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The structural and dynamical properties of macromolecules in confining or crowded environments
are different from those in simple bulk liquids. In this paper, both the conformational and diffusional
dynamics of globular polymers are studied in solutions containing fixed spherical obstacles. These
properties are studied as a function of obstacle volume fraction and size, as well as polymer chain
length. The results are obtained using a hybrid scheme that combines multiparticle collision
dynamics of the solvent with molecular dynamics that includes the interactions among the polymer
monomers and between the polymer beads and obstacles and solvent molecules. The dynamics
accounts for hydrodynamic interactions among the polymer beads and intermolecular forces with
the solvent molecules. We consider polymers in poor solvents where the polymer chain adopts a
compact globular structure in solution. Our results show that the collapse of the polymer chain to a
compact globular state is strongly influenced by the obstacle array. A nonmonotonic variation in the
radius of gyration with time is observed and the collapse time scale is much longer than that in
simple solutions without obstacles. Hydrodynamic interactions are important at low obstacle volume
fractions but are screened at high volume fractions. The diffusion of the globular polymer chain
among the obstacles is subdiffusive in character on intermediate time scales where the dynamics
explores the local structure of the heterogeneous environment. For large polymer chains in systems
with high obstacle volume fractions, the chain adopts bloblike conformations that arise from
trapping of portions of the chain in voids among the obstacles. © 2010 American Institute of
Physics. �doi:10.1063/1.3319672�

I. INTRODUCTION

In living cells, polymers and other molecules carry out
their biological functions in an aqueous environment con-
taining microtubules and other filaments, various organelles
and a variety of different macromolecular species and struc-
tural obstacles. In such systems, the macromolecular species
and structural obstacles occupy a large volume fraction of
the cell. The volume fraction often ranges from 0.1 to 0.4 of
the total cellular volume.1,2 Diffusion and reaction in such
crowded and confined environments differ from those pro-
cesses in a simple aqueous solution, and effects arising from
crowding and confinement can influence biological
function.3,4

Crowding and confinement in biological cells have been
studied for many years.5–8 It is known that they can alter
equilibrium properties, such as equilibrium constants and
molecular conformations.8,9 They can also lead to substantial
decreases in diffusion coefficients of macromolecules,10–13

alter protein folding processes and influence protein
assembly.14–20

There have been numerous studies of polymer dynamics
in crowded environments and other disordered media using a
variety of theoretical and simulation techniques and polymer

models.21,22 Various scaling regimes have been identified and
scaling relations have been obtained that show how charac-
teristic polymer static and dynamic properties depend on the
degree of polymerization and crowding. Simulation studies
have been carried out of continuous-space models of ex-
tended single polymer chains in the presence of obstacles
�frozen networks of polymer chains or hard spherical
obstacles�.23–27 Polymer structure and dynamics in crowded
and confined systems is very different for long and short
chains. Almost all simulation studies have been carried out
without explicitly including solvent molecules in the descrip-
tion.

In this paper, we study the effects of molecular crowding
on the structure and dynamics of macromolecules. While
there have been many studies of polymers in random matri-
ces, the effects of solvent quality on their behavior in such
disordered systems has received less attention. The present
investigations focus on polymers in poor solvents where the
polymer chain adopts a compact globular form in the ab-
sence of crowding agents.28 We consider dilute polymer so-
lutions so that a single polymer chain may be studied. The
polymer chain is solvated by a large number of solvent mol-
ecules and the solution contains fixed hard spherical ob-
stacles that act as crowding agents.29 In such systems, we
examine the nature of the collapse of the polymer chain from
an extended state to the equilibrium compact globular form,
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the changes in the equilibrium conformational structure of
the polymer, and its translational diffusion as function of the
degree of molecular crowding.

Full molecular dynamics �MD� simulations of systems
containing a polymer, solvent and crowding obstacles require
a large computational effort. In particular, the presence of a
large number of solvent molecules, along with a large num-
ber of crowding agents, makes these calculations especially
challenging. The explicit inclusion of solvent allows one to
incorporate the effects solvent fluctuations and hydrody-
namic interactions on polymer dynamics automatically, with-
out having to specify approximate forms for the space-
dependent friction tensor and random force in Brownian
dynamics models. To overcome this difficulty, we employ a
hybrid scheme that combines multiparticle collision �MPC�
for the solvent30–33 in conjunction with MD for the polymer
molecule and its interactions with the solvent and obstacles.
This allows us to investigate crowding effects on polymers in
systems that include both solvent and crowding agents in a
computationally efficient manner.

The outline of the paper is as follows. Section II de-
scribes the model system and presents details of the simula-
tion method. In Sec. III, we discuss the effects of molecular
crowding on polymer collapse dynamics, equilibrium poly-
mer structure and translational diffusion. The conclusions of
the study are presented in Sec. IV.

II. CROWDED SYSTEM

The crowded system we study comprises a single poly-
mer molecule in a solution containing fixed hard spherical
obstacles and solvent molecules �see Fig. 1�. The total energy
of the system is the sum of the kinetic energies of the poly-
mer monomers and solvent molecules plus total potential
energy V�rNb ,rNs ,rNo�, where Nb is the number of monomers
�beads� in the polymer chain, Ns is the number of solvent
molecules and No is the number of obstacles. We employ a

hybrid dynamical model that combines a MD description of
the polymer with a mesoscopic MPC dynamics for the
solvent.31 In this hybrid MD-MPC scheme, the total potential
energy is the sum of the interactions among the polymer
beads Vbb�rNb�, bead-solvent interactions Vbs�rNb ,rNs�, as
well as interactions between the fixed obstacles and mono-
mer beads and solvent molecules, Vob�rNo ,rNb� and
Vos�rNo ,rNs�, respectively. Interactions among the solvent
molecules are accounted for by MPCs, described below. The
number of obstacles No is an important parameter that con-
trols the extent of crowding in the system. The specific forms
of the interaction potentials among the components in the
system are as follows.

Polymer bead-bead interactions. There are two types of
interaction among the beads in our bead-spring model of a
linear polymer chain. For neighboring beads, we use the non-
Hookian finite extensible nonlinear elastic �FENE� interac-
tion potential,34,35

VFENE�r� = −
�

2
r0

2 ln�1 − � r

r0
�2�, r � R , �1�

where �=30� /�, � is an energy parameter, � is the bead
diameter, r= 	ri−r j	 is the distance between neighboring
beads, and r0=1.5� is its maximum value.

Non-neighboring beads interact through Lennard-Jones
�LJ� potentials,

VLJ�r� = 4 ����

r
�12

− ��

r
�6� . �2�

The LJ potentials are cut off at a distance L /4, where L is the
length of simulation box.

Polymer-solvent interactions. The solvent molecules in-
teract with the polymer beads through repulsive LJ poten-
tials,

Vbs�r� = 
4 ����

r
�12

− ��

r
�6

+ �1

4
�� , r � 21/6�

0, r � 21/6� ,
�

�3�

which mimic hydrophobic interactions.
Obstacle-mobile particle interactions. The obstacles are

taken to be hard spherical objects. They are randomly
distributed in the system taking into account their excluded
volume. The obstacle volume fraction is given by
�=4 �NoRo

3 /3 V, where Ro is the obstacle radius and V is
the volume of the system. When polymer beads or solvent
particles collide with an obstacle, their velocities are re-
versed �bounce-back collisions�.

Solvent-solvent interactions. There are no solvent-
solvent interaction potentials. Instead, the effects of these
interactions are accounted for by MPC dynamics.30 In MPC
dynamics, Ns solvent particles, representing coarse grained
real molecules, stream and undergo effective collisions at
discrete time intervals 	, accounting for the effects of many
real collisions during this time interval. The collisions are
carried out by dividing the system into a grid of cells with
volumes V
 and assigning rotation operators �̂
, chosen from
some set of rotation operators, to each cell of the system at

FIG. 1. An instantaneous configuration of the system showing the polymer
chain and solvent containing obstacles. Only a portion of the system in the
vicinity of the polymer chain is shown. The system parameters are the
following: Nb=200, �=0.25, Ro=2.0, and ns=6.
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the time of collision. Particles within each cell “collide” with
each other and the postcollision velocity of particle i in a cell

 is given by vi�=V
+ �̂
�vi−V
�, where V
 is the center of
mass velocity of particles in the cell and �̂
 is the rotation
operator of the cell 
. The MPC dynamics satisfies mass,
momentum, and energy conservation laws. The dynamics is
microcanonical and preserves phase-space volumes.

A. Simulation details

To simulate the hybrid MD-MPC dynamics, Newton’s
equations of motion are solved to evolve the polymer and
solvent, taking into account the forces derived from the
bead-bead, bead-solvent, bead-obstacle, and solvent-obstacle
interactions. Solvent-solvent forces do not enter in the
Netwonian equations of motion. However, at time intervals
	, MPCs as described above take place and the evolution is
continued. This hybrid dynamics again conserves mass mo-
mentum and energy and preserves phase space volumes.30,31

There have been several studies of polymer dynamics in the
absence of obstacles using MPC dynamics.36–42

The simulations presented in this paper were carried out
on systems with volume V=L3= �50�3 MPC cells with unit
volume. The rotation operators in the MPC dynamics were
chosen to describe rotations by �= � /2 about randomly
chosen axes. The number of obstacles with radius Ro was
computed from the desired value of the volume fraction �.
The obstacle radius Ro was varied from 2.0 to 5.0. The sys-
tem also contains Ns mesoscopic solvent particles of mass
m=1 �Ns varies from approximately 2.5�105 to 1.25�106�
and one polymer with Nb=40, 60, 80, 100, 200, or 400 beads
of mass M =10m and diameter �. The simulations were car-
ried out in a cubic box with periodic boundary conditions. If
the volume of a bead particle is Vb=� �3 /6 and the volume
of an obstacle is Vo=4 �Ro

3 /3, Vs is defined as the volume
of the system occupied by solvent molecules, Vs=V−NbVb

−NoVo. The MPC cell volume is given by V
=�3=1. The
average number density of solvent particles per cell ns

=Ns /Vs was varied but most simulation results are presented
for ns=6. The temperature was determined from the average
kinetic energy and was taken to be T=1 /3. The mesoscopic
time was 	=0.5. Thus, a particle moving with a velocity
corresponding to the mean thermal velocity will travel on the
order of one cell between MPCs. For parameter regimes
where the particles travel on average a small fraction of a
cell, random MPC grid shifting restores Galilean
invariance.43

Dimensionless LJ units are used throughout the paper.
Distances and energy are measured in units of � and �, re-
spectively, time in units of ��m /�, and temperature in units
of � /kB. Newton’s equations of motion were integrated using
the velocity Verlet algorithm,44 with a time step of �t
=0.02	.

III. EFFECTS OF CROWDING ON POLYMER
STRUCTURE AND DYNAMICS

A. Polymer collapse

In a solution without obstacles, the polymers we study
adopt compact globular structures and solvent molecules are

excluded from the interiors of the globular polymers as a
result of the hydrophobiclike bead-solvent interactions.45 In
this section, we study how the polymer collapse from an
extended initial conformation to the globular form takes
place when the environment is crowded by obstacles. Similar
investigations of polymer collapse using MPC dynamics, in-
cluding the role of hydrodynamic interactions on the collapse
dynamics, have been carried out earlier.41,42 In these studies,
the polymer exchanges momentum with the solvent either by
including the polymer beads in the MPC collision or by ex-
plicit bead-solvent interactions as in this study. These bead-
solvent interactions capture some features of the solvent
structure in the vicinity of the polymer chain; for example,
they are able to account for the expulsion of solvent from
collapsing chain and the resulting exclusion of solvent from
the interior of our compact globular polymers. However,
other aspects of the solvent structure, such as solvent struc-
tural order in the vicinity of the polymer chain that arises
from solvent-solvent interactions are not described by this
model.46 To study the collapse in a solution that is crowded
with randomly distributed obstacles, an extended configura-
tion of a polymer chain was grown by adding monomers
with bonds at random angles, consistent with exclusion by
other monomers and obstacles. The time evolution of the
polymer conformation from such initial states was monitored
by computing the radius of gyration, Rg�t��Nb

−1�i=1
Nb 	�ri�t�

−rP�t��	2�1/2 as a function of the time t. Here, ri�t� is the
position of bead i and rP�t� is the center mass position of the
polymer at time t.

Figure 2, which presents plots of the radius of gyration
averaged over realizations, Rg�t�, as a function of time,
shows the influence of crowding and hydrodynamic interac-
tions on the collapse dynamics. As expected, the results in
Fig. 2 show that the collapse time is longer in the presence of
obstacles since, during collapse, the polymer must thread its
way through the obstacles on the way to its final equilibrium
state.

Hydrodynamic interactions are known to decrease the
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FIG. 2. Plots of the average radius gyration Rg�t� vs time on a semiloga-
rithmic scale for a polymer with Nb=100 beads in a solvent with ns=6
particles per cell computed from averages over 40–50 realizations of the
dynamics. The effects of crowding and hydrodynamic interactions are in-
vestigated in this figure. The plot shows Rg�t� for MPC dynamics that in-
cludes hydrodynamic interactions with no obstacles �solid line�, hydrody-
namics and obstacles with �=0.15 �long dashed line�, dynamics without
hydrodynamic interactions �see text� and no obstacles �points line� and dy-
namics without hydrodynamic interactions, and obstacles with �=0.15
�short dashed line�.
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polymer collapse time. If hydrodynamic interactions are sup-
pressed, each polymer bead acts as an independent source of
friction; consequently, the frictional force on the polymer is
much larger when hydrodynamic effects are neglected and
the collapse occurs more slowly.41,42 Hydrodynamic interac-
tions may be eliminated in the simulations by replacing the
stochastic rotation dynamics by random sampling of the
postcollision velocities from a Boltzmann distribution. This
random sampling destroys local momentum conservation
and velocity correlations in the solvent which are responsible
for hydrodynamic interactions. These considerations are
borne out by the results in Fig. 2 where hydrodynamic inter-
actions are suppressed. Although hydrodynamic interactions
are expected to be screened by the presence of obstacles, we
nevertheless see that for �=0.15, they still have a small no-
ticeable influence on the collapse dynamics in the crowded
system. For higher volume fractions, hydrodynamic interac-
tions appear to be unimportant.

The definition of the average collapse time 	c is some-
what arbitrary. Here we identify the collapse time as the time
at which the ratio of the mean radius of gyration to its value
at the initial time, both measured relative to the asymptotic
value Rg, takes a specific small fractional value f : f
= �Rg�	c�−Rg� / ��Rg�0�−Rg��.47 Taking f =0.025, the aver-
age collapse times, 	c

H��� or 	c
nH���, where the superscripts

H or nH refer to dynamics with or without hydrodynamics,
respectively, are shown in Table I. Various trends can be
identified from an examination of the results in this table. For
systems without obstacles, the collapse time is more that
twice as long when hydrodynamic effects are neglected. As
the volume fraction of obstacles increases the effects of hy-
drodynamic interactions decrease since these interactions are
screened by obstacles. By volume fractions in the range of
�=0.1–0.2 the results with and without hydrodynamic inter-
actions are indistinguishable. �Even for the relatively large
number of realizations used to obtain the results the ratio
	c

nH /	c
H is difficult to estimate because the dynamics depends

sensitively on the obstacle configuration for a realization.�
Crowding produces very substantial increases in the collapse
time.

These results depend strongly on the obstacle volume
fraction and radius, and polymer size. The obstacle volume
fraction and radius control the sizes of the voids in the ob-
stacle array. For some values of the void size and polymer
length, it may not be possible for a collapsed chain to occupy
a single void, even if it could reach such a state. Figure 3,
which compares the collapse dynamics for one realization in

a crowded system with �=0.1 with that in a system with no
obstacles, illustrates one of these features. For this realization
of the dynamics, we see in the left inset in Fig. 3 that at
intermediate times the polymer adopts a configuration with
two globular domains; however, this configuration is not
stable and the polymer continues to move among obstacles
until it collapses to a nonspherical globular conformation
�right inset�. For this volume fraction and polymer length, it
is still possible for the collapsed chain to occupy a single
void, albeit with a somewhat distorted geometry.

B. Obstacles and polymer structure

Since both the volume fraction and radius of the ob-
stacles control the structure and void sizes in the system, we
now consider how these factors influence the equilibrium
conformation of the collapsed polymer in the crowded sys-
tem. Figure 4�a� plots Rg for a polymer with Nb=100 beads
as function of volume fraction � with Ro=2.0 and �b� is a
plot of this quantity as function of the obstacle radius Ro for
systems with a volume fraction of �=0.3. One of the fea-
tures observed in previous studies of polymer conformations
in crowded systems is the nonmonotonic variation in the
polymer size with the obstacle volume fraction.23,25,27,48 A
similar trend is seen in Fig. 4�a� where Rg decreases slightly
as � increases from zero. Also, the fluctuations in Rg de-
crease in a small range of �= �0.1,0.2�. The globular con-
figuration is compressed for small � from its value at �=0.
This is similar to what happens to a swollen polymer in a
slightly crowded environment where Rg decreases.25 In our
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FIG. 3. Plots of the radius gyration Rg�t� vs time t for a polymer with Nb

=200 beads in a solvent with ns=6 particles per cell. Results for two values
of � are shown: �bottom curve� �=0.0 and �top curve� �=0.1 with ob-
stacles of radius Ro=2.0. The inset shows the polymer conformations in the
presence of obstacles for t�2000 �left� and for t�4000 �right�.

TABLE I. The average collapse time 	c with and without hydrodynamic interactions and different values of �
for a polymer with Nb=100 in a solvent with ns=6 and obstacles with radius Ro=2.

� 	c
H 	c

nH 	c
H /	c

H�0� 	c
nH /	c

nH�0� 	c
nH /	c

H

0.000 84 176 1.00 1.00 2.10
0.025 123 180 1.46 1.02 1.46
0.050 134 220 1.60 1.25 1.64
0.100 315 284 3.74 1.61 0.90
0.150 379 347 4.51 1.97 0.92
0.200 780 789 9.29 4.48 1.01
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system this effect is very small since the equilibrium confor-
mation for �=0 is already a tightly collapsed globular poly-
mer.

For yet higher volume fractions, above ��0.2 in the
figure, the mean radius of gyration sharply increases. For
these large volume fractions the final globular configuration
has a nonspherical shape. The deformations of the globular
conformations occur when the sizes of the cavities among
the obstacles are less than the equilibrium radius gyration of
the polymer. This effect is also seen in Fig. 4�b�, where the
variation in Rg with Ro is plotted for a fixed value of �. As
Ro decreases, the average void volume decreases and the
polymer can no longer be accommodated in a void without
considerable distortion.

As discussed above, polymer size can have a significant
effect on these results since it may not be possible for a large
polymer to occupy a single void. Figure 5 shows Rg as func-
tion of Nb on a logarithmic scale, with �=0 �filled circles�,
�=0.1 �open squares�, �=0.2 �open circles�, and �=0.3
�open triangles�. For the solution without obstacles a simple
scaling relation Rg�Nb

� is obtained. The exponent �
=0.340.03 agrees with the theoretical value of 1/3 for a
globular polymer. In the presence of obstacles this scaling
relation is broken since the equilibrium conformations of
sufficiently large polymers will be strongly distorted by the
obstacle array. For such large polymers, the equilibrium con-
formation consists of several “bloblike” domains that are
connected by short segments of the polymer chain.23 This is
shown in Fig. 6 for a polymer with Nb=400 in a medium
with �=0.2. In this case, the voids in the system cannot

accommodate the complete collapsed chain and five bloblike
domains are formed in the conformation of polymer. The
number of such domains, their sizes and their positions along
the chain depend on the spatial configurations of obstacles
and the initial polymer chain conformation. In such situa-
tions the equilibrium conformation of the polymer chain in
the crowded system bears no resemblance to the simple
globular form in the obstacle-free system. The conformations
that the polymer adopts are largely controlled by the struc-
ture of the random obstacle array and solvent quality likely
plays a minor role in determining the polymer structure. The
diffusive dynamics in this regime also occurs by different
mechanisms as discussed below.

C. Translational diffusion

The translation dynamics of polymers and biopolymers
is strongly influenced by molecular crowding.12 Both experi-
ments and simulations indicate that large biopolymers may
diffuse a few hundred times slower in highly crowded media
than in aqueous solution. This situation should be contrasted
with that of small molecules where diffusion coefficients de-
crease by only factors of roughly one half to one quarter as a
result of crowding.12,49

Figure 7 shows the translational diffusion coefficient D
as function of �Rg�−1 for a system without obstacles. The
radius of gyration was varied by changing the degree of po-
lymerization, Nb. The diffusion coefficient was estimated
from the slope of the mean square displacement �MSD� ver-
sus time t, MSD�t�= �	rP�t�−rP�0�	2�=6Dt, where rP is the
center of mass of the globular polymer. The large, compact
globular polymers considered here, where solvent is ex-
cluded from the interior of the polymer, can be considered as

(a)

φ

Rg

0.30.20.10

7

5

3

1

Ro

54321

7

5

3

1

(b)

FIG. 4. �a� Average equilibrium radius gyration Rg vs � for Ro=2.0 and �b�
vs Ro for �=0.3. Solvent density is ns=6. The error bars in this and the
subsequent figures were estimated from eight realizations of the dynamics.
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FIG. 5. The equilibrium radius gyration Rg as function of number of beads
Nb in a log-log plot for an obstacle-free medium �filled circles; the solid line
is fit to the data� and a medium containing obstacles with Ro=2.0 and �
=0.10 �open squares�, �=0.20 �open circles� and �=0.30 �open triangles�.
The dashed lines are guides to the eyes. The solvent density is ns=6.

FIG. 6. The spatial configuration at time t=1000 for a polymer with Nb

=400 beads in a medium with �=0.3, Ro=2.0, and ns=6. Neither the ob-
stacles nor the solvent molecules are shown in this visualization of the
system.
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rough spherical particles with radius RP. In this case, the
diffusion coefficient can be written as the sum of micro-
scopic and hydrodynamic contributions,50

D = DM + DH =
kBT

�M
+

kBT

�H
, �4�

where � is the friction coefficient and the subscripts M and H
denote microscopic and hydrodynamic contributions, respec-
tively. The microscopic friction arises from collisions of the
solvent molecules with the surface monomers in the globular
polymer and scales as ��RP

2 , since the collision cross sec-
tions varies as the square of the polymer radius RP. The
kinetic theory approximation to �M is

�M =
8

3
nsRP

2 �2 �mkBT�1/2. �5�

The hydrodynamic contribution arises from the coupling of
the polymer to the solvent viscous modes and scales as �H

�RP. This contribution can be approximated by the Stokes
friction coefficient for a sphere with radius RP and stick
boundary conditions: �H=6 ��RP. For the collision rule
used in this study, the viscosity of the mesoscopic solvent, �,
that appears in this expression can be estimated from the
formula �=�kin+�col, where the kinetic and collisional con-
tributions to the viscosity are given by43,51,52

�kin =
kBT	�

2m
�5� − �� − 1 + e−���2 − cos � − cos 2��

�� − 1 + e−���2 − cos � − cos 2�� � ,

�6�

and

�col =
m

18a	
�� − 1 + e−���1 − cos �� , �7�

where �s is the average number of solvent molecules per
collision cell and �=� /2 is the MPC rotation angle. The
effective polymer radius RP in these equations is taken to be
RP=Rg+� to account for the solvent-polymer bead repulsive
interactions. The solid line is a plot of D determined from
Eq. �4� with no additional fitting parameters, and it agrees
quite well with the simulation results.

For the diffusion of small pointlike particles in a medium
with obstacles, the effects of crowding on the diffusion co-
efficient for moderate obstacle volume fractions are well
described49 by the mean field expression,53 D���=D��=0�

��1−�� / �1+� /2�. This formula, which describes the diffu-
sion coefficient for point particles in a random array of hard
obstacles that can move through arbitrarily small channels in
the array, fails to describe the diffusion coefficient for the
finite-size globular polymers studied here, which probe the
sizes of the voids and channels in the array.

In a variety of random and heterogeneous media, diffu-
sion is found to be anomalous54,55 where the MSD is de-
scribed by MSD�t�� t� with ��1. �The exponent � should
not be confused with the MPC rotation angle introduced
earlier.� In particular, subdiffusion where ��1 has been
observed in the diffusion of proteins and finite-size probe
particles in crowded cellular systems56–59 and in
membranes.60,61 In random media with obstacles, anomalous
diffusion is usually observed on characteristic spatial scales
that depend on the obstacle volume fraction and obstacle
size, both of which control the sizes of the voids and chan-
nels in medium, as well as the size of the diffusing particle.
For short times that probe distances less than the character-
istic spatial scale, normal diffusive behavior is seen, while
subdiffusive behavior is observed in time domains that probe
the characteristic spatial scales of the obstacle distribution.
Provided system parameters are such that the particle does
not become trapped, normal diffusion is again expected on
long time scales.

In order to investigate the diffusive dynamics of the
globular polymers when the system is crowded by obstacles,
we computed the MSD for various values of the volume
fraction, obstacle radius and polymer size. Due to system
size and time scale constraints, our simulations are limited to
intermediate times where the polymer is able to explore its
local environment and is not confined to a single void. On
this intermediate time scale, the diffusive dynamics of the
globular polymers is found to be subdiffusive. However, the
simulation time is too short to observe the crossover to nor-
mal diffusion at very long times62 but the crossover from
normal diffusion at short times to subdiffusion at intermedi-
ate times is seen. These results are shown in Fig. 8�a�, which
plots the MSD versus time on a log-log scale. The exponent
� was determined by fitting the long time portion of the data
to the power law form. The exponent � is found to depend
on the volume fraction and decreases from unity �normal
diffusion� when no obstacles are present to smaller values for
nonzero � indicative of subdiffusion in the presence of ob-
stacles. Such dependence of � on the concentration of
crowding agents has been observed in the subdiffusive dy-
namics in cells.57–59

The exponent � that characterizes subdiffusive behavior
is also seen to depend on the obstacle radius Ro when the
volume fraction is fixed �see Fig. 8�b��. Both � and Ro con-
trol the sizes of the voids and channels in the random array
of obstacles. As Ro decreases for fixed �, the characteristic
void size decreases and the subdiffusive nature of the diffu-
sive dynamics becomes more apparent. The inset in the fig-
ure shows that � decreases approximately linearly with Ro

−1.
The various spatial scales in a crowded system with

fixed � and Ro can also be probed by varying the size of the
globular polymer. These results are presented in Fig. 8�c�,
which shows the MSD versus time for polymers with differ-

(Rg)−1

D

0.70.60.50.40.30.2

0.01

0.008

0.006

0.004

0.002

FIG. 7. Diffusion coefficient D vs �Rg�−1 for a system without obstacles
�solid circles�. Solvent density is ns=6.
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ent numbers of beads. The inset plots � versus the average
radius of gyration of the polymer. Although the estimates of
� are subject to considerable uncertainty, it appears that �
decreases as the polymer size increases.

The previous results for the MSD were for systems
where the globular polymer could, on average, be accommo-
dated in the voids in the random array. For long chains and
high volume fractions as in Fig. 6, the collapsed polymer
cannot fit, on average, into a single void, resulting in con-
figurations like those shown in the figure. It is expected that
the diffusive motions of such chains will occur by long time
scale reptationlike motion but a full numerical exploration of
this dynamics is a very lengthy task not considered in this
study.

Finally, we consider the effects of hydrodynamic inter-
actions on the MSD. Figure 9 shows the MSD versus time
for systems with and without obstacles computed using MPC
dynamics, which incorporates hydrodynamic interactions
and dynamics where these interactions are suppressed. In
these plots, we can see that, as expected and noted earlier for
the collapse dynamics, hydrodynamic interactions are
screened for large values of the volume fraction of obstacles.

IV. CONCLUSION

The results presented in this paper have provided quan-
titative information on how polymer dynamics and structure
is changed by molecular crowding. Consistent with previous
simulations on different models using other methods, we ob-
served a nonmonotonic variation in the mean equilibrium
radius of gyration with the volume fraction of obstacles and
bloblike structures of long polymer chains that arise from
trapping of portions of the chain in voids among the ob-
stacles. The dynamical behavior of the crowded system not
only depends on the volume fraction of obstacles but also on
the obstacle radius and globular polymer size. This is ex-
pected in view of the fact that it is the fraction of the volume
accessible to the diffusing polymers that plays an important
role in the nature of the dynamics.63

The dynamics of the collapse to a globular state is
strongly influenced by molecular crowding. Portions of long
polymer chains become trapped in voids, as noted above, and
this leads to nonmonotonic behavior in the variation in the
radius of gyration with time and a much longer collapse time
scale than in simple solutions without obstacles. The diffu-
sion of the globular polymer chain among the obstacles is
subdiffusive in character on the intermediate time scales and
for the system sizes explored in our simulations. Simple
mean field theories that are able to describe the variation in
the diffusion coefficient with volume fraction for small
pointlike molecules fail for large compact globular polymers
in crowded systems.

Our results were obtained for a frozen random array of
obstacles and observables were obtained from averages over
the quenched disorder and dynamics. If the obstacles move
then the trapped polymer configurations in systems with
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FIG. 8. �a� Log-log plot of the MSD�t� vs time: system with no obstacles
�solid line�; �=0.025 �short dashed line�; �=0.050 �long dashed line� and
�=0.100 �points line�. Obstacles have Ro=2, polymer size is Nb=100 and
ns=6. The inset shows the exponent � as a function of �. �b� Log-log plot
of the MSD vs time for various values of Ro with �=0.1 and ns=6: R0=5
�solid line�, R0=4 �long dashed line�, R0=3 �short dashed line� and R0=2
�points line�. The inset shows the exponent � vs Ro

−1. �c� Variation of the
MSD for various values of Nb for systems with �=0.10, Ro=2, and ns=6:
Nb=40 �solid line�, Nb=60 �short dashed line�, Nb=100 �long dashed lin-
e�and Nb=200 �points line�. The inset show the exponent � vs Rg.
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FIG. 9. Log-log plot of the MSD vs time for dynamics with hydrodynamic
interactions and no obstacles �solid line�, no hydrodynamic interactions and
no obstacles �long dashed line�, with hydrodynamic interactions and ob-
stacles with �=0.25 and Ro=2 �short dashed line� and no hydrodynamic
interactions and obstacles with �=0.25 and Ro=2 �points line�. The solvent
density is ns=6 and Nb=100.
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quenched disorder will no longer occur and different dy-
namical behavior will be observed. If the time scale of this
motion is long compared with other characteristic times in
the system, our results will apply to this case provided times
are restricted be much less that those for obstacle motion.
Our simulation method can be extended easily to treat ob-
stacle motion.

One of the distinctive features of the simulations carried
out in this paper is the explicit inclusion of solvent in the
model, albeit at a mesoscopic level. The interactions of the
polymer beads with the solvent molecules were chosen to be
repulsive, mimicking hydrophobic interactions, giving rise to
a compact globular equilibrium polymer structure. Polymer
and solvent interaction parameters may be chosen to mimic
good solvents where the polymer chain exists in an expanded
state in solution. In addition, because the solvent is included
explicitly and MPC dynamics conserves momentum, hydro-
dynamic interactions are automatically incorporated in the
description. Our simulation scheme can be used to study
such systems as well as more complex crowding elements.
Consequently, the results presented in this paper give addi-
tional insight into the effects of crowding on polymer struc-
ture and dynamics and provide a simulation framework in
which to investigate crowding in more realistic models of
physical and biological systems.
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