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Modeling of solvent flow effects in enzyme catalysis under
physiological conditions

Jeremy Schofield,? Paul Inder,? and Raymond Kapral®
Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto,
Ontario M5S 3H6, Canada

(Received 13 March 2012; accepted 3 May 2012; published online 22 May 2012)

A stochastic model for the dynamics of enzymatic catalysis in explicit, effective solvents under phys-
iological conditions is presented. Analytically-computed first passage time densities of a diffusing
particle in a spherical shell with absorbing boundaries are combined with densities obtained from
explicit simulation to obtain the overall probability density for the total reaction cycle time of the
enzymatic system. The method is used to investigate the catalytic transfer of a phosphoryl group in
a phosphoglycerate kinase-ADP-bis phosphoglycerate system, one of the steps of glycolysis. The
direct simulation of the enzyme-substrate binding and reaction is carried out using an elastic net-
work model for the protein, and the solvent motions are described by multiparticle collision dynam-
ics which incorporates hydrodynamic flow effects. Systems where solvent-enzyme coupling occurs
through explicit intermolecular interactions, as well as systems where this coupling is taken into
account by including the protein and substrate in the multiparticle collision step, are investigated
and compared with simulations where hydrodynamic coupling is absent. It is demonstrated that the
flow of solvent particles around the enzyme facilitates the large-scale hinge motion of the enzyme
with bound substrates, and has a significant impact on the shape of the probability densities and
average time scales of substrate binding for substrates near the enzyme, the closure of the enzyme
after binding, and the overall time of completion of the cycle. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4719539]

. INTRODUCTION

Biochemical reactions in the cell are often carried out
through complex chemical networks consisting of many cou-
pled elementary component steps.! Even the elucidation of
the molecular-level mechanism, which underlies the opera-
tion of a single component in such networks is often a difficult
task. Computer simulation is playing an increasingly impor-
tant role in such mechanistic studies but direct simulation of
many biochemical processes is challenging because they oc-
cur on a diverse range of scales. This fact has prompted the
development of coarse-grain or mesoscopic methods that al-
low one to circumvent some of the difficulties related to dy-
namics that take place on long space and time scales.”? In
enzyme kinetics long time scales can arise from the diffusive
approach of the substrate to the enzyme and the conforma-
tional changes in the enzyme in the course of the catalytic
reactions it carries out. There have been numerous simulation
studies of the effects of diffusion on enzyme kinetics.** In
this paper, we describe how one may construct a mesoscopic
model of an enzymatic cycle that incorporates the diffusive
approach of substrates to the enzyme based on the solution of
the diffusion equation, along with a particle-based description
of the enzymatic reaction that involves protein conformational
changes, release of the product, and the return of the protein
to its original conformation.
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The method is used to investigate a specific enzymatic
reaction,

PGK
bPG + ADP = PG + ATP, (1)

catalyzed by the enzyme phosphoglycerate kinase (PGK).
This reaction is an important step in the glycolysis net-
work. In particular, we focus on the forward reaction that
involves the transfer of a phosphoryl group from 1,3-
bisphosphoglycerate (bPG) to ADP by the PGK enzyme to
form 3-phosphoglycerate (PG) and ATP. (Often it is the re-
verse reaction that is studied experimentally due to the in-
stability of bPG.”) Phosphoglycerate kinase is a monomeric
protein of moderate size (416 amino acid residues in the hu-
man isozyme studied here) found in all living organisms, with
a highly conserved amino acid sequence across different life
forms. Its structure, consisting of two equal-sized domains la-
beled by the N- and C-termini of the protein, is well adapted to
selectively bind two substrates, bPG binds to the N-terminal,
while the nucleotide substrates, MgATP or MgADP, bind to
the C-terminal domain of the enzyme. Structurally, the N-
and C-domains consist of a 6-stranded parallel beta sheet sur-
rounded by alpha helices (see Fig. 1).

The mechanism for the enzymatic reaction, which in-
volves large hinge-bending motions of the domains of
the protein,'®!> has been the subject of many kinetic
studies.” >~1> The activity of the enzyme requires both sub-
strates to be bound.'1%17 When both substrates bind, the en-
zyme undergoes a large-scale hinge-bending conformational
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FIG. 1. The open conformation of phosphoglycerate kinase showing the
(right) N- and (left) C-terminal domains of the protein. The N-terminal do-
main binds 3-phosphoglycerate and 1,3-bisphosphoglycerate, while the C-
terminal domain binds MgATP and MgADP.

change that brings the substrates close to one another to cat-
alyze the dephosphorylation of bPG. In this “closed” con-
formation, the transition state is stabilized, lowering the free
energy barrier for the transfer of a phosphoryl group. Upon
transfer, the enzyme is forced into an open configuration and
the PG and ATP products are released.

We shall be concerned with the enzymatic activity of
PGK under physiological conditions in the cell where the
binding process is diffusion limited.'® The binding process is
well suited to be modeled as a two-step process in which first
the substrates diffuse freely into a region near the enzyme, and
then are drawn into the binding sites on the enzyme. Thus,
it is reasonable to utilize a hybrid, stochastic procedure that
combines analytical calculations with explicit simulation. The
first step in the process of computing the distribution of time
scales of the catalytic activity of the enzyme can be estimated
by calculating first-passage times for the substrates moving
into the vicinity of the enzyme, while the second step requires
a more detailed dynamical simulation due to the influence of
the enzyme on the dynamics of the substrate. There have been
simulations of the domain motions of PGK using a variety of
methods.'*2* Given the large size of the protein and the long
time scales of the motions, a full molecular dynamics (MD)
simulation of the second step, which involves binding of the
substrates to the enzyme in solution, the hinge-bending mo-
tion of the enzyme-substrate complex, followed by the reac-
tion of the substrates and final release of products coupled
with the re-opening of the enzyme, is computationally de-
manding. Consequently, we develop a coarse-grain descrip-
tion of this part of the enzymatic cycle that is particle-based,
includes enzyme, substrates, and solvent molecules explicitly
and retains many features of full molecular dynamics.

The outline of the paper is as follows. The two steps of
the enzymatic reaction dynamics, diffusive approach of en-
zyme and substrate and substrate binding and reaction, are
described first. The mesoscopic model for the protein, sub-
strates, and solvent, along with a description of the interac-
tion potentials that control the binding of the bPG substrate
to the active site and conformational changes in the PGK pro-
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tein, are the topics of Sec. II. Section III discusses the various
time scales involved in the diffusive encounter between the
substrates and the enzyme and shows how the relevant first-
passage times can be computed analytically. The results of
simulations of the dynamics are reported in Sec. IV while the
conclusions of the study are summarized in Sec. V.

Il. PROTEIN AND ITS CATALYTIC ACTIVITY
IN SOLUTION

We consider a system containing PGK enzymes, along
with substrate and solvent molecules. The enzyme exists in
open and closed forms and binding of both substrates is nec-
essary for large-scale conformational changes to occur.'? 1317
We suppose that the ADP substrate is bound to the enzyme
and construct a coarse-grain model of the protein interact-
ing with the bPG substrate in the presence of solvent. As
discussed below, under physiological conditions, ADP binds
quickly and the rate of the enzymatic reaction is determined
by the binding of bPG. The model of the enzymatic activ-
ity of PGK entails a description of the interactions of bPG
with the enzyme as it binds to the active site, the conforma-
tional changes in the protein that lead to the reactive event and
the release of product and return of the protein to its original
conformation.

A. Network model of PGK and interactions
with substrate

A coarse-grain network model of the PGK protein is con-
structed by replacing each amino acid residue with a sin-
gle monomer bead and connecting the beads by links or
bonds.*2*2% The bound ADP substrate is treated as one of
the protein beads, while the bPG substrate is also described
in a coarse-grained fashion as a single bead. The set of bead
coordinates RY? = (Ri, Ry, ..., Ry,) specifies the configu-
ration of the protein (P) and we let R denote the coordinate of
bPG, henceforth called the substrate (S). The construction of
the potential energy function that is responsible for the pro-
tein conformational state and interactions between the protein
and substrate is described in detail in Appendix A. Here, we
simply sketch the main elements that enter in the design of
the potential function, Vp s(RV? R; &), that is able to describe
both conformational states of the protein, the binding of bPG
to the active site, and the resulting changes of protein confor-
mational states that occur on substrate binding and product
release.”’

To construct a network model for PGK, protein database
configurations built from crystallographic data were ana-
lyzed to determine a set of pairwise interactions between
residues. Each of the 416 residues was represented by a single
monomer bead in a linear polymer representation of the pro-
tein, with the position of each bead taken to be the Cartesian
coordinates of the alpha carbon of the peptide. Both open and
closed forms of the PGK molecule were taken from the ini-
tial and final protein database configurations generated from
the morphing analysis of the conformational change between
open and closed conformations® in the database of macro-
molecular movements.*’
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Pairs of beads separated by a distance r < 10 A were
recorded, generating separate lists of indices for open and
closed conformations. The interaction lists for open and
closed configurations were then compared, and a set B, of
common interaction pairs or links were identified and as-
signed bond potentials in the following way. For links in B,
the bond length as well as the magnitude of the difference
.o between the bond lengths in the open and closed confor-
mations were computed. The links in 5. were then grouped
into two new subsets, ;. and By, containing hard- (hc) or
soft-common (sc) links, respectively, based on the value of the
separation distance r,,, where links with r,, < 4 were iden-
tified as hard links. The list of common links was then com-
pared with the lists of open links and closed links. This pro-
cess yielded 2891 hard-common links and 519 soft-common
links. In this study, the ADP substrate is treated as a single
bead that forms hard links with three different beads in the
enzyme.

Pairs that exist in either the list of open links or the
list of closed links but not in both were sorted into soft-
open, B,, and soft-closed, B, sets, respectively. There
are 448 soft-open links (so), and 619 soft-closed links
(sx).

Before the enzymatic reaction can occur, bPG must bind
to the active site of the enzyme. The binding pocket of the en-
zyme for this substrate was defined by beads with coordinates
(RG, RY, RY), where R{j, R{, and R are the coordinates of
the alpha carbon of the glycine residues 386, 387, and 388
in the amino acid sequence of the PGK enzyme. The bind-
ing interaction between the bPG substrate at position R and
the enzyme was assumed to depend on both the distance be-
tween the substrate and the bead in the active site with co-
ordinate R{, |[R — R{| = Rs:, as well as the orientation of
the substrate with respect to a coordinate frame determined
by three beads defining the binding pocket of the enzyme. As
the substrate binds it triggers conformational changes in the
protein that lead to hinge closing to bring the bPG and ADP
substrates into proximity for the phosphoryl group transfer.
Consequently, as bPG interacts with the protein in the course
of binding to the active site, the open protein configuration is
destabilized with respect to the closed configurations, driving
the enzyme towards the closed conformation. To achieve this
conformational change, the interaction potentials for the soft,
non-common set of links were taken to depend on a reaction
coordinate £(Ry), which is a function of the distance between
bPG and the active site. The net effect of the combination of
these contributions is a protein-substrate interaction potential,
Vps(R Ne R: &), which can draw in the bPG substrate, bind it
to the active site of the enzyme in the open configuration, and
then cause the enzyme to undergo a conformational change
from an open to closed configuration. The network model of
the protein and the binding of the substrate to the open con-
formation leading to hinge closing is shown in Fig. 2. After
binding has taken place, the phosphoryl group transfer reac-
tion is carried out by treating the reaction coordinate £ as an
external control parameter whose value is determined proba-
bilistically. When the reaction is complete the closed config-
uration is unstable and the enzyme reopens, completing the
cycle.

J. Chem. Phys. 136, 205101 (2012)

FIG. 2. (Left) Open conformation of the network model of PGK showing
the approach of bPG to the binding pocket of the enzyme. (Right) Protein
conformation after substrate binding has resulted in hinge closing to form the
closed form.

B. Solvent and its interactions with the protein
and substrate

The system also contains N solvent molecules with
positions, r" = (ry,ry,...,ry,) and velocities, v
= (v, v2,...,vy,). The solvent evolution is modeled by
multiparticle collision (MPC) dynamics.>! In MPC dynam-
ics there are no intermolecular potentials among solvent
molecules. Instead, solvent molecules propagate in the
absence of solvent-solvent interactions and undergo multi-
particle collisions at discrete times t that account for the
effects of many real collisions during this time interval. More
specifically, after the streaming step, solvent particles are
assigned to cells with length ¢ for the purposes of carrying
out multiparticle collisions. To ensure that the dynamics is
Galilean invariant, uniform random grid-shifts are applied
prior to the assignment of particles to cells.*>33 The center-
of-mass velocity v, of particles in a cell is computed for each
cell ¢, and the velocities of the solvent particles relative to
the center-of-mass velocity are rotated around a uniformly
chosen random Cartesian axis (X, y, or z) by an angle chosen
from the set of angles, {+ n/4, /2, £37/4}. Note that,
other rules for the collision step can also be implemented
without changing the character of the model or qualitative
results in Sec. IV, though they might have a modest influence
on the transport coefficients of the solvent. The collision step
for a particle 7 in cell c is therefore,

Vi =v. 4w (v — ), (2)

where v; is the post-collision velocity of particle i and @ is
a rotation matrix. Multiparticle collision dynamics conserves
linear momentum, energy, and particle number, and is con-
sistent with hydrodynamic flow.>*35 Although this collision
rule does not locally conserve angular momentum, this can
be rectified at some increase in computational cost.>® Since
our system is initially at equilibrium and free of rotational
motion and external forces or torques the more elaborate col-
lision rule is not required in this study.

When the system contains proteins and substrates dis-
solved in the solvent, the evolution is described by hybrid
MD-MPC dynamics.?’ In such hybrid dynamics, while the
solvent molecules interact among themselves through mul-
tiparticle collisions, they interact with the solute molecules
through solvent-bead intermolecular forces, Vi,. The total
potential energy of the system is, therefore, given by Vr
= Vps + V5 and Newton’s equations of motion are used
to evolve the system under this potential energy for time

Downloaded 22 May 2012 to 142.150.225.29. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



205101-4 Schofield, Inder, and Kapral

intervals T between MPC events. This hybrid dynamics also
satisfies the conservation laws and correctly describes hydro-
dynamic interactions among solute species and fluid flows in
the solvent.

1. Penetrating solvent model

Hydrodynamic interactions and solvent dissipation can
also be included in a heuristic way by dropping the direct
interactions between solvent and solute molecules and in-
stead including the solute beads into the MPC step of the
dynamics.?® In this scheme, the solvent particles evolve freely
between collision steps while the coordinates and momenta of
the enzyme and substrate are evolved through Newton’s equa-
tions of motion under the Vpg potential function.

More specifically, to allow for interaction between the
solvent and beads, the collision rule is modified to include
the velocity of the beads in the local center-of-mass velocity
of particles in a cell. The center-of-mass velocity is computed
for a cell ¢ containing N, solvent particles of equal mass m
and a single bead of mass M and velocity V via,

M N,
Vo= —V 4+ 3y, 3)

where My = N.m + M is the total mass of particles in the
cell and v; is the velocity of solvent particle i in cell c. The
collision rule for the penetrating solvent model with hydrody-
namics is defined as

Vi=v 4w (V-u,),
v, =v.+w- (v — ), “4)

for the bead velocity V and the solvent velocities v;. Since the
magnitude and direction are conserved in the rotation, parti-
cle number, linear momentum, and energy are globally con-
served, resulting in proper hydrodynamic flow.

2. Penetrating solvent without hydrodynamics

For the purpose of assessing the importance of hy-
drodynamic interactions, it is useful to construct an alter-
native model in which the hydrodynamic effects are not
present.’>3°#! The collision rule for the penetrating solvent
model can be modified by defining the center-of-mass veloc-
ity of particles in a cell to be

M v Nym s

ve =3 +MTvs, &)
where Ny is drawn from a Poisson distribution with mean
value pV,, where p is the number density of solvent in the
system and V, is the cell volume. The total mass is My = M
+ Nym, and vy is an effective solvent velocity drawn from a
Maxwell-Boltzmann distribution with mass Nym. Since this
velocity is drawn at each collision step, the velocity of the
solvent is uncorrelated from one collision step to another. In
this model, explicit solvent particle dynamics is replaced by
the action of the collision operator. Since the velocity of the
fluid is completely decorrelated after a single collision step,
any dynamic correlations associated with a small value of the
ratio of the mean free path to cell length strictly vanish.

J. Chem. Phys. 136, 205101 (2012)

lll. ENZYMATIC CYCLE DYNAMICS

Complete enzymatic cycles can be simulated using the
mesoscopic dynamical scheme described in Sec. II. When
the protein, substrates, and solvent molecules are modeled as
structureless particles, full MD-MPC dynamics has been used
to study the effects of diffusion on enzyme kinetics.**> How-
ever, in the conditions that pertain to the interior of a cell,
even this multi-scale method will not be computationally ef-
ficient if both the internal dynamics of the enzymes and the
diffusive motion are considered. Under physiological condi-
tions the concentrations of both substrates in the cytoplasm
are relatively small*»>* (0.14 mM for ADP and 0.001 mM
for bPG), while the enzyme concentration is roughly 0.1 mM.
If the substrates and enzyme are uniformly distributed in the
volume, the radius of the spherical volume around the enzyme
containing a single substrate molecule is roughly rapp = 142
A for ADP and rypg = 734 A for bPG. The sphere containing
a single enzyme has a radius of rpgx = 158 A.

Substrate molecules diffuse into the vicinity of an en-
zyme where binding takes place. The characteristic times for
such diffusive dynamics can be estimated from the Stokes-
Einstein relation or taken from experimental measurements
of the diffusion coefficients of substrates in the cytoplasm.
For example, estimating the viscosity of the cytoplasm to be
roughly 5 times that of water, namely, n = 0.005 Kg/(ms),
and assuming the substrates have an effective radius Rg ~ 5
A, the Stokes-Einstein law D = kgT/(6m nRy) gives a value of
D = 10719 m?/s, a value that is within the experimental range
of measured D values. Given these conditions, we shall see
that the ADP substrate binds typically before 5 us, whereas
the binding time of the bPG is very broadly distributed over
many decades and is the main factor determining the reaction
time. For this reason, we suppose that ADP is bound to the
enzyme and focus on the binding of bPG.

From these considerations it is evident that the enzy-
matic dynamics has a significant diffusion-influenced com-
ponent; therefore, it is computationally inefficient to follow
individual trajectories of the diffusive dynamics of substrates
and enzymes in the solvent for the long times needed for
enzyme-substrate encounters. Consequently, it is useful to de-
compose the process into portions, where the substrates dif-
fuse in the solvent without directly interacting with proteins,
and portions where these species interact through direct inter-
molecular forces. The diffusive portions of the dynamics can
be treated to a good approximation by analytical methods,
while in the interacting portions the mesoscopic dynamical
scheme can be used to describe details of the binding, confor-
mational changes, and reaction. These considerations suggest
a stochastic model for the cycle dynamics that combines these
types of dynamical evolution.

A. Stochastic model for enzyme dynamics

Initially, suppose the bPG substrate moves diffusively in
a volume with radius r,pg surrounding the enzyme without
any influence on its motion due to the presence of an enzyme.
Since the concentration of enzyme is a factor of 100 times that
of the bPG, the number of enzymes in this volume should be
Poisson distributed with an average number of 100 enzymes
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FIG. 3. Structure of the model used in the simulation of the diffusive encoun-
ters of the substrate with the enzyme and the full dynamics in the enzyme
vicinity. The outer circle denotes the spherical volume with radius r, con-
taining a single enzyme molecule, while the inner-most circle with radius ry
denotes the spherical volume around the enzyme within which a full dynam-
ical calculation is carried out. Within | the dynamical evolution is followed
until the substrate leaves the spherical volume with radius r; > ry or binds
and reacts.

in the volume if there is no correlation in the density of en-
zymes. We assume the binding of the bPG to any enzyme in
the volume occurs in the following way: At any given time,
the bPG is within the spherical volume with radius 7, = rpgk
of some enzyme, which is chosen to be equal to the volume
around the enzyme that contains a single substrate molecule
(see Fig. 3). The substrate can either diffuse to the binding
region of this enzyme, or out of its volume. The binding prob-
ability is dependent on how far the substrate is from the en-
zyme, here, taken to be ry. If the substrate diffuses out of the
volume of the enzyme, the first passage time out of the spheri-
cal volume can be recorded. Subsequently, the position of the
bPG relative to another enzyme is assumed to be randomly
distributed in the volume of this other enzyme, and the pro-
cess is repeated until the substrate passes through the inner
spherical volume of radius r; around an enzyme.

The point where the substrate passes through the inner
sphere is uniformly distributed on the surface of the sphere.
After passing through the inner sphere, the substrate will ei-
ther bind to the enzyme or move out of the inner sphere and
pass through a sphere of intermediate size (with radius »; with
ri < r; < rp). Since the dynamics of the substrate is influ-
enced by the presence of the enzyme and the solvent flow
around it, the dynamics is no longer diffusive and must be
simulated explicitly as described in Sec. II. Starting from a
uniformly chosen point on the surface of the sphere with ra-
dius r, if the substrate does not bind to the active site, the
particle continues to diffuse starting from a radial distance of
r; and either will be reabsorbed by the inner sphere or pass out
of the volume through the outer sphere.

For most of the dynamical evolution, the substrate dif-
fuses freely without explicit solvent flow effects or influence
from the enzyme. For this type of dynamics, analytical solu-
tions to the diffusion equation can be used. The final regime
to be described consists of the dynamics of the substrate from
the surface of the inner sphere with radius r; to the active site

J. Chem. Phys. 136, 205101 (2012)

on the enzyme in the presence of solvent. This final regime

should be simulated directly, since the hydrodynamic motion

of the solvent influences both substrate and enzyme motion.
More specifically, the algorithm can be stated as follows:

(1) At the initial time if the substrate is at r, a position r, r;
< r < 13, 1s randomly selected.

(2) Given a uniformly distributed random number &,
€ [0, 1], if &, < P(r) the substrate is absorbed at the
r; boundary, otherwise it is absorbed by the r, bound-
ary. Here, Pi(r) is the probability that the substrate is
absorbed at the r| boundary in the infinite time limit.

(3) Ifitis absorbed at r,, a time is drawn from P,(¢|r), the
first-passage time density for absorption onto a sphere
with radius r; starting a distance r from center, and used
to update the cycle time.

(4) If it is absorbed at r|, a time is drawn from P(¢|r), the
first-passage time density for absorption onto a sphere
with radius r| starting a distance r from center, and used
to update the cycle time. Starting at r;, a full mesoscopic
dynamical simulation is then carried out until reaction
occurs or the substrate reaches the r; boundary. If the dy-
namics results in a reaction, the time for the reaction to
proceed and the products to diffuse away from the active
site is added to the cycle time and the enzymatic cycle
is complete. If instead the substrate reaches r; without
reaction, this time is added to the cycle and we return to
step (2) to continue the dynamics until the cycle is com-
plete. The boundary at r; is chosen to be significantly
larger than r| to minimize the blocking effect of the en-
zyme leading to a non-uniform distribution of points of
absorption on the absorbing sphere. The explicit forms
of the P »(r) and P, ,(#|r) probabilities are given in Ap-
pendix B.

1. Fully stochastic model

An alternative way of accounting for the effects of the
full mesoscopic evolution is to pre-compute the probability
distributions of times for completion of the reaction, P,(f),
and binding failure, Ps(f). To compute these probabilities, an
ensemble of trajectories that start at a uniformly chosen po-
sition on the inner sphere at radius r; is evolved until either
the substrate binds and reacts or the unbound substrate es-
capes and passes through an absorbing sphere at intermediate
distance r; from the binding site. The binding probability can
be estimated from the fraction of reactive trajectories and the
probability densities P,(f) and Pr(#) can be constructed using
analytical fits to the estimated cumulative distribution func-
tions obtained from the reaction and failure times.*> Given
this information, once the substrate is at r; in step (4), the
binding probability can be used to determine if reaction will
occur and the reaction time can be drawn from P,(¢) and used
to complete the cycle, or if no reaction occurs the time can be
drawn from P (#) and used to increment the time.

IV. SIMULATION OF PGK ENZYME KINETICS

The simulations employing hybrid MD-MPC dynam-
ics were carried out on a system comprising a single PGK
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enzyme with bound ADP, a bPG substrate molecule and sol-
vent molecules in a cubic box of length L with periodic
boundary conditions. The units used in the simulation are
given in terms of length ¢, mass m, energy €, and time 7. In
these units the simulation box had length L = 40 and con-
tained 640000 solvent particles of mass m = 1, resulting in
a density p = 10. The mass of the beads comprising the en-
zyme was taken to be M = 10, so that the mass ratio of sol-
vent to beads was set to . = M/m = 10. The solvent particles
interact with all beads through the truncated repulsive poten-
tial in Eq. (A4) with an adjustable o, usually taken to be o
= 1. Simulation of the enzyme-substrate system consists of
numerically integrating Newton’s equations of motion for all
bead and solvent particles that interact with a time step of At
= 0.005 for time intervals T = 1 between multiparticle col-
lisions. For the implementation of the stochastic portions of
the model we have chosen r, = 31.6,r;, =9,and r;y = 7 in
simulation cell length units. A cell length is roughly £ = 5 A
so that rpgx = 158 A corresponds to the r, value given above
in simulation units. The values for r; and r; were chosen to
minimize the amount of numerical simulation required while
allowing for good statistics for various numerically computed
densities. Information from such direct simulations of the dy-
namics is required for both the diffusive encounters between
the enzyme and substrate and the subsequent binding and
reaction processes. These two aspects are discussed in
Subsections IV A-IV C.

A. Diffusive dynamics

Although the diffusive encounters between the substrate
and enzyme are treated analytically, these calculations require
the diffusion coefficient D of the substrate as input into
the analytical formulas for the first passage time probabilities.
Therefore, in this subsection we present results for D for the
explicit interaction and penetrating solvent models. Since the
substrate does not interact with the enzyme in this regime we
need only consider the motion of the substrate in pure solvent.

1. Explicit interaction model

In the explicit interaction model the substrate interacts
with the solvent molecules through repulsive Lennard-Jones
(LJ) potentials and the solvent molecules undergo multipar-
ticle collisions. The diffusion coefficient may be determined
directly by simulation from the velocity autocorrelation func-
tion or the mean square displacement. Hydrodynamic effects
are included in the MD-MPC dynamics and these give rise
to long time tails in the velocity correlation function which
make important contributions to the diffusion coefficient. For
this reason it is convenient to estimate D by extrapolation of
the time-dependent diffusion coefficient to infinite time since

D(t) = / 4 V) V)~ D % 6)

3 Jo NG
where a, = (2/3)(4n(n + D)) 32(mp)'/? with n the shear
viscosity. The power-law behavior of this quantity arises from
coupling of the substrate to hydrodynamic modes of the
solvent. The time-dependent diffusion coefficient is plotted
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FIG. 4. The simulated value of the diffusion coefficient compared to the es-
timated time-dependent diffusion coefficient, D(¢), in Eq. (6), versus 2
for an isolated Brownian particle with mass ratio = 10, p = 10, kgT = 1/3,
o = 0.5. From the fit of the data, the value of the diffusion coefficient is
D = 0.063 in units of £2/z.

versus t~/2 in Fig. 4 and shows the long-time power-law be-
havior. For a substrate with mass M = 10 in a solvent with
p = 10, kgT = 1/3, substrate-solvent Lennard-Jones param-
eters 0 = 0.5 and ¢ = 1, we find D = 0.063 in units of
£2/t. Hydrodynamic effects dominate the contributions to the
diffusion coefficient and it is only weakly dependent on the
mass of the substrate and solvent molecules. For a very large
substrate molecule the diffusion coefficient takes a Stokes-
Einstein form and is independent of the mass.

2. Penetrating solvent model

The diffusion coefficient can be computed analytically
for the penetrating solvent model. In the collision step, the
rotation matrix is uniformly selected from a set of matrices
in which the rotation by the angles & and —« around a given
set of axes are equally probable. The operation of the rotation
matrix on a general vector r for a rotation by angle o around
a unit vector 72 can be written succinctly as

w-r=rcosa+ i@ -r)(l —cosa)+ (r x t)sina. (7)

Since the substrate bead behaves as a point particle with re-
spect to hydrodynamic flow, the only contribution to the self-
diffusion coefficient comes from the rotation collision step.
Hence for this system, the decay of the velocity autocorrela-
tion function for an isolated bead is expected to be a single
exponential.

The self-diffusion coefficient for this model can be com-
puted from the velocity autocorrelation function using the
trapezoidal rule,

DzlfooduV-V(t)) ®)
3Jo
T (1 =
=3 (§<V V) + ;(V ~ V(nt))) , )

where 7 is the collision time and the brackets (- - -) correspond
to an average over the stochastic realizations (choice of

Downloaded 22 May 2012 to 142.150.225.29. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



205101-7 Schofield, Inder, and Kapral

rotation matrices) and the equilibrium distribution of the sys-
tem. If the matrices are chosen uniformly and the rotation an-
gles o and —« are equally probable, then the Markovian dy-
namics for a given cell has the limit distribution,

e P p" 1
— I, (v,) X vl'lm(V), (10)

P(n,r,,v,;R, V)= Vil

where n is the number of solvent particles in the cell con-
taining the tagged particle, V, is the volume of the cell (here
taken to be unity), and I1,,(v,) is the normalized Maxwell-
Boltzmann distribution for a system of n-particles at temper-
ature 7. Using this form, one finds that (V - V) =3ksT /M,
and

1

ng

(V-V(D) Y Vet (V=)
i=1

(Vove) (V-0 (V—-v)), (11

where = Z?ﬁ] w;/ng and ng is the total number of rota-
tion matrices. Inserting the stationary density in Eq. (10), and
defining the mass ratio © = M/m, one gets

T X pn
(V-V(@) = ST e_pZ% <1 +(cy — I)L)

M n—+u

n=1

3k3T (Cy — 1),0
= 1+ —M(1,2 , —
I ( + T 1,2+ pn p))
3kgT
= 1— 12
i =) (12)

where M(1, 2 4+ u, —p) is Kummer’s function of the
first kind*® and ¢, = Tr@/3. If there is no correlation be-
tween solvent particles occupying the cell containing tagged
particles following the collision steps, so that (V - V(nt))
=0 —-y)}V-V(n - 1)), we conclude

kTt (1 o kgTt (2—y
D= - 1—yy ) = Y,
M <2+;( V)> M \ 2y

(13)

where
l—c¢,
V=17 p M2+, —p). (14)
7
The analytical results for the self-diffusion coefficient are
plotted in Fig. 5 as a function of the mass ratio u for the sim-
ulation values kgT = 1/3, p = 10, and ¢, = 1/3.

While the diffusion coefficient depends weakly on the
mass ratio for the explicit solvent interaction model, it does
depends strongly on the mass ratio for the penetrating sol-
vent model. In order to facilitate comparisons between these
two solvent interaction models, we choose the mass ratio so
that the self-diffusion coefficient of an isolated bead matches
that in the interacting solvent model. Note that for the mass
ratio . = 10 used in the interacting solvent model, the self-
diffusion coefficient in the penetrating solvent model is sub-
stantially larger than in the interacting model (D = 0.086
> 0.063), and a mass ratio of roughly p = 28.5 must be used
for the dynamics of the tagged particle to be comparable. The
analytical result in Eq. (13) which was used to determine the
appropriate mass ratio was obtained by making a molecular
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FIG. 5. Plot of Eq. (13) for the self-diffusion coefficient D for a tagged par-
ticle in the penetrating solvent model as a function of the mass ratio x. From
this figure we see that if the mass ratio is selected to be u = 28.5 the value of
the diffusion coefficient in the penetrating solvent model, D & 0.063, matches
that in the explicit interaction model.

chaos approximation.*’ To confirm that the correct mass ratio
was determined, D was computed directly from simulation
with u = 28.5 and agreement within statistical uncertainties
was observed. Finally, we note that the penetrating solvent
model without hydrodynamic interactions is exactly given by
Eq. (13) since there is no correlation between solvent particles
between collisions.

B. Substrate binding and reaction

The position of the bPG substrate was randomly chosen
on a spherical shell at a distance r; = 7 from the active bind-
ing site of the enzyme. The distance was chosen so that the
bPG substrate does not interact with the active site or other
parts of the enzyme. For each realization of the dynamics,
the enzyme configuration was equilibrated in the presence of
the solvent while constraining the bPG substrate in position.
The run was then initiated by randomly drawing the bPG ve-
locity from a Maxwell-Boltzmann distribution at an effective
temperature of kg7 = 1/3 and releasing the constraint. If the
substrate bound to the enzyme (when the substrate reaches its
equilibrium distance from the binding site), the time of bind-
ing of the bPG was recorded. If instead the distance of the
substrate to the active site reached a large value, here taken
to be at a substrate-active site distance of r; = 9, the evolu-
tion of a realization was terminated and the failure time was
recorded. Upon binding, the form of the network potential for
the enzyme allows the enzyme to close to an activated form.
The time of closing, again determined by a distance crite-
rion between conserved, rigid sections of the enzyme, was
recorded. Once the enzyme closed, a reaction time t, was
drawn from a Poisson distribution (here taken to have a mean
reaction time of T, = 25 time units), which defines the rate
at which an unbinding potential was activated by the control
parameter &.

The probability densities for the time of substrate bind-
ing, the closing time of the enzyme after binding, and the
overall cycle time are shown in Fig. 6. The analytical fit to
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FIG. 6. Probability densities for the time of substrate binding (black), closing
time of the protein (red), and the overall cycle time (blue). These probabil-
ity densities were constructed from analytical fits to the simulation data for
the full solvent model as a function of time. The results are for simulation
conditions u = 10, kT = 1/3, p = 10, with a solvent-bead interaction
o =0.5¢, corresponding to ¢ = 2.5. Points on the curves are chosen to indi-
cate statistical uncertainties in the construction of the densities.

the densities with bootstrap estimates for uncertainties were
computed from the raw data using the procedure described in
Ref. 48. A prominent feature in the probability density of
binding times is the long algebraic tail, which is a signature of
the substrate initially moving away from the enzyme but even-
tually diffusing into the active site. The form of the tail in this
density is consistent with the asymptotic long time behavior
for a particle diffusing into an absorbing region in three di-
mensions. Note that the probability density for the overall cy-
cle time can be decomposed into a convolution of the density
for binding, closing, and diffusion away from the binding site
after the reaction is complete. Since diffusive motion leads
to densities with heavy tails, the overall cycle time density is
broad, which is characteristic of algebraic tails.

Another important qualitative feature of the solvent-
enzyme model is the variable degree of solvation of the
bPG substrate during the binding process. When the distance
o = 0.5 characterizing the solvent-bead repulsion is large
enough, the solvent is unable to penetrate the volume occu-
pied by the enzyme. The bPG substrate binds to a region in-
side the enzyme that is exposed when the enzyme is in an open
conformation. Upon binding, the enzyme closes via a hinge-
like mechanism and brings the ADP-bPG substrates near one
another enabling the transfer of the phosphoryl group. Less
solvent is able to penetrate into the binding pocket of the
bPG substrate in the closed conformation of the enzyme, and
hence solvent is expelled from the pocket as bPG binds and
the enzyme closes, providing a favorable environment for the
catalysis.!??

The expulsion of solvent can be tracked by computing the
local solvent density around the bPG substrate as it binds and
reacts, as can be seen in Fig. 7. This drying effect is highly
sensitive to the choice of the repulsive interaction parame-
ter o. When o = 0.5 (see top panel of Fig. 7), the bound
substrate typically has 2 fewer solvent particles solvating it,
whereas away from the enzyme the average number of solvat-
ing fluid particles corresponds to the value of the bulk density

J. Chem. Phys. 136, 205101 (2012)

— Distance to active site
F — Number solvating particles B

Binding Release

Closing

— Distance to active site
— Number solvating particles

Binding Release

Closing

0 50 100 150 200

FIG. 7. Time series showing the reduction in the number of solvent parti-
cles in the vicinity of the bPG substrate as it binds to the enzyme. The red
curves show the number of solvent particles in the cell containing the bPG
substrate as a function of time, while the black curves denote the distance of
the substrate to the enzyme binding site. (Top) o = 0.5, (bottom) o = 0.7.

(p = 10). This difference between bulk and bound solvation
levels increases as the repulsion parameter o increases (see
bottom panel of Fig. 7, where o = 0.7). There are important
differences in the qualitative nature of the dynamics when the
repulsion parameter becomes large. Although the exterior of
the enzyme experiences a larger overall friction, the dissipat-
ing effect of the solvent on the enzyme-substrate interaction
is decreased in the pocket of the enzyme where the binding
occurs. The bPG substrate retains a high kinetic energy upon
entering the pocket for a longer period of time due to a lim-
itation in the simple model of the binding process in which
the substrate effectively interacts with only a few beads of
the enzyme. Because of the limited coupling of the beads in
the active site to other beads in the protein, the excess en-
ergy of the substrate is slowly dispersed into internal motions
of the protein and solvent. For this reason, we focus primar-
ily on a regime in which the solvent rapidly dissipates energy
(o =0.9).

In Fig. 8 the probability densities for the binding time,
enzyme closing time, and overall cycle time, defined to be
the time required for the substrate to diffuse in from distance
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FIG. 8. Probability densities P(f) for the time of substrate binding (top
panel), enzyme closing time (middle panel), and total reaction cycle time
(bottom panel). The black curves correspond to results for the interacting
solvent model, the red curves correspond to the results for the penetrating
solvent model with hydrodynamics, and the blue curves are the results for
the penetrating solvent model without hydrodynamics.

ry, react and the products to diffuse out to distance r;, are
presented. Looking at the top panel, we see that the probabil-
ity densities of the binding time for the interacting and pene-
trating solvent models are comparable once the dynamics has
been properly scaled by the mass ratio. This similarity is not
surprising, as the time scale for binding is primarily deter-
mined by diffusive motion and is not sensitive to the level of
solvation of the substrate by the fluid particles. However, the
absence of hydrodynamic flow around the enzyme and sub-
strate has a profound effect on both the form of the probability
density, which is significantly broadened, and the mean bind-
ing time, which is shifted by a factor of roughly a factor of
three. In addition, the binding probability is significantly re-
duced from P, = 0.078, in the presence of hydrodynamics, to
P, = 0.03, which can have a significant impact on the density
for the overall substrate conversion time when the concentra-
tion of substrates is elevated. Note that the probability density
of binding times has a strong tail for all models, indicative of
the importance of the diffusive dynamics experienced by the
substrate.

The time required for the enzyme to close after binding is
noticeably different in all three models. The penetrating sol-
vent model does not account for solvent expulsion as the en-
zyme closes, and therefore has a higher net friction and longer
time scale than is present in the explicit interaction model.
Once again, the effect of hydrodynamics is significant, and
shortens the time required for the enzyme to close.

The overall cycle time density is a convolution of the
binding time and closing time densities, and is therefore dif-
ferent for all three models.

C. Fully stochastic model

A stochastic procedure can be implemented for the over-
all enzymatic process using data from the numerical simu-
lations and the computed values of the binding probability
starting from a radial distance of ry. If the binding is accepted
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FIG. 9. Probability density Pcony(?) of the substrate conversion time to prod-
ucts versus time expressed in milliseconds for the explicit solvent model. The
other models yield essentially identical results since the substrate conversion
is determined primarily by diffusion when the substrate is at physiological
concentrations.

starting from the inner sphere with probability P,, which for
the explicit solvent model is approximately P, = 0.078, the
overall cycle time for the reactive process can be added to the
overall time for the process by drawing from the numerically-
obtained probability densities and cumulative distributions.
To carry out the procedure, the reaction time is drawn by
numerically solving the equation Ceycle(t,) = u for the time
t, using bisection or Newton-Raphson methods, where u is a
random variable drawn uniformly from the unit interval. Here,
Ceycle(t) is the cumulative distribution for the cycle obtained
from the simulation.

To convert the system collision time into physical units,
note that the self-diffusion coefficient in system units is 0.06
£2/7. Equating this with the desired value of the diffusion co-
efficient in the cytoplasm of roughly D =1 x 107'9m?/s,
we conclude that T = 1.5 x 107! s. Using this scaling, we
find that the typical time required for the PGK enzyme to
close following binding of both substrates is on the order
of 3 to 6 ns for the solvent models incorporating hydrody-
namic flow, which is consistent with experimental”*49 and
simulation®” studies of the enzyme domain motions.

The probability density P,y (f) of substrate conversion
times is shown in Fig. 9.

Somewhat surprisingly, no difference in the probability
density of substrate conversion time is readily observable at
the enzyme concentration studies here even though the bind-
ing probability is more than two times larger in the presence
of hydrodynamics than in its absence. This is due to the multi-
ple convolutions of the first passage time densities which have
heavy and prominent tails that tend to smooth out observable
differences after multiple convolutions.

V. SUMMARY

A stochastic method for computing the probability den-
sity of the time required for the enzymatic catalysis of a
substrate to product was constructed. The method consists
of combining analytical computations of binding probabili-
ties and first-passage times of a substrate diffusing between
two concentric absorbing spheres with explicit simulation of
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motion of the substrate in the immediate vicinity of the en-
zyme. Once the explicit simulations have been performed and
the data analyzed in terms of binding probabilities and first
passage time densities, the method allows the probability den-
sity of the time required for the phosphate transfer to be com-
puted at a variety of enzyme concentrations.

The method was illustrated by considering the catalytic
transfer of a phosphate group from bPG to a bound ADP sub-
strate by the phosphoglycerate kinase enzyme under physi-
ological conditions. The binding probability and phosphoryl
group transfer times for a substrate diffusing in a 0.1 mM con-
centration of phosphoglycerate kinase were computed under
three different solvent conditions using a network model of
the enzymatic system constructed from the morphing analy-
sis of the conformational change between the open and closed
conformations?®?° of the enzyme. The solvent models were
chosen to selectively account for various degrees of corre-
lated solvent motion to probe the importance of collective
flow effects on the enzyme dynamics. It was demonstrated
that dynamical solvent flow effects assist the binding of the
substrate to the active site of the enzyme and facilitate the
hinge motion of the enzyme that leads to its closing. Two
different models that incorporate hydrodynamic flow effects,
one with direct solute-solvent interactions and another pen-
etrating solvent model where solvent particles are treated as
point particles in their interactions with the substrate and pro-
tein, have similar binding probabilities and cycle time den-
sities. However, the density profiles of the solvent near the
active site as the enzyme closes post-substrate binding dif-
fer, since expulsion of the solvent from the binding pocket
is not possible for the penetrating-solvent model. In contrast,
a Smoluchowski-type model in which all beads feel a fric-
tion that is independent of the conformation of the enzyme
is characterized by a lower substrate binding probability and
a shift in the cycle time density to larger time scales relative
to the models incorporating hydrodynamic effects. The lower
substrate binding probability leads to a detectable shift in the
maximum appearing in the density of substrate conversion
times.

The validity of the stochastic method presented here re-
lies on a number of assumptions that are questionable for the
behavior of the enzymatic system in a cellular environment. It
has been assumed that the enzymes are homogeneously dis-
tributed with no correlation between their positions in the vol-
ume. It is quite possible that the enzymes are, in fact, locally
clustered in the cytoplasm in a way that effectively reduces the
distance between them and the substrates thereby enhancing
their efficiency. This is likely to be the case if there is cor-
relation between the spatial location of the phosphoglycerate
kinase enzyme and enzymes, such as, glyceraldehyde phos-
phate dehydrogenase that act earlier in glycolysis. In addition,
it has been assumed that the dynamics of the substrate in the
complex, crowded cytoplasm is diffusive, which may be rea-
sonable on long time scales but less accurate on the time scale
of solvent motion. However, subdiffusive motion of proteins
and finite-size probe molecules has been seen in crowded cel-
lular environments.’*-33 Nonetheless, assuming substrates do
move diffusively in the cytoplasm at long times, the diffusive
nature of the substrate dynamics leads to a broad distribution
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of substrate conversion times that differs substantially for the
exponential distribution one might anticipate from mass ac-
tion kinetics.

It is straightforward, though computationally intensive,
to incorporate more detailed models of the enzymatic system
to produce quantitatively accurate results. This is readily ac-
complished by performing all atom simulations of the system
complete with detailed molecular mechanical-based interac-
tion potentials and quantum-mechanical analysis of chemical
reaction pathways. Nonetheless, it is likely that the observa-
tion that the solvent flow assists the binding and subsequent
protein motions will also be observed in more detailed models
of the enzymatic system.
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APPENDIX A: PGK POTENTIAL FUNCTIONS

In this Appendix we give the detailed form of the poten-
tial function Vpg that governs the dynamics of the protein and
its interactions with the bPG substrate.

Bonds in the set B, of common links were assigned bond
potentials V,(r;;) constructed in the following way. The po-
tentials for the common links in the open and closed configu-
rations of the enzyme, V,, and V,, are given by

Vco,cc = % Z (Rij - l,'(;')’C))z

(i/)€Bye
(0,¢) 12 (0,¢) 10
o.. o..
+e Z 5(—; ) —6(—% ) . (A1)
(ij)eBs, i i

where the parameters lfj’c) and 0.7 were determined by
the equilibrium distances for the harmonic and soft-common
links in the open and closed conformations and kj, is the force
constant for the hard elastic network bonds. Given this input,
the potential for the common interactions V, was taken to be
the lowest eigenvalue of a two-dimensional empirical valence

bond matrix with constant off-diagonal elements A, so that>

Vc == %((Vco + Vcc) - ((Vco - Vcc)2 + 4A2)1/2 ) (AZ)

This form of the potential allows the system to smoothly
switch between stable open and closed configurations. Links
in the soft-open, By,, and soft-closed, B;, sets were assigned
bond potentials

VS(RU):E<5(%)12 —6(%)10)

L 1

(A3)
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with identical forms. In addition, monomeric beads represent-
ing amino acid residues repel one another at short distances
according to a truncated and scaled LJ potential,

12 6
(of 0,
Vr = E €pbh <%) -2 (%) +1 ‘9(O'bb - Rij)y
) )

(ij)

(A4)
with minimum at o, Where 6(x) is the Heaviside function.
The bPG substrate, represented by a single bead with coordi-
nate R, also interacts with all beads in the protein through a
repulsive LJ potential of this form, V®)(Ry;), where R,; = |R
— R;| with €;; and o energy and distance parameters.

1. Interactions governing the reactive event and
conformational changes

The binding interaction Vb(b)(R, R{, R{, RS) between the
bPG substrate at position R and the enzyme was designed to
depend on the distance between the substrate and bead with
coordinate R¢, as well as the orientation of the substrate with
respect to a coordinate frame determined by three beads defin-
ing the binding pocket of the enzyme. Defining the relative
position vector Rg; = R — R{ = RSliZ with magnitude Ry
and direction R of the substrate with respect to a coordi-
nate system centered on the binding site R{, the projection
R, = R - (R}, x R5)) is computed, where IAif,- is the unit
vector along Ry, = R{ — Rf. The binding potential is then
taken to be

v® — r(R Obb 2 Obb ¥ 3 Obb :
v=swold (72) - (%) —2(32)

12
4K (%) (1- <R§1>2)}9(—R§1), (AS)

S1

where Ks = 1.5 in the energy units. In Eq. (AS), AR) is a
smooth cut-off function

1, R < Ry
fR)={ BB (R, 3R +2R), Ry <R <R, .
0, R > R,

(A6)
where the upper and lower cut-off values are set to R, = 30
and R; = 2.50. The potential insures that the optimal angle of
approach and binding of the substrate in the active site pocket
is along the R; X IAQ?O direction. In principle, the excluded
volume interactions of the substrate bead with the enzyme
beads are sufficient to determine the binding pathway of the
substrate, while the orientational dependence of the binding
potential in Eq. (A5) restricts the binding location in the ac-
tive site.

As the substrate binds it triggers conformational changes
in the protein that lead to hinge closing to bring the bPG and
ADP substrates into proximity for the phosphoryl group trans-
fer. Thus, as bPG interacts with the protein in the course of
binding to the active site, the open protein configuration is
destabilized with respect to the closed configurations, driving
the enzyme towards the closed conformation. To achieve this
conformational change in the network model, the interaction
potentials for the soft, non-common set of links are modified.
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We define the reaction coordinate &, where

1
&= 3 (1 4+ tanhx), (A7)
where
R.i — R° 2 R, — R¢ 2
_ ( bl 1;1)2 _ ( bl ﬁ])z» (AS)
(Rbl - R;,]) (Rbl - Rb])

and Ry, is the initially large distance between the substrate
and the binding site in the enzyme in the open configuration
and Rj, is the same distance in the bound, closed complex.
Since the substrate is unbound and hence far from the bind-
ing pocket in the starting configuration, R}, > R;,. Note that
when the substrate is far from the enzyme, x is large and neg-
ative and & ~ 0, whereas x becomes large and positive as the
substrate moves towards the binding site with the result that
& ~ 1 upon binding. Given this reaction coordinate, the soft,
non-common potential function is taken to be

Vie=£€ Y Virip+(1—8) Y Vilry).

(ij)eBsx (ij)eBso

(A9)

The protein-substrate interaction potential is given by the
sum of these contributions,

Vps(RY , R;E(Rs) = Ve + V, + VO + VO 4 v,
(A10)

After binding, the reaction coordinate & is treated as an
external control parameter that is governed by the equation,

1—t/t, ift <=,
§0) = { 0 otherwise,

where t is the reaction time drawn from an exponential dis-
tribution P(1,) =7, Le=%/Tr and T, is the average reaction
time. Upon completion of the reaction when £ = 0, the in-
teraction between the substrate in the binding pocket and the
binding site is changed to a repulsive Lennard-Jones interac-
tion to reflect the unstable interaction of the altered substrate
and the binding pocket. Since £ = 0, the closed configuration
is unstable and the enzyme reopens, completing the cycle. In
this treatment, the reaction is treated irreversibly and the sur-
rounding solvent absorbs energy from the chemical process,
leading to a slight heating of the solvent. The average reac-
tion time T, is taken to be 25 time units, corresponding to a
physical reaction time of roughly 2.5 ns. Note that the precise
value for the average reaction time is unimportant for looking
at the qualitative effects of the solvent environment on the dy-
namics of the enzymatic system. Detailed quantum chemical
calculations are required to determine if this estimate of the
reaction time from the metastable bound state to a final state
consisting of the products bound in a closed conformation of
the enzyme is reasonable.

(Al1)

APPENDIX B: DIFFUSION OF SUBSTRATE
TO A REGION NEAR ENZYME

The first passage time distribution P(#|r) for a Brown-
ian walker starting from position rg at time = 0 onto a sphere
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centered at the origin can be computed from the survival prob-
ability distribution F(¢|r() using

dF(t|ro)

Pltlro) = ——

; (BI)

sphere

where the derivative of F(f) only includes the flux of walkers
into the sphere and

F(t|rg) = / dr P(r,t;ry). (B2)
Q

In Eq. (B2), P(r, t;r() is the conditional probability of find-
ing the walker at position r at time ¢ given that it was initially
at ry, and €2 is the domain of the system. We shall assume that
the walker is confined between two absorbing spheres of radii
r— = r; and r; = r,. Given the spherical boundaries of the
domain, it is natural to express positions in terms of spheri-
cal polar coordinates (r, 8, ¢), where the z-axis from which
the angle 6 is measured relative to the vector connecting the
origin to a specific point r, on the inner sphere. The angle ¢
can measured from the plane containing the vectors r, and rg
so that ¢o = 0. The evolution of the conditional probability is
determined by the diffusion equation
apP

— = DV?P, B3
ot ! B3)

and satisfies the boundary condition P(r, 0;rg) = §(r — ro).
From the diffusion equation, we find that the first-passage dis-
tribution through a spherical domain at radial distance r_ is
given by

apP

P(t|ro) = —/ dra— =—D/ dr V*P
Q t Q

:—D/ dS 7 -V, P
a0

P
= D/ ds —, (B4)
sphere at r_ 07

where the second line follows from Green’s theorem. The do-
main 2 contains all points with radii in the range [r_, ], and
the integral over the inner sphere can be written to obtain

IP(r_,0,¢,t;ry)
ar '

0

T 2
P(t|r0)=Dr3f d@sin@/ d¢
’ (BS)

The diffusion equation may be solved for arbitrary co-
ordinates r and r in the presence of absorbing boundaries
by expanding the density P(r, t|r() in spherical polar coordi-
nates. The absorbing boundary conditions require that

P(r—,0,¢,1;r0, 60, ¢o) = 0
P(r+,9, ¢’t;r07905 ¢0)=0 (B6)

Although a general series solution in spherical harmonic func-
tions for P(r, t|ro) is possible, the spherically averaged flux
F(t|ry) and first-passage time distribution P(¢|r() are simple
to obtain since only the first, spherically-symmetric term in
the expansion remains. From the differential equation for the
expansion coefficients, one finds that the Laplace transform
P(slro) = [, dt e P(t|r¢) of the first passage time density

J. Chem. Phys. 136, 205101 (2012)

P(t|ro) for the inner sphere is given by>*

1/2
B(slro) = (L-) Cipplxo, x4)

X0 Cip(x_, xy)
_ <V_>1/2 C1/2(x0, x4) B7)
ro Cip(x_, x3)

where xo is the scaled variable xo=./s/Dry, x4
=./s/Dry, x_ =./s/Dr_, and C,(a, b) = I,(a)K,(b)
— I,(b)K,(a), where I,(x) and K,(x) are modified Bessel
functions. For a large outer sphere for which r > r_, Cp(x,
xy) — —I1p(x4)Kp(x). Considering a particle that can start
at any point on a spherical shell at r = ry, we can write
P(slro) ~ r-/ro Ki2(x0)/ K1/2(x2).
Noting that

T T,
ko(x)=,/£K1/2(X)=§€ ,

the Laplace transform P;(s|ro) of the first passage density to
the inner sphere can be approximated by

Pi(slro) = % - (;—;) V7D (n-r-), (BS)

which can be explicitly inverted to obtain the normalized first-
passage distribution P, (#|r) for particles that are absorbed at
the inner sphere radial distance r; starting from the spherical
shell at distance r,

Py(t]r) = =n) emnpsann, (B9)
47 D3
This result is plotted in Fig. 10 (top panel). Note that the frac-
tion of particles absorbed at the inner sphere in the infinite
time limit can be computed from the s = 0 limit of Eq. (B7),
yielding

~ ry rp—r
Pi(s =0lr) = Pi(r) = —

1’2—1’1'

The fraction of particles absorbing at the outer boundary in
the infinite time limit is P,(r) = 1 — P;(r). These probabilities
play an important role in the stochastic simulation algorithm.

The first-passage time density at the outer sphere is ob-
tained similarly, although the inversion of the Laplace trans-
form P(s|r) is complicated since

V2)1/2 Cipa(x, x2)

Patsiry = (7 Cia(x1, x2)

r» sinhx;e™ —sinhxe™

r sinhx; e~ — sinhx, e=1’

where x = /s/Dr and x; = 4/s/Dr;. Although the density
can be approximated using series expansions for ®-functions,
it is a simple matter to invert Py(s|r) numerically using the
Stehfest algorithm.>>3

To draw a random time from the first-passage density
P1(t|r), one first defines the cumulative distribution Cy(t|r)
= [y dt Pi(t|r) = | —erf((r — r1)/~/4Dt). Suppose u is
drawn uniformly from the unit interval. Setting u = C;(z,|r)
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FIG. 10. Absorption time probability density versus time. The top panel is
the absorption time for the absorption onto an inner sphere at r| = 7 starting
from a radial distance r = 10 in length units €. The bottom panel shows the
absorption time density (top) and cumulative distribution (bottom) for the
outer sphere, where the outer absorbing sphere radius is set to be r, = 31.6
and r = 10.

and solving for ¢, gives
(r —r)?

S e A VI B10
4D (ierf(1 — u))’ B0

where ierf is the inverse error function which can be solved for
numerically in an efficient manner using the secant method.
The set ¢, are then drawn from the first-passage distribution.

The task of drawing from the distribution P,(#|r) shown
in the bottom panel of Fig. 10 is readily accomplished by
drawing a random number p uniformly on (0, 1) and then solv-
ing the implicit equation C,(t,|r) = p for the time 7,, where
C,(t|r) is the cumulative distribution C,(¢|r) = fot dt Py(t|r).
The cumulative distribution can be computed numerically by
applying the Stehfest algorithm to form the inverse Laplace
transform of C‘z(s|r) = f’z(s|r) /s (see bottom-most panel of
Fig. 10).
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