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Enzyme kinetics and transport in a system
crowded by mobile macromolecules

Carlos Echeverriaabc and Raymond Kapral*a

The dynamics of an elastic network model for the enzyme 4-oxalocrotonate tautomerase is studied in a

system crowded by mobile macromolecules, also modeled by elastic networks. The system includes a

large number of solvent molecules, as well as substrate and product molecules which undergo catalytic

reactions with this hexameric protein. The time evolution of the entire system takes place through a

hybrid dynamics that combines molecular dynamics for solute species and multiparticle collision

dynamics for the solvent. It is shown that crowding leads to subdiffusive dynamics for the protein,

in accord with many studies of diffusion in crowded environments, and increases orientational relaxation

times. The enzyme reaction kinetics is also modified by crowding. The effective Michaelis constant

decreases with crowding volume fraction, and this decrease is attributed to excluded volume effects,

which dominate over effects due to reduced substrate diffusion that would cause the Michaelis constant

to increase.

1 Introduction

In order to fully understand the nature of transport and enzymatic
kinetics in the cell, effects arising from molecular crowding must
be taken into account. That the interior of the cell is a medium
highly crowded by a diverse variety of macromolecular species has
long been appreciated1–6 and many studies have been carried out
to elucidate the effects of crowding on transport properties such
as diffusion, protein conformational changes and aggregation,
as well as enzymatic reaction rates.7–19 These studies have
shown that factors such as excluded volume can lead to non-
ideal behavior that changes the thermodynamic properties of
the system, and interactions with crowding elements can alter
kinetic properties and mechanisms of reactions. An intricate
interplay of factors can contribute to the effects of crowding in
a specific system so that the observed phenomena may differ
from system to system.

In this paper we describe the results of simulations of the
transport properties and reaction dynamics of an enzyme in an
environment crowded by mobile macromolecules. Many models
have been constructed and studied to explore such features.20 Our
system comprises an enzyme, substrate and product molecules,
a solvent, and macromolecules that act as crowding agents.

All of the molecular species are treated at a coarse-grained
level of description and the entire system is evolved in time
using an algorithm that combines molecular dynamics with
a mesoscopic dynamical treatment of the solvent.21,22 We
consider an elastic network model23 for a specific enzyme,
the hexameric enzyme 4-oxalocrotonate tautomerase (4-OT)
that was constructed earlier.24 It is composed of three dimers;25

each monomeric enzyme in a dimer has 62 amino acid residues
giving a total of 372 amino acid residues, which are represented
by beads in our coarse-grained model. Each of the six active
sites in the enzyme catalyzes the isomerization of unsaturated
ketones.26 This enzyme does not undergo substantial local or
global conformational changes in the course of enzymatic
catalysis.27 The macromolecules that crowd the system are also
modeled by the elastic networks of beads. This particle-based
description of all species in the system allows us to investigate
in molecular detail the origins of the changes in protein
transport properties and reaction kinetics for this system.
We show how protein diffusion and orientational relaxation
vary with the volume fraction f of macromolecules, and how
the kinetic constants that characterize the catalytic enzyme
reactions change with f.

The outline of the paper is as follows: Section 2 describes the
model for the system in more detail as well as the method used
to simulate the dynamics. The results of simulations of the
diffusion and orientational relaxation of the protein as a function
of the volume fraction of crowding macromolecules are presented
in Section 3, while results pertaining to the modifications of
enzyme kinetics by crowding are given in Section 4. The
conclusions of the study are given in Section 5.
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2 Model for a crowded enzymatic
system

The model for the dynamics of a 4-OT enzyme carrying out the
catalytic conversion of substrate to product molecules in a
crowded system was constructed as follows: the enzyme was
modeled as an elastic network of beads whose equilibrium
coordinates were taken to be the positions of a-carbons of the
constituent amino acids given in the literature.28 Substrate,
product and chemically inert solvent molecules were taken to
be structureless particles. The substrate and product molecules
interact with the enzyme and among themselves through inter-
molecular potentials, and the solvent molecules interact among
themselves and with the other species by multiparticle collision
(MPC) dynamics.21,22,29,30 The 4-OT enzyme has six active sites,
each of which catalyzes the conversion of the substrate to
product. An active site comprises a region defined by four beads
and was constructed to model the structure of an active site of
the real protein. Substrate molecules can bind to an active site
through intermolecular potentials forming an enzyme–substrate
complex; once bound they may dissociate to release substrates
without reaction, or reaction to form products may take place.
Thus, each active site undergoes catalytic reactions of the
Michaelis–Menten (MM) type,31

Eþ SÐ
k1

k�1
C �!k2 Eþ P; (1)

where E, S, C and P denote the enzyme, substrate, enzyme–
substrate complex and product, respectively. The full specifica-
tion of the details of the intermolecular potentials and MPC
dynamics have been given in an earlier study of the kinetics of
this enzyme in bulk solution.24

The new feature in the present work is the presence of mobile
polymeric obstacles that serve as crowding agents. As discussed
above, the bead network model of the 4-OT enzyme was con-
structed from the experimentally determined coordinates of the
a-carbons of the amino acids comprising the protein. In a cell
the crowding elements are diverse in nature and include a
variety of different proteins and biopolymeric filaments.
Because of the complexity of the crowded cellular environment
it is advantageous to focus on generic macromolecular crowding
species instead of specific proteins or filaments. Although
structureless spherical particles constitute perhaps the simplest
way to model crowding species, we wished to incorporate some
of the gross features associated with the irregular structures
and diversity of shapes that real crowders exhibit. To this end
we have chosen to adopt a highly coarse grained bead elastic
network model for the obstacles. Even within this obstacle
network description we make no attempt to model the full
complexity of real macromolecular crowding species. Instead
we consider species that are very roughly spherical in shape and,
on average, have a characteristic radius, RO. More specifically, to
build an obstacle, its mean radius RO and the number of obstacle
beads Nb

O are first chosen. The positions of the Nb
O beads are

drawn from a uniform distribution within a sphere of radius
RO. Since we do not wish to model any specific protein with a

specific set of elastic network bonds, these beads are then
simply connected globally by elastic springs to form a stiff but
flexible network model of a generic protein. The total potential
energy for an obstacle then takes the form,

VO
ENðRÞ ¼

XnOL
n¼1

1

2
k Rn � R0

n

�� ��2; (2)

where R0 is the collection of the initial random positions of the
obstacle beads and nO

L is the total number of bonds in the
obstacle, with nO

L = Nb
O!/(2(Nb

O� 2)!) for Nb
O obstacle beads. Finally, to

place these obstacles in the system with a given volume frac-
tion, a random position in the simulation volume is chosen
from a uniform distribution and the center of mass of an
obstacle is placed at that location. Other obstacles are similarly
placed in the volume but accounting for volume exclusion of
obstacles; if the obstacles overlap a new position is chosen for
insertion. This process is continued until the desired volume
fraction is obtained.

The interactions between beads in different obstacles, as
well as the interactions of an obstacle bead with enzyme beads
or substrate and product particles are described by repulsive
Lennard-Jones potentials,

VLJðrÞ ¼ 4e
sOA

r

� �12
� sOA

r

� �6
þ 1

4

� �� 	
y 21=6sOA � r
� �

; (3)

where A = O, S and b for obstacle, substrate and enzyme beads,
respectively, and y(x) is the Heaviside function. An instanta-
neous configuration of the enzyme, obstacles, substrate and
solvent molecules is displayed in Fig. 1. It shows the structures
of the enzyme and obstacles as well as the nature of the
crowded medium in which the dynamics takes place.

This mesoscopic model for enzymatic dynamics in a crowded
environment accounts for the structures of the enzyme and
macromolecular mobile obstacles, reversible binding to the
active sites of the enzyme to form an enzyme–substrate complex,
and its subsequent dissociation to release products. In addition,
chemically inert solvent molecules provide an environment in
which these processes take place. The hybrid dynamics com-
bines molecular dynamics of the solute species governed by
intermolecular forces, with multiparticle collision dynamics for
the solvent. This dynamics conserves mass, momentum and
energy and, as a consequence, accounts for all hydrodynamic
interactions among the constituents. These interactions are
important for a correct description of transport and reaction
kinetics in the condensed phase.

In the simulations of the dynamics of this system, we con-
sider a single 4-OT enzyme in a cubic volume with sides L = 30
and periodic boundary conditions. This volume also contains
substrate molecules with number density [S0] = n0

S = 0.01, solvent
molecules with density n0 = 11, and obstacle macromolecules with
volume fraction f. Results are reported in dimensionless units.32

In these units the diameter of an enzyme bead is s = 0.25. The
interaction energy between the two substrate molecules is
characterized by e = 1, while that for an enzyme bead and a
substrate particle is ebS = 10�6. The mass of a solvent molecule
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is m = 1 and the masses of protein and substrate beads are also
taken to be mb = mS = 1. The other system parameters are:
elastic network bond force constant, k = 40, and the reduced
temperature kBT/e = 5/12. The reaction probabilities for the
unbinding substrate and the forming product are p�1 = 0.005
and p2 = 0.005. The MD time step is Dt = 0.002. The multi-
particle collision time is t = 0.1.33 The average radius of an
obstacle is taken to be RO = 2.5, which is comparable to RE = 2.2,
the mean radius of 4-OT. There are 372 amino acid beads in the
4-OT protein so the protein mass is M = 372. Given the generic
manner in which the obstacles are treated there is no need to
use a similar level of coarse graining for the obstacles. Instead we
choose a much smaller number, Nb

O = 20, and assign the obstacle
beads larger effective radii for their interactions. The mass of an
obstacle bead is determined from Mb

O = MO/Nb
O = 20, where MO =

400 is the total mass of an obstacle. For the obstacles, sOO = 2.0,
sOS = 1.25 and sOb = 1.25. Typical results were computed from
trajectories with length 25 000, allowing for an equilibration
period of 2500. Averages were obtained from many (1200)
realizations of the dynamics.

3 Enzyme transport properties

It is well documented in both in vivo and in vitro experiments, as
well as in simulation and theory, that enzyme diffusion often has a
subdiffusive character in crowded or heterogeneous systems.17,34–39

The subdiffusive character of the diffusive dynamics and the

length of time over which it persists depends on whether the
crowding elements are fixed in space or are mobile. For example,
Monte Carlo simulations of two-dimensional systems crowded by
mobile obstacles executing Brownian motion have shown that
‘‘protein’’ subdiffusive motion is transient and disappears at long
time scales; however, if the obstacles are governed by Ornstein–
Uhlenbeck noise the subdiffusive dynamics persists.40

The diffusive dynamics of the 4-OT enzyme in our crowded
environment is also found to be subdiffusive. The mean square
displacement (MSD) of the protein is Dr(t)2 = h|rCM(t)� rCM(0)|2i,
where rCM is the position of the center of mass of the protein and
the angle brackets denote an average over time and different
realizations of the dynamics. Fig. 2 plots Dr(t)2/t on a double
logarithmic scale for three values of the obstacle volume fraction
f, and compares these results with those for the enzyme in bulk
solution in the absence of crowding elements.

Considering the protein in the absence of obstacles (f = 0), and
assuming exponential decay of the autocorrelation function of the

center-of-mass velocity, CðtÞ ¼ 1

3
VðtÞ � Vh i ¼ kBT=Mð Þ exp �t=tvð Þ,

the MSD of the protein is given by

Dr2ðtÞ ¼ 6

ðt
0

dt 0
ðt 0
0

dt 00Cðt 00Þ

¼ 6Dt� 6
kBT

M
tv2 1� e�t=tv
� �

:

(4)

The velocity relaxation time is tv = M/z, where z is the friction
coefficient, which is related to the diffusion coefficient by the
Einstein relation D = kBT/z. This expression describes the simulation
data well with tv = 1.62. (The fit is indistinguishable from the data in
Fig. 2 on the scale of the figure.) The short time inertial regime
predicted by this expression is evident in the figure. For long times
the MSD takes the usual form, Dr(t)2 = 6Dt, with D E 1.74 � 10�3.

Fig. 1 An instantaneous configuration of the crowded enzymatic system.
The elastic network models of the enzyme (yellow beads) and the
obstacles (large colored beads; the color of each obstacle is used to
distinguish the different obstacles) are shown. The substrates are rendered
as red beads, while the chemically inert solvent particles are cyan colored
points. The obstacle volume fraction is f = 0.15.

Fig. 2 Plots of the MSD divided by time as a function of time t for several
values of volume fraction f: f = 0 (solid black lines), f = 0.1 (top), 0.2
(middle) and 0.3 (bottom) (solid blue lines). The dashed red lines are fits of
Dr(t)2 = 6Gta to the simulation data, while the horizontal dashed black lines
for f = 0.1 and 0.2 are guides to the eye that indicate the approximate
asymptotic values.
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For the large protein the friction coefficient should be well
approximated by its Stokes law form, z = 6pZRE, where Z is the
solvent viscosity and RE = 2.2 is the effective radius of the enzyme.
The transport properties of the MPC solvent can be computed
analytically29,30 and the viscosity has the value Z = 6.128 for our
system parameters. Using these values, we find tv = 1.46 and
D E 1.64 � 10�3, which are comparable to the simulation
values. Note that the diffusion coefficient of the large protein
is much smaller than that of the small substrate molecules,
DS = 0.048, for the same system parameters. The substrate
diffusion coefficient can also be computed analytically for MPC
dynamics.29,30 Identifying the effective radius of the 4-OT
protein and its diffusion coefficient with those of the measured
values of these quantities41 allows us to establish a connection
between our simulation units and physical units. This compar-
ison yields a E 1.3 nm and t0 E 0.05 ns.

Turning to finite obstacle volume fractions, we see clear
deviations of the MSD from its value in bulk solution with
increasing f. Anomalous diffusion is characterized by a MSD of
the form, Dr(t)2 = 6Gta with exponent a a 1. The MSD plots
show that after an initial rise in the inertial regime, there is an
intermediate time period where Dr(t)2/t falls in accord with a
power law Dr(t)2/t = 6Gta�1. For very long times the results
suggest passage to a normal diffusive regime with lower values
of the diffusion coefficients as a result of crowding; however,
our finite-time simulations have not fully resolved this diffusive
regime, especially for the largest volume fractions. Fig. 3 gives
the values of G (top) and a (bottom) as a function of f determined
from double logarithmic fits to the intermediate time regime of
Dr(t)2/t. The exponent a decreases as f increases, characteristic
of a subdiffusive process, while the prefactor G increases with
increasing f. Previous Brownian dynamics simulations have
shown that both crowding and hydrodynamic interactions
contribute to the large reductions in the diffusion coefficients

of macromolecules in the cell.42 Our simulations account for
hydrodynamic interactions and, in addition to crowding, these
have a substantial effect on the diffusive dynamics.27

The orientational motion of the enzyme is also influenced by
crowding. We define the orientational correlation function by
Cy(t) = hû(t)�û(0)i = hcosy(t)i, where û(t) is a unit vector from the
center of mass of the protein to the center of mass of three of the
active sites on one side of the protein. Fig. 4 plots Cy(t) for several
values of the volume fraction. For f = 0.0, Cy(t) E exp(�t/tc), with
tR E 1397. This value may be compared with that obtained from
the Stokes–Einstein–Debye expression, t(SED)

R = 4pZRE
3/kBT. Using

the values of the enzyme radius, solvent viscosity and temperature
given above, one finds t(SED)

R E 1968. Since the enzyme is neither a
solid object nor fully spherical only approximate agreement is
expected and found. Fig. 5, which plots the ratio tR(f)/tR(0),
shows how tR increases with the volume fraction. For these
structured enzyme and obstacle macromolecules crowding
hinders reorientation and is responsible for the observed
substantial increase in tR with f.

Fig. 3 Plots of the ratio G(f)/G(0) (top panel) and a (bottom panel)
versus f. The black line is the fit of data for a(f) to the empirical equation,
a(f) = exp[�(f/fa)

n], with nE 2.93 and fa E 0.398. The error bars denote�
one standard deviation over 1200 realizations.

Fig. 4 Plot of Cy(t) versus t for several values of the volume fraction: f =
0.0 (solid black line), f = 0.1 (solid blue line), f = 0.2 (dashed blue line) and
f = 0.3 (blue points line). The inset shows the orientational relaxation times
tR when Cy(t) decays to 1/e of its initial value. The error bars were
determined from 400 realizations of the dynamics.

Fig. 5 Plot of the ratio tR(f)/tR(0) versus f for the protein. The error bars
were determined from 400 realizations of the dynamics.
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4 Enzymatic kinetics and crowding

The standard Michaelis–Menten model of enzymatic reactions is
based on a mean field description of the chemical kinetics. In
many circumstances this simple description is not sufficient
since the assumption that diffusion is fast, so that the system
remains well mixed at all times, may break down. In particular,
diffusion can modify reaction rates and change the kinetics from
reaction to diffusion control, and it can also give rise to power-law
time dependence of rate coefficients. When such diffusion effects
are taken into account the usual MM description of enzyme
kinetics is modified.43–45

Molecular crowding can also alter enzyme catalysis and
reduce the applicability of the MM mean-field picture. If the
dynamics is subdiffusive, rate constants may exhibit power-law
time dependence with exponents that depend on the volume
fraction of crowding elements. This, in turn, can cause the
temporal variations of chemical concentrations to differ from
those of mean-field kinetics. The precise way that these effects
manifest themselves depends on factors such as the nature and
dynamical behavior of the obstacles (fixed or mobile) and the
dimensionality of the system. Fractal Brownian motion,
obstructed diffusion and various continuous-time random walk
models have been constructed to investigate these reaction
kinetic effects.20,46,47

Simulations and experiments have shown that the parameters
that enter the MM description, such as the Michaelis constant KM

and the maximum velocity at which product is produced nmax, can
increase or decrease as a function of the volume fraction depending
on the specific characteristics of the enzyme and crowding mole-
cules.48–50 The results also show that not only is the volume fraction
an important way to characterize crowding but the relative sizes of
enzymes, substrates and crowding elements play important roles
in determining the effects in some instances.51 The changes in the
relative magnitudes of factors such as excluded volume and
reduced diffusion coefficients for different enzymes and crowding
molecules can be responsible for the diverse results mentioned
above. Thus, system-specific factors are likely to be responsible for
how crowding changes enzyme kinetics.

Often discrete or continuous-time random walk models
employing various noise sources and structureless fixed obsta-
cles are used to study the effects of crowding on enzyme
kinetics. Our particle-based dynamical model fully specifies
the structures and interactions among the enzyme, substrate,
product, solvent and crowding macromolecules. Thus, the type
of diffusive dynamics, normal or subdiffusive, emerges natu-
rally in the simulations, and we can explore in some detail the
relative importance of the factors that may be responsible for
changes in the reaction kinetics in this model system.

The enzymatic kinetics of 4-OT in bulk solution was studied
earlier and compared to the MM model.24 The activity of a
single active site in the enzyme follows MM kinetics when there
are no intermolecular interactions with protein beads that
hinder full access to an active site. In this case the average
number of enzyme–substrate complexes per active site in the
system at time t is given by the standard MM expression,

provided the substrate concentration does not change much
from its initial value [S0] on the time scale of the evolution
of
�
NC(t) to its quasi-steady-state value, (

�
NC)ss = [S0]/(KM + [S0]).

The Michaelis constant is KM = (k�1 + k2)/k1. When all six active
sites in the enzyme catalyze reactions, both interactions
and correlations among the activities of these sites lead to
quantitative deviations from MM behavior, even in the absence
of crowding.24 Nevertheless, the qualitative structures of the
�
NC(t) curves resemble those of MM kinetics, and it is useful to
analyze our simulation results in this context since it provides
some insight into the effects of crowding. In particular we focus
on the Michaelis constant since many experiments measure
this quantity.

Fig. 6 plots
�
NC(t) versus time for several values of f. Note that

the steady-state value, (
�
NC)ss, and the rise to this value increase

with increasing volume fraction. This may be contrasted with
the results for lattice models of fractal Brownian motion and
obstructed diffusion with mobile obstacles which lead to slow
kinetics.47 Recall that the diffusive component of the dynamics
that lead to binding of the substrate to the enzyme to form an
enzyme–substrate complex depends on the sum of the substrate
and enzyme diffusion coefficients. The substrates for 4-OT are
small molecules, for example, 2-hydroxymuconate with a radius
of a few Angstroms. The substrate size is much smaller than the
enzyme and crowding macromolecules. Its diffusion coefficient
is large and the effects of crowding will be small for volume
fractions typically encountered in the cell. Similarly, our model
substrate particles are small and their diffusion constant DS is
about two orders of magnitude larger than that of the enzyme, D.
Since it is the substrate diffusion that dominates the diffusive
kinetics leading to the formation of a complex, one might expect
results that differ from those of larger substrate molecules that
will exhibit more pronounced anomalous diffusion effects.

Fig. 6 The average number of enzyme–substrate complexes per active
site

�
NC(t) versus time t for several values of the volume fraction: f = 0.0

(solid black line), 0.1 (solid red line), 0.2 (solid green line) and 0.3 (solid blue
line). The dashed black lines are the fit of ec. (5) with simulation data. The
results were computed from averages over 1200 realizations.

�NCðtÞ ¼
S0½ �

KM þ S0½ �
1� e� k1 S0½ �þk�1þk2ð Þt
� �

; (5)
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Using the simulation data for (
�
NC)ss, determined from the

plots in Fig. 6, and assuming that the steady state value of the
concentration of enzyme–substrate complexes per site is given
by eqn (5), we may determine an effective Michaelis constant as
a function of the volume fraction of obstacles. Fig. 7 plots the
values of KM(f) obtained in this way. One sees that for our
model of the crowded 4-OT system KM decreases with f.

For a system without obstacles, when diffusion effects are
taken into account, the Michaelis constant has the form KM =
K0

M + k2/kD where K0
M = (k0

�1 + k2)/k0
1. This expression is obtained

using the fact that the diffusion-influenced rate constants
k1 and k�1 have the forms43 k1 = k0

1kD/(k0
1 + kD) and k�1 =

k0
�1kD/(k0

1 + kD). Here k0
1 and k0

�1 are the intrinsic values of
k1 and k�1, respectively, assuming diffusion is very rapid, and
kD = 4pDdR is the Smoluchowski rate constant with D the
relative diffusion coefficient of the enzyme and substrate and
dR is an effective radius for reaction at an active site. As noted
earlier, since the substrate molecules are small compared to the
enzyme D E DS, where DS is the substrate diffusion coefficient.

For our system DS can be estimated analytically for MPC
dynamics in the absence of obstacles and has the value DS =
0.048. Direct simulation yields DS = 0.05 in good agreement with
this theoretical prediction. For the 4-OT enzyme dR = 0.5 so that kD E
0.3. The values of k0

�1 and k2 are input parameters in our simulation
and have the values k0

�1 = k2 = 0.005. Also, k1
0 can be estimated from

the simulation data. The simulation value of KM can be found from
the steady state concentration of the enzyme–substrate complex.
Given that all other quantities in KM = (k0

�1 + k2)/k0
1 + k2/kD are known,

the value k0
1 = 0.09 can be determined. The diffusion-influenced rate

constants in the absence of crowding have the values, k1 = 0.07 and
k�1 = 0.038, and are dominated by reaction control. Crowding will
decrease the diffusion coefficient and this, in turn, will lead to
an increase in KM, contrary to the simulation results. This
suggests that reduced substrate diffusion is not the dominant
factor in determining the volume fraction dependence of KM.

The effects of crowding due to other enzymes on the rate
coefficients in the MM model were investigated earlier.45 In

that study the enzymes were taken to be very simple structure-
less spherical particles. While simple, the dynamics accounted for
the intermolecular interactions between the enzymes and sub-
strate and product molecules, and included all hydrodynamic
interactions that give rise to the proper diffusion-influenced
kinetics for a system crowded by many such enzymes.

The rate constants for the association–dissociation reac-
tions, E + S " C, could be determined directly from the
simulations by counting the forward and backward reactive
events. From these events one could then compute the forward
and backward reaction rates, Rf and Rr, respectively, and
equate them to their mass-action forms to extract the rate
constants as Rf = k1(f)[E][S] and Rr = k�1(f)[C]. The rate
constant k1(f) determined in this way depends strongly on f,
while k�1(f) = k�1 does not depend noticeably on f. The
equilibrium constant for this reaction is defined in terms of
the activities of the species and takes the form, Keq = gCk1(f)/
(gEgSk�1(f)), where g is an activity coefficient and detailed
balance was used to replace the ratio of equilibrium concentra-
tions by the rate coefficient ratio. Since gC = gE and gS = 1/(1� f)
for this model, we have Keq = k1(f)(1 � f)/k�1. Simulations
show that k1(f)(1 � f) is independent of f. Thus, we can write
k1(f) = k1/(1 � f), where k1 is again the f = 0 value of k1(f).

Similar considerations can be applied to our more complex
and realistic enzymatic system. While it is possible that crowd-
ing could change k�1 and k2, these changes are expected to be
very small since the enzyme is quite rigid and does not undergo
large scale conformational changes either globally or locally in
the active site regions. The substrate binding rate constant
k1(f) will, however, be subject to the same excluded volume
effects as discussed above. Using the expression for k1(f) given
above, KM(f) takes the form,

KM(f) = KM(f = 0)(1 � f). (6)

This equation is plotted as a solid line in Fig. 7 and provides an
excellent description of the simulation data. For our model
crowded enzymatic system, these results suggest that the modifi-
cations to reaction kinetics due to crowding are dominated
by excluded volume effects on substrate binding to form an
enzyme–substrate complex, rather than by the decrease in sub-
strate diffusion. These results are consistent with the expectation
that substrate diffusion will dominate over enzyme diffusion in
determining the biding kinetics of the substrate to the enzyme,
and that for small substrate molecules their diffusion is not
anomalous or only weakly anomalous. The latter result is also
consistent with lattice simulations that show that the transport of
small particles is less anomalous in the presence of mobile
obstacles than when the obstacles are immobile.52

Additional information concerning the encounters of the
substrate molecules with the active sites of the enzyme can be
obtained from the probability distributions of the lengths of
time, tL, it takes a substrate that is released from an active site
to return to the same site, Ps(tL), or any of the other five other
active sites on the enzyme, Po(tL). Histograms, H(tL), of these
quantities are shown in Fig. 8 for two values of the volume
fraction; the insets show plots on double logarithmic scales.

Fig. 7 Plot of the Michaelis constant KM(f) as a function of the volume
fraction. The solid black line is corresponds to KM(f) = KM(f = 0)(1 � f).
The results were computed from averages over 1200 realizations.
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Considering the data for returns to the same active site, for
both f = 0 and f = 0.3 one sees a rapid short time decay, which
is longer in the presence of obstacles. For long return times one
observes power-law scaling, Ps(tL)BtL

�b with b = 3/2 as expected
for a random walk.53–55 This is consistent with the expectation
that the subdiffusive character of the small substrate particles
in the presence of mobile obstacles, if at all present, is much
weaker than that of the large protein.

The histograms corresponding to Po(tL) also show similar
behavior at short and long first passage times with the same
b = 3/2 power-law behavior at long times. The intermediate time
regime shows more structure and exhibits a small maximum
followed by power-law decay for both values of the volume
fraction. These features are likely due to the complex structure
of the 4-OT protein with six active sites. When a substrate is
released from a given active site, some of the other active sites
to which it may bind lie on the opposite side of the protein.
In addition, since there is a channel in the protein through
which substrates can pass, the intermediate binding times will
differ from those of the systems with simple geometries. Long
binding times will still be governed by diffusion in the medium
so that power-law behavior like that of Po(tL)BtL

�3/2 is expected
and observed.

5 Conclusion

The dynamical model for a crowded enzymatic system
presented and studied in this paper incorporates several
features, a number of which are not often treated in simulation
studies of crowding. Both the enzyme and crowding macro-
molecules are described at a coarse-grained level that models
structural features of these molecules. The active sites in the
protein are identified and binding, unbinding and reactive
events are modeled explicitly. The enzyme, crowding macro-
molecules, substrate and product molecules interact through
intermolecular potentials. Solvent is explicitly included. The
dynamics preserves the important conservation laws of full
molecular dynamics and, as a result, all hydrodynamic inter-
actions in this complex system are automatically taken into
account.

Because of this detailed description, insight into the molecular
basis of crowding effects on transport and reaction kinetics can be
obtained. In particular, for our model of the 4-OT enzyme, we
found that crowding leads to a decrease of the effective Michaelis
constant with an increase in the volume fraction of crowding
agents. This decrease is mainly determined by excluded volume
effects on substrate binding to the enzyme, rather than by
effects due to reduced substrate diffusion which would tend to
increase KM.

As in the experimental studies of various enzymatic systems,
our results are system-specific. Since the 4-OT enzyme does not
undergo large conformational changes in the course of reac-
tion, its basic structure is not strongly influenced by the degree
of crowding. This implies that the intrinsic rate constants will
not change much due to crowding. This may not be the case for
hinge proteins such as adenylate kinase or phosphoglycerate
kinase which undergo large conformational changes during
their catalytic cycles. The influence of crowding on the con-
formational structure of adenylate kinase has been studied and
shown to have an effect.56 A detailed mesoscopic model for
the solution reaction kinetics of phosphoglycerate kinase has
been constructed57 and it would be interesting to examine its
reaction kinetics under crowded conditions using the methods
described here, since crowding could change the intrinsic
reaction rates. Thus, simulation studies of the type described
here could help resolve some of the issues related to the effects
of molecular crowding on the biochemistry of the cell.
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Fig. 8 Histograms of times tL taken for a substrate released from an active
site in the protein–substrate complex to rebind to same site (top panel) or
a different site (bottom panel) for several values of volume fraction f. The
black points denote f = 0 and blue points denote f = 0.3. The dotted
black lines in the insets correspond to fits to tL

�3/2. The results were
computed from averages over 1200 realizations.
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