diffusive behavior of the sphere under reactive nonequilib-
rium and nonreactive equilibrium conditions. The MSD
of the nonreactive simulations is described by ΔL2(t) =
6DN

C (t − τV (1 − e−t/τV )), where the velocity relaxation
time τV = M/ζ. The crossover from short-time inertial
motion (present in our MD-MPC dynamics), ΔL2(t) ∼
3(kBT/M)t2, for times t � τV to diffusive behavior,
ΔL2(t) ∼ 6DN

C t, for times t  τV , where DN
C = kBT/ζ,

occurs at a crossover time tc ≈ 2τV .
The MSD for chemically active spheres also displays

ballistic, ΔL2(t) ∼ V 2
Bt2, and diffusive, ΔL2(t) ∼ 6DCt,

components (see fig. 3) but the values of these components
differ from those of the nonreactive simulations, and the
crossover time is up to two orders of magnitude larger
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than τV . Table 1 lists the values of the diffusion coeffi-
cients DC and DN

C for reactive and nonreactive systems,
respectively, for various values of σ, obtained from fits of
the MSD. The table also gives the value of VB in the bal-
listic contribution. While DN

C decreases with σ, DC shows
a very strong increase with σ for large σ, consistent with
self-propelled motion. From the table we see that the bal-
listic speed VB tends to the inertial value VB ∼

√
3kBT/M

for small σ and to VB ∼ VC for large σ, again consistent
with self-propelled motion. The Reynolds numbers cor-
responding to the chemically active simulations are less
than unity indicating viscous rather than inertial effects
dominate the dynamics.

The approximate expression for C in eq. (8) can be used
to estimate when an instability leading to self propul-
sion will be likely to occur in physical systems. Since
such estimates are system-specific we discuss general sys-
tem characteristics that favor the instability. Taking ζ
to be given by its Stokes value, ζ = 6πηR0, the insta-
bility condition C = 1 reads 2

9
kBT

η
R0
D2 |λ2|rf = 1. For

typical values kBT ∼ 4 × 10−21 kg m2/s, η ∼, 10−3 kg/ms
and D ∼ 10−9 m2/s, the factor 2

9
kBT

η
1

D2 ∼ 1 s/m. Con-
sequently, we require R0|λ2|rf > 1m/s for instability.
The microscopic length |λ| depends on the intermolec-
ular potential and will often have values ranging from
angstroms to nanometers. The reaction rate, which can
be controlled by varying the concentration n0 and other
factors, is an important quantity to consider for the in-
stability. When reaction with the sphere is the rate con-
trolling step, rf = k0n0/(4πR2

0) and, since k0 ∼ R2
0, rf

is independent of R0. In contrast, for diffusion control
rf = kDn0/(4πR2

0) = Dn0/R0. Systems with such char-
acteristics where the instability mechanism operates could
be investigated experimentally. For instance, for reaction
control with rf ∼ 1023 molecules/m2s, instability will oc-
cur for R0 ∼ 10–100μm.

The velocity increases from zero above the bifurcation
point and, close to the bifurcation, the formula V 2

C =
(C−1)/(CB) can be used to estimate its value. The param-
eter C controls the distance from the bifurcation while the
parameter B depends on the radius R0, the diffusion co-
efficient D and the inverse length κ that gauges how bulk
reaction in the environment destroys product molecules
to set up a steady state. Typically κR0 < 1. Using
the parameters for the reaction-controlled case described
above, and taking C ≈ 1.1, not too far above the bifur-
cation point so that the formula retains its validity, we
find VC ≈ 3–30μm/s, values which are similar to those
for (smaller) self-propelled particles with asymmetric cat-
alytic activity. Of course, accurate estimates of the ve-
locity will depend on the specific details of the particular
system under study.

Recently the diffusion coefficients of catalytically ac-
tive enzymes were observed to be substantially larger than
their inactive counterparts [22,23]. In particular for cata-
lase, an enzyme with one of the fastest turnover rates,

the diffusion coefficient increased by 45% in H2O2 solu-
tion where active catalysis takes place. Assuming that our
theoretical instability condition holds for catalase and us-
ing parameters appropriate for this enzyme, we estimate
that C is well below the instability threshold. However,
even below the instability threshold reactive fluctuations
can lead to enhanced diffusion [24]. For example, for our
reactive system with σ = 3, εCA = 1 and εCB = 4, which
is below the instability threshold, the diffusion coefficient
is found to be DC = 7.0× 10−3, while the diffusion coeffi-
cient for a nonreactive system with the same parameters is
DN

C = 5.5×10−3. There is a 27% increase for the reactive
system. These results are consistent with the experimental
observations and interpretations of this effect. In addition
to these results on enzymatic systems, recently experi-
ments have shown that simple catalytic Pt spherical and
composite particles exhibit enhanced diffusion and ballis-
tic motion when H2O2 is present in solution [25]. These
results are also in accord with our simulations on reactive
dynamics below the instability threshold.

Our results provide a molecular-based demonstration of
self-propulsion through symmetry breaking that incorpo-
rates the effects of reactive concentration fluctuations and
hydrodynamic flows. Further, they demonstrate the ex-
istence of enhanced diffusion, even below the instability
threshold, and suggest mechanisms for enhanced diffusion
in active enzymatic systems.
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