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A mesoscopic coarse-grain model for computationally efficient simulations of biomembranes is pre-
sented. It combines molecular dynamics simulations for the lipids, modeled as elastic chains of beads,
with multiparticle collision dynamics for the solvent. Self-assembly of a membrane from a uniform
mixture of lipids is observed. Simulations at different temperatures demonstrate that it reproduces
the gel and liquid phases of lipid bilayers. Investigations of lipid diffusion in different phases reveals
a crossover from subdiffusion to normal diffusion at long times. Macroscopic membrane properties,
such as stretching and bending elastic moduli, are determined directly from the mesoscopic sim-
ulations. Velocity correlation functions for membrane flows are determined and analyzed. © 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4736414]

I. INTRODUCTION

Biological membranes, formed by lipid bilayers, play a
fundamental role in the function of biological cells and the
theoretical description of their structure, properties and dy-
namics is an important and challenging problem.1,2 While
powerful analytical theories exist for such systems,3,4 they
treat membranes as mathematical surfaces and do not repro-
duce the physical bilayer structure. Therefore, they are ap-
plicable only on scales that are much larger than the actual
membrane thickness. Moreover, they include phenomeno-
logical parameters which still need to be determined either
from experiments or from microscopic simulations. For bi-
ological processes inside a cell, the relevant length scales
lie in the nanometer and submicrometer ranges. In order
to consistently describe processes involving micro-vesicles,
membrane proteins, and ion channels, theory and simula-
tion that account for the lipid structure of a bilayer are
required.

All-atom molecular dynamics (MD) simulations of lipid
bilayers have been performed (see, e.g., Ref. 5–9). How-
ever, they are costly and limited to relatively small systems
and short time scales. While short-time-scale simulations are
sufficient for the exploration of some aspects of membrane
dynamics, there are many important biochemical processes
which occur on longer time scales. For instance, it is known
that characteristic mechanochemical motions in proteins, es-
sential for their enzyme or motor functions, usually require
milliseconds or more for their completion.2 Hence, micro-
scopic investigations of biomembranes with protein inclu-
sions are beyond the capacity of all-atom MD simulations.
Furthermore, such simulations are also too slow to micro-
scopically reproduce the self-assembly of vesicles, structural

instabilities of membranes or the effects of slow hydrodynam-
ical modes on membrane dynamics.

This has prompted the development of a variety of
coarse-grain simulation methods for biomembranes, which
are still able to resolve important aspects of the lipid bi-
layer structure.10–17 Typically, a lipid molecule is modeled as
a chain comprising one hydrophilic and several hydrophobic
beads connected by elastic springs; each of these beads cor-
responds to a certain atomic group. In coarse-grain solvent
descriptions, the solvent molecules are also represented by
groups of atoms.

In implicit solvent models,18–23 the solvent particles are
not actually included in a simulation and hydrophobic effects
due to the presence of such particles are taken into account
through the use of a tunable interaction potential between the
lipids. Such a simplification results in a computational speed-
up, making simulations of large-scale membrane instabilities
possible.21 However, in such solvent-free models the coupling
of biomembranes to hydrodynamic flows, as well as the hy-
drodynamic interactions mediated by the solvent, cannot be
described.

In explicit solvent models employing dissipative particle
dynamics (DPD), the solvent particles are included into the
dynamical description, but actual molecular interactions be-
tween them are replaced by effective soft interaction poten-
tials, so that the particles are allowed to penetrate one an-
other. The use of a soft-core potential for the solvent and
lipids makes it possible to employ much larger molecular
dynamics integration time steps compared with those in all-
atom MD simulations; therefore, substantially accelerating
the computation.14,24–26 Nonetheless, further acceleration is
desirable.
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Amajor portion of the computational time in explicit sol-
vent models is spent simulating the dynamics of the large
number of solvent molecules in the system. This suggests
that it is desirable to construct a coarse-grain dynamical
scheme that treats the solvent part of the dynamics efficiently.
Such a scheme is provided by multiparticle collision (MPC)
dynamics.27,28 In this approach, solvent particles, represent-
ing coarse-grained real molecules, free stream and undergo
effective multiparticle collisions at discrete time moments.
The collision and streaming rules are formulated in such a
way that the mass and momentum conservation laws are sat-
isfied. These rules can be constructed so that the dynamics is
either micro-canonical and preserves the phase-space volume
or is canonical at constant temperature. MPC dynamics has
been applied to a variety of problems where fluid micro-flows
were essential and there were interactions between fluids and
macromolecules. Reviews of this method are available.29, 30

MPC dynamics has already been used for simulations of
biomembranes. This method has been employed31 to study
a micrometer-size vesicle under shear flow. In this work, the
membrane was modeled as a triangulated surface described
by vertices connected by tethers; the lipid bilayer structure
was not resolved. In another study, a special color-collision
rule was used to account for the interaction between the MCP
solvent and the coarse-grained lipids.32 In our investigation, a
coarse-grain description of the lipid bilayer, resolving mem-
brane structure, is combined with MPC dynamics for the sol-
vent. Interactions between lipids and solvent particles are ex-
plicitly taken into account.

In Sec. II, the detailed formulation of the simulation
method is given. Simulations for membranes at three different
temperatures are presented in Sec. III. The simulations can re-
produce a gel phase at low temperature and a liquid phase at
higher temperatures. Density profiles for lipid particles across
the membrane, lipid chain order parameters, and radial distri-
bution functions of lipid head particles are determined and
discussed. Through direct simulations, intra-membrane diffu-
sion is explored and a subdiffusion regime on relatively short
time scales is observed. In Secs. IV–V, our investigations fo-
cus on the membrane in the liquid phase, important for bio-
logical applications. In Sec. IV, self-assembly of a membrane
from an initially uniform mixture of lipids is demonstrated.
The surface tension coefficient is determined from simula-
tions on membranes of different sizes in Sec. V. By construct-
ing and analyzing the power spectrum of membrane height
fluctuations, the elastic bending modulus of the membrane is
found, fluctuations of the membrane flow velocity are consid-
ered and velocity-velocity correlation functions are analyzed.
The paper ends with conclusions and a discussion of the re-
sults.

II. MESOSCOPIC MODEL FOR LIPID BILAYER
DYNAMICS

In this section, we describe the mesoscopic coarse-grain
model for the structure and dynamics of a lipid bilayer mem-
brane in a solvent. The mesoscopic model uses a coarse-grain
description of a lipid molecule as a collection of linked molec-
ular groups termed beads. In addition, the solvent in which

FIG. 1. The lipid chain (left) and its schematic representation as a rod (right).
The lipid consists of four beads linked by elastic FENE bonds (solid lines)
and straightened by elastic bonds (dashed lines). The first bead (dark blue)
is hydrophilic. Three other beads are hydrophobic, the terminal hydrophobic
bead is shown as light blue.

the lipids reside is treated at a particle-based level where
each effective point solvent particle represents a collection
of real solvent molecules. The coarse-grained lipid molecules
interact through intermolecular potentials. The solvent parti-
cles also interact with the lipid beads through intermolecu-
lar potentials; however, the solvent particles interact among
themselves through multiparticle collisions. There are no
intermolecular interactions among solvent particles. The dy-
namical evolution of the entire systems, lipids plus solvent,
is described by a hybrid dynamical scheme that combines
molecular dynamics for all interacting particles with multipar-
ticle collision dynamics for the solvent. The fact that there are
no explicit solvent-solvent molecule interactions is responsi-
ble for the computational efficiency of this dynamical scheme.
Below we provide a detailed description of the mesoscopic
MD-MPC dynamical bilayer model.

A. Lipid interactions

A lipid chain comprises a hydrophilic head and a hy-
drophobic tail. In common with many other coarse-grain de-
scriptions, a lipid molecule is modeled as a set of beads. In our
investigation, we adopt a four-bead representation of the lipid
where the hydrophobic head (h) is modeled as a single bead
and the hydrophobic tail (t) as three beads (see Fig. 1(a)). Be-
low, we specify the interactions between the beads in a lipid
and between the lipids. These lipid interaction potentials have
the same forms as in Cooke et al.33

The interaction between two lipid beads is described by
the truncated Lennard-Jones potential

Vrep(rij ) = 4εαα′

[(
σ

rij

)12

−
(

σ

rij

)6

+ 1

4

]
θ (rc − rij ),

(1)
where θ (r) is the Heaviside function and rij = |ri − rj | is
the distance between the beads i and j. The cutoff length
rc = 21/6 σ is chosen in such a way that there is a short-
distance repulsion, but the long-distance attraction is absent.
The strength of the interaction between beads i and j takes the
value εαα′ , where α, α′ ∈ {h, t} if bead i is of type α and bead
j is of type α′.
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Two neighboring particles in a lipid chain are linked by a
FENE bond,34 described by the potential

Vbond = −1

2
kbond r2∞ ln[1 − (r1/r∞)2] , (2)

where r1 is the distance between the beads and r∞ = 1.5 σ

is the maximum distance allowed by the FENE bond. In
all simulations, we have chosen the spring constant as kbond
= 20 ε/σ 2, so that at equilibrium the length of the FENE bond
is close to σ . Bending rigidity of a lipid chain is modeled by
introducing additional springs connecting next-nearest neigh-
bor beads and is described by the bending potential

Vbend = 1

2
kbend(r2 − 4σ )2, (3)

where r2 is the distance between such two beads. The spring
constant is kbend = 2.5 ε/σ 2 and the natural length is 4 σ . For
a slightly bent lipid chain with FENE bond length σ , this
potential reduces to 1

2kbendσ
2θ2, where π − θ is the angle

between two neighboring FENE bonds. Hence, it provides a
bending stiffness of 2.5 ε to the lipid.

Hydrophobic effects are responsible for the aggregation
of lipids into a membrane. These were taken into account by
adding an attractive potential between beads that belong to
different lipid tails. The effective interaction was chosen to be

Vatt (rij ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4εαα′

[(
σ
rij

)12 − (
σ
rij

)6]
, rij < rc,

−εαα′ cos2 π(rij −rc)
2wαα′ , rc ≤ rij ≤ rc + wαα′ ,

0 , rij > rc + wαα′ ,

(4)
where wαα′ = wtt and εαα′ = εtt when interactions between
two tail beads from different lipid chains are considered. This
lipid model was originally constructed to describe a lipid
membrane in the absence of solvent.33 Since our simulation
contains explicit, albeit effective point solvent molecules, the
parameters that enter this model were altered (see below) to
account for the explicit presence of the solvent molecules.

B. Lipid-solvent interactions

The solvent particles interact with the lipid beads through
intermolecular potentials. The interaction between a solvent
particle and a lipid tail bead is also given by Eq. (1) with the
same cutoff length rc, but with a different interaction strength
εαα′ = εst . This interaction is purely repulsive; it accounts for
hydrophobic effects. The interaction between a solvent parti-
cle and a lipid head bead is given by Eq. (4) with wαα′ = wsh

and εαα′ = εsh. This interaction is repulsive at r < rc and at-
tractive for rc < r < rc + wsh, so that hydrophilic effects are
taken into account.

C. MD-MPC dynamics

The system consists of NL lipid molecules and NS solvent
molecules. Since there are no explicit solvent-solvent inter-
actions, the total potential energy of the system, VT , may be
written as the sum of interactions within the NL single lipid

molecules, V�, interactions among different lipid molecules,
V��, and lipid-solvent interactions, V�s : VT = V� + V�� + V�s .
Instead of explicit interactions among solvent molecules, their
interactions are treated by multiparticle collision dynamics.27

Hybrid MD-MPC dynamics combines molecular dynamics
segments of evolution with effective multiparticle solvent col-
lisions at discrete time intervals τ to obtain the time evolution
of the entire system in the following way.28

Given that the total potential energy of the entire system
is VT , Newton’s equations of motion are used to evolve all
particles for a time interval τ . Note that because there are
no solvent-solvent interactions, only those solvent particles
that interact with the lipid particles experience explicit in-
termolecular forces;28 therefore, the MD trajectory segments
can be simulated efficiently, even for large systems contain-
ing many solvent particles. At time τ multiparticle collisions
among solvent molecules take place. To carry out such colli-
sions, the solvent particles are sorted into the cells of a sim-
ple cubic lattice and particles in the same cell exchange mo-
mentum with each other while the total momentum in the cell
is conserved. We employ the constant temperature version of
MPC dynamics.30 If the mean velocity of the solvent particles
in the cell ξ is Vξ , the collision event of the ith particle inside
this cell is modeled by updating its velocity, vi , so that the
new velocity, v′

i , is given by

v′
i = Vξ + vran

i −
∑

j∈cell ξ

vran
j /Nξ , (5)

where the components of vran
i are chosen as Gaussian ran-

dom numbers with zero mean and variance kBT/m, Nξ is the
number of solvent particles in the cell ξ and the summation
is performed over all solvent particles in this cell. Since the
mean free path of the solvent particles in our simulation was
small compared with the size of a MPC cell, we used random
grid-shifting35,36 to implement the MPC step. This sequence
of MD and MPC steps is repeated to evolve the entire system.
The properties of such MPC dynamics have been discussed in
detail in reviews where further applications can be found.29,30

D. Simulation details

The characteristic interaction energies between different
types of beads were εht = 1 ε, εhh = εtt = 0.5 ε, εsh = 0.05 ε,
and εst = 2.0 ε. The attraction ranges for tail-tail and solvent-
head interactions were chosen such that rc + wtt = 2.6 σ and
rc + wsh = 1.65 σ . All particles and beads had equal mass
m. The simulations were carried out in a cubic box of size
25 σ × 25 σ × 25 σ with periodic boundary conditions. The
lateral size of a MPC cell was a0 = σ . The system contained
1000 lipid chains and 56 624 solvent particles. On average,
the solvent number density in the bulk was equal to five.

The initial velocities of all particles were Gaussian dis-
tributed with zero mean and variance kBT/m for each compo-
nent. For the MD trajectory segments, Newton’s equations of
motion were integrated using the velocity-Verlet algorithm37

with a time step of δt = 0.005 t0, where t0 =
√

mσ 2/ε, and the
MPC time step was τ = 0.2 = 40 δt. The initial configuration
of the membrane was prepared by arranging the lipids as a
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bilayer in the xy-plane, with the hydrophilic particles facing
the outer surfaces while the solvent particles were randomly
distributed in the rest of the simulation box. Simulation data
were gathered after the system had evolved for 105 δt, so that
thermal equilibrium was established. Depending on the phys-
ical quantity under investigation, time averages were taken
over time intervals up to 106 δt.

Results will be reported below in dimensionless simula-
tion units except where connections with physical length and
time scales are made. We have chosen σ to be the unit of
length and m the unit of mass. The characteristic interaction
energy between a lipid head and a lipid tail bead, εht ≡ ε, was
taken to be the unit of energy. Time will be reported in units
of δt.

III. MEMBRANE PROPERTIES AT DIFFERENT
TEMPERATURES

Self-assembled lipid membranes are known to have a rich
phase behavior.38 At higher temperatures, the lipids in the
membrane are not ordered and the membrane is in the so-
called liquid phase. As the temperature decreases, the mem-
brane undergoes a transition to a gel phase in which the lipid
chains show nematic order. In simulations at three different
temperatures, we observed various bilayer structures, which
were analyzed by determining the vertical density profile, the
lateral radial distribution function, the chain order parameters,
and the in-plane diffusion constant of the lipids. The purpose
of this study was to identify a temperature at which the lipids
form a liquid phase bilayer membrane, where lipid chains are
flexible, solvent and head beads do not significantly penetrate
into the tail region.

Examples of membrane structures observed in our sim-
ulations are shown in Fig. 2. We have chosen to visualize
the lipids using the rod representation shown in Fig. 1(b).
The FENE bonds are displayed as gray solid rods, with only
the hydrophilic head beads (dark blue) and the terminal bead
of the hydrophobic tail (light blue) explicitly shown.

At kBT/ε = 0.4 (Fig. 2(a)), the lipids are mostly straight
and relatively well ordered. Two domains can be seen in the
figure. In the majority domain, the lipids are tilted and roughly
parallel to one another. In the smaller domain in the right part
of the membrane, the lipids are less ordered and the structure
is similar to that seen at the higher temperatures. The coexis-
tence of two domains may be a consequence of the constant-
area simulation, and it is likely that in a constant tension case
(including simulations for tensionless membranes) only one
domain will be observed. Since our primary interest is in liq-
uid phase bilayers, we shall not investigate the phase behav-
ior of lipids at this low temperature further. At kBT/ε = 1.0,
the tilted ordered structure is not observed and the orienta-
tion of lipids is less ordered (Fig. 2(b)). Nonetheless, there is
still a well-defined midplane which separates two lipid mono-
layers. Moreover, it is clear that, on average, the lipid chains
are perpendicular to the midplane of the membrane. When
the temperature is further increased to kBT/ε = 2.0, an irreg-
ular structure is found where the orientational order of the
lipid chains is weak and the lipid head particles penetrate into
the membrane interior, so that the bilayer midplane and the

FIG. 2. Membrane structures at three different temperatures: (a) kBT/ε = 0.4,
(b) kBT/ε = 1.0 and (c) kBT/ε = 2.0. The rod representation is used to display
lipids. The solvent particles are not shown.

interface between the lipids and the solvent are less defined
(Fig. 2(c)).

To quantitatively characterize the bilayer structures at
various temperatures, the orientational order parameter, the
in-plane radial distribution function and the vertical density
distributions of lipid chains can be used.

The orientational order parameter is defined as S

= 1
2 〈3 cos2 θ� − 1〉 where the bracket 〈...〉 denotes a canonical

equilibrium average. For the �th lipid chain, cos θ� = r̂� · n̂,
where r̂� is the unit vector pointing from the last tail bead
to the lipid head and n̂ is either the unit normal to the upper
or lower monolayers. The orientational order of the chains
decreases as S diminishes. When S = 1, all lipid chains are
aligned parallel to the bilayer normal. On the other hand, S
= 0 implies that, on average, there is no correlation between
the directions of the lipids and the bilayer normal.

In our simulations, the orientational order parameter was
determined by averaging over all lipids and over 1000 bilayer
configurations separated by 200 δt. We found that S = 0.54 for
the membrane at temperature kBT/ε = 1.0, typical for a mem-
brane in the liquid phase.39 At the higher temperature kBT/ε
= 2.0, the order parameter drops to S = 0.21, thus indicating
a more disordered orientational structure. One might have ex-
pected that the lipid chains would have been more ordered at
the lower temperature kBT/ε = 0.4. However, the orientational
order parameter actually decreases to S = 0.46, since most of
the chains are then tilted and therefore their direction deviates
from the bilayer normal.

To better characterize chain orientational order at the
temperature kBT/ε = 0.4, we have chosen a domain where
the lipids were tilted and introduced the unit vector n̂t point-
ing along the average direction of the tilted lipids. In this do-
main, cos θ� was determined by computing the inner product
of n̂t and the unit vector r̂� of the lipid. When cos θ� was de-
fined in this way, we found that S = 0.96, confirming that the
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FIG. 3. Radial distribution functions of lipid head beads in the membrane at
three different temperatures: (a) kBT/ε = 0.4 (dashed black line), (b) kBT/ε
= 1.0 (thick blue line) and (c) kBT/ε = 2.0 (thin red line).

orientational order of the membrane was even higher at this
lower temperature.

We have also determined the in-plane radial distribution
function g(r‖) of lipid head beads

g(r‖) = ρ(r‖)
ρ̄

, (6)

where ρ(r‖) is the average two-dimensional (2D) density of
head beads at a projected distance r‖ on the xy-plane from a
given head bead and ρ̄ is the average two-dimensional density
of lipid-head beads. To compute this property averages were
taken over all lipid head beads in 500 bilayer configurations
separated by 2000 δt. Figure 3 shows radial distribution func-
tions g(r‖) at three different temperatures. When kBT/ε = 0.4,
the radial distribution function has several peaks extending to
r‖ ≈ 5 and the separation between the peaks is close to the size
of a lipid bead. At kBT/ε = 2.0, the fact that the radial distri-
bution function is not vanishing when r‖ < 1 suggests that the
positions of two lipid head beads, projected on the xy-plane,
overlap due to the presence of lipid head beads in the interior
of the membrane. As temperature increases, the in-plane cor-
relations become weaker indicating that the membrane is less
structured at higher temperatures.

Another important statistical property is the vertical den-
sity profile of lipid particles. Figure 4 displays a cut through
the simulation box showing the vertical structure of the mem-
brane and surrounding solvent particles. To determine the ver-
tical profiles, the simulation box was divided into 250 slices
in the z-direction; each slice had thickness 0.1. The time-
averaged density profiles of solvent (ρs), lipid head (ρh), and
lipid tail (ρ t) beads for each slice at different temperatures
were computed, with the average over all system configura-
tions up to 106 δt after the system reached equilibrium. The
results are shown in Fig. 5.

When kBT/ε = 0.4, the density profile of lipid tail beads
consists of several sharp peaks, each of which corresponds to
the vertical position of one lipid-tail bead, thus indicating a
well-ordered vertical arrangement for the beads along a chain
and small membrane shape fluctuations (Fig. 5(a)). As tem-
perature increases, a smoother profile for the lipid tail density
is observed, showing that the beads along a lipid chain are

FIG. 4. A cut through the simulation box showing the vertical structure of
the bilayer and solvent particles at kBT/ε = 1.0.

less ordered and thermal fluctuations of the membrane shape
are more significant (Fig. 5(b)). At kBT/ε = 2.0, one can see
that the density of lipid head beads in the interior of the bi-
layer becomes significant. Moreover, the distribution of lipid
tails is also broader and a larger overlap with the distribution
of lipid-head beads is observed (Fig. 5(c)). These data again

FIG. 5. Vertical density profiles for hydrophilic head beads (ρh, thick black
line), hydrophobic tail beads (ρt, dashed blue line) and solvent particles (ρs,
thin red line) at three different temperatures: (a) kBT/ε = 0.4, (b) kBT/ε = 1.0
and (c) kBT/ε = 2.0. The scale is different for the solvent density profile.
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indicate a more disordered bilayer structure, close to the onset
of membrane dissociation.

The vertical density profile of the lipid beads, the radial
distribution function of the lipid-head beads, and the lipid
chain order parameter give us information on the equilibrium
organization of the membrane. As the equilibrium structure
of the membrane changes with temperature, the dynamics of
individual lipids should also be affected.

To investigate lipid diffusion, we computed the in-plane
mean square displacement (MSD) of the lipids, MSD(t)
= 〈[r�,‖(t) − r�,‖(0)]2〉, where r�,‖ is the position of the cen-
ter of mass of a lipid projected on the xy-plane. The averages
were taken over all lipids at every 1000 δt and the MSD was
computed from system trajectories of length up to 105 δt. De-
pending on the time domain, both diffusive and subdiffusive
types of behavior of lipids were found.

For all three temperatures, lipid diffusive motion was al-
ways observed in the long-time regime, so that MSD(t)= 4Dt,
where D is the diffusion constant. At kBT/ε = 0.4 (Fig. 6(a)),
the diffusion constant is D = 7.87 × 10−6, implying that a
lipid moved over a distance approximately equal to the size
of a coarse-grained lipid-head bead within the simulation time
of t ∼ 106 δt. At a higher temperature kBT/ε = 1.0 (Fig. 6(b)),
the diffusion constant is D = 7.86 × 10−5, which is about
10 times larger than that at the lower temperature. The diffu-
sion constant further increases to D = 1.86 × 10−4 at kBT/ε
= 2.0 (Fig. 6(c)). Thus, lipid diffusion in the bilayer depends
strongly on temperature.

In addition to normal lipid diffusive dynamics in the long-
time limit, subdiffusive motion was found at intermediate
times, so that MSD(t) ∼ tα , where α < 1 is the subdiffusive
exponent. At kBT/ε = 0.4 (Fig. 6(a)), we found α = 0.44 over
the time up to the crossover time tc ≈ 3900 δt. As the tempera-
ture increases, the subdiffusion exponent α grows to 0.82 and
0.9 for kBT/ε = 1.0 and kBT/ε = 2.0, respectively. Similar sub-
diffusive behavior has been recently observed in all-atomMD
simulations of lipid membranes,40 where in-plane motions of
lipids were subdiffusive on the time scale of nanoseconds.

Our simulation data suggest that the membrane at kBT/ε
= 1.0 is in liquid phase, with a well-defined solvent-lipid
interface and bilayer midplane. Since liquid-like membrane
states are most relevant for real biological membranes, all
our subsequent simulations reported below were carried out
at kBT/ε = 1.0.

At this temperature, the mean vertical distance between
the peaks in the lipid head density profiles for two monolayers
(see Fig. 5(b)), which can be chosen as the mean thickness of
the membrane, is close to 5.5 σ . Comparing this to the thick-
ness of a typical real membrane41 (≈4.5 nm), we identify the
unit length in our simulations to be σ � 0.8 nm. The time unit
δt can be roughly estimated by comparing the typical lipid lat-
eral diffusion constant in experiment42 (≈4μm2/s) with our
computed values. We find δt � 10 ps.

IV. SELF-ASSEMBLY OF THE MEMBRANE

To verify that the lipid bilayer is indeed thermodynami-
cally stable at kBT/ε = 1.0, simulations of the membrane self-
assembly process at that temperature were performed. The

FIG. 6. Diffusion of lipids in the membrane. Log-log plots of the mean
square displacements (MSD) of the center of mass of a lipid are shown as
functions of time for (a) kBT/ε = 0.4, (b) kBT/ε = 1.0 and (c) kBT/ε = 2.0.
The dashed and solid straight lines are linear fits for the subdiffusive and
normal diffusive regimes, respectively.

initial condition was taken to be a random mixture of lipids
and solvent particles. To prepare this initial configuration, the
following procedure was employed: starting with an equilib-
rium lipid bilayer, the attractive potential interactions between
the lipid tail beads were switched off. In addition, attractive
interaction potentials between the tail beads and solvent par-
ticles, with εst = 0.1 and rc + wst = 2.6, were introduced,
making lipids more hydrophilic. After 2 × 105 δt, the lipid
and solvent particles were found to be uniformly distributed
within the simulation box.

Starting from this uniform initial configuration, sim-
ulations with the full potential model were performed.
Figure 7(a) shows the initial configuration at t = 0 where the
lipid chains are uniformly distributed inside the simulation
box. As time evolves, the lipids quickly aggregate forming
small segments (Fig. 7(b)). These small segments gradually
merge into large branched clusters (Fig. 7(c)). Then, a slow
rearrangement process takes place leading to a single bilayer
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FIG. 7. Self-assembly of the lipid bilayer. Six configurations at time mo-
ments (a) 0 δt, (b) 6000 δt, (c) 18 000 δt, (d) 160 000 δt, (e) 246 400 δt
and (f) 300 000 δt are shown. The initial state (a) corresponds to the
uniform mixture of lipids and the solvent (enhanced online) [URL:
http://dx.doi.org/10.1063/1.4736414.1].

structure with a large hole in the center (Fig. 7(d)). Later, this
large hole slowly shrinks to a small pore (Fig. 7(e)) and even-
tually closes after 3 × 105 δt (Fig. 7(f)). The formation of the
lipid bilayer and the close-up of the membrane pore suggest
that the uniform, flat membrane is indeed a thermodynami-
cally stable structure at kBT/ε = 1.0. (See on-line video of the
evolution process.)

V. MACROSCOPIC MEMBRANE PROPERTIES AND
VELOCITY CORRELATION FUNCTIONS

Macroscopic theories of biomembranes are formulated
in terms of elastic deformable surfaces. There are also hy-
drodynamic descriptions which treat the membranes as two-
dimensional fluids immersed in the three-dimensional (3D)
solvent. Below we show that our simulation data are con-
sistent with such macroscopic theories. Moreover, our meso-
scopic simulations allow us to determine some of the charac-
teristic properties of the lipid bilayer membrane. The analysis
is restricted to the liquid-phase membrane at kBT/ε = 1.0.

The surface tension of the membrane can be obtained by
considering the membrane stretching energy. In the regime
where Hookian elasticity theory holds, the stretching elastic
energy of a membrane with area A is given by

Es = 1

2
KA

(A − A0)2

A0
, (7)

where KA is the stretching modulus and A0 is the refer-
ence area corresponding to a tensionless membrane. The

membrane surface tension is γ = dEs/dA and therefore the
equation

γ = KA

A − A0

A0
(8)

holds. In our simulations, we determined the equilibrium sur-
face tension of the membranes with different areas confined
to boxes of different lateral sizes. From these measurements,
the stretching modulus could also be obtained.

The surface tension of a membrane was determined in
our simulations from the pressure tensor using the relation43

γ =
〈
Lz

[
Pzz − 1

2
(Pxx + Pyy)

]〉
, (9)

where the bracket denotes an equilibrium canonical aver-
age and Lz is the linear size of the simulation box in the
z-direction. The diagonal elements of the pressure tensor are
defined as

Pνν = 1

V

[ ∑
i

vi,νvi,ν + 1

2

∑
i 
=j

rij,νfij,ν

]
, ν = x, y, z,

(10)
where V is the volume of the simulation box. The summa-
tions in this equation are taken over all particles, including
both the solvent and the lipids. The ν-component of the dis-
tance between two particles, i and j, is rij, ν and the force act-
ing between them is fij, ν . When both particles are solvent,
fij, ν = 0; otherwise, fij, ν is evaluated through the actual in-
teraction potentials. The equilibrium average in Eq. (9) was
computed by a time average over an interval of 106 δt.

The computed values of the surface tension for different
membrane areas are shown in Fig. 8. When the surface ten-
sion is small, it depends approximately linearly on the area
A. By fitting this linear dependence to Eq. (8), we determined
the stretching modulus KA and the area A0 corresponding to
the tensionless membrane. We found that A0 � 567σ 2 and
KA � 34ε/σ 2, In Sec. III, we noted that σ � 0.8 nm. Since
our simulations were performed at kBT/ε = 1.0, we have
ε = kBT. Therefore, the computed stretching modulus is ∼KA

= 53kBT/nm2. This is comparable to the values observed for
typical liquid-like membranes,44 i.e., KA = 50 − 70 kBT/nm2.
Moreover, the area per lipid for the tensionless membrane is

500 600 700 800 900
A

-2

0

2

4

6

8

γ

FIG. 8. Dependence of the surface tension γ on the membrane area A.
The first five data points were used to determine the membrane stretching
modulus.
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found to be 0.7 nm2, in a good agreement with the experimen-
tal observations.41

In the macroscopic continuous approach,3 the Helfrich
free energy of the membrane is

F = 1

2

∫
L×L

d2r [κ(�2h(r))2 + γ (�h(r))2]

= 1

2

∑
q

L2|hq |2[κq4 + γ q2], (11)

where h(r) = ∑
q hqe

iq·r is the local height of the membrane
measured with respect to the reference plane. As implied
by the energy equipartition theorem, the power spectrum of
membrane height fluctuations should therefore be

S(q) ≡ L2〈|h2
q |〉 = kBT

κq4 + γ q2
, (12)

where κ is the membrane bending modulus and γ is again
the surface tension. There exists a characteristic wavenumber
qc = √

γ /κ separating two different regimes. When q � qc,
the power spectrum is S(q) ∼ q−2 and the dominant contribu-
tion comes from the membrane tension. For q � qc, the power
spectrum is S(q) ∼ q−4 and the dominant role is played by the
bending elasticity.

A standard method11,22 to determine the membrane bend-
ing modulus is to fit the height fluctuations of a membrane
in the bending-dominated regime. Note that the Helfrich de-
scription holds only for length scales larger than the mem-
brane thickness, otherwise protrusion modes11 of single lipids
should be taken into account. We have performed simulations
of membranes in a rectangular box with lateral size Lx = Ly

= 40 σ and Lz = 25 σ . The number of lipids in the membrane
was chosen to be 2822 so that the average area of each lipid
was close to that in a tensionless membrane. With this choice,
the membranes were in the bending-dominated regime.

To determine membrane height fluctuations, a bilayer
configuration from a simulation was taken at every 10 000 δt
so that, in total, 100 bilayer configurations were recorded. In
each bilayer configuration, the membrane was divided into a
grid of 16 × 16 cells. The membrane height of each cell was
further determined by taking the average of the positions of
end beads in the hydrophobic lipid tails. In this way, local
heights could be determined at all grid points. Performing a
fast Fourier transform for the membrane heights, the power
spectrum S(q) could be determined for each bilayer con-
figuration. By averaging over all bilayer configurations, the
mean power spectrum was obtained. Note that, based on our
simulations, the power spectrum could only be computed in
the range qmax < q < qmin. Here, qmax = 2π /l with l the linear
size of the membrane thickness, and qmin = 2π /L, where L
is the linear dimension of the simulation box. In our simula-
tions, we had L = 40 σ and l = 5.5 σ , so that qmax � 1.14 σ−1

and qmin � 0.15 σ−1.
Figure 9 displays the numerically determined power

spectrum. The solid line shown in Fig. 9 is obtained by
least-squares fitting using Eq. (12) with the membrane ten-
sion value γ � 0.19 ε/σ 2 obtained by Eq. (9). The membrane
bending modulus found to be κ � 28 ε � 28 kBT. Using this
value of the bending modulus κ and the membrane tension γ ,

1
q

0.1

1

10

100

S(
q)

FIG. 9. Power spectrum S(q) of membrane height fluctuations. The solid
line is the best fit of the simulation data, using the theoretical dependence
(Eq. (12)).

the characteristic wavenumber qc � 0.08 σ−1 < qmin indicates
that the membrane is in the bending-dominated regime. As ex-
pected, in the large q region, the fitting curve deviates from the
observations due to the effects of lipid protrusions.11 Typical
experimental values of the bending modulus κ for lipid mem-
branes lie44 between 10 and 20 kBT. Hence, the membranes in
our simulations have bending moduli similar to those of real
biological membranes.

Finally, we consider flow dynamics of lipids in the mem-
brane. In the classical study by Saffman and Delbrück,45 the
membrane was treated as a 2D simple fluid embedded in a 3D
solvent. When a lipid moves in the membrane, its momentum
may be transferred not only to the neighboring lipids but also
to the solvent. However, estimates show45,46 that, on length
scales shorter than a micrometer, hydrodynamic coupling be-
tween the membrane and the solvent is not significant and, on
such scales, the membrane can be approximately treated as a
2D fluid.

The longitudinal and transverse velocity correlation func-
tions of lipid flows are

CL(x, t) = 〈vx(x0, y0, t0)vx(x0 + x, y0, t0 + t)〉x0,y0,t0 ,
(13)

CT (x, t) = 〈vy(x0, y0, t0)vy(x0 + x, y0, t0 + t)〉x0,y0,t0 ,
where angular bracket 〈. . .〉x0,y0,t0 denotes an average over the
positions x0, y0, time t0 and realizations. The hydrodynamic
velocity field v(x, y, t) is defined by taking the average of the
instantaneous velocities of all lipids within a certain mem-
brane area element. In our simulations, the membrane was
divided into a grid of 10 × 10 of cells and the hydrody-
namic velocities were obtained by averaging the in-plane
lipid velocities in each cell. The products vx(x0, y0, t0)vx(x0
+ x, y0, t0 + t) and vy(x0, y0, t0)vy(x0 + x, y0, t0 + t) were
determined for all grid points (x0, y0) at every MD step, and
the correlation functions CL(x, t) and CT(x, t) were com-
puted by taking the average of these products over all grid
points (x0, y0) and over 1000 δt. Subsequently, the results were
additionally averaged over an ensemble of 20 independent
realizations.

Figure 10 shows the dependences of CL(x, t) and CT(x, t)
on time for three different values of the distance x. The peak
in CL(2.5, t) is found 40 δt later than the peak in CL(0, t),
suggesting that it takes 40 δt for a fluctuation of velocity vx
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FIG. 10. Time dependence of the longitudinal (a) and transverse (b) veloc-
ity correlation functions for three different separations: x = 0 (solid lines),
x = 2.5 (dashed lines), and x = 5 (dotted lines).

to be transported over a distance x = 2.5. Similarly, it takes
about 25 δt for the fluctuations of vy to be transported in the
x-direction over such distances. This is much faster than the
time, x2/D ∼ 8 × 104 δt for x = 2.5, needed for the lipids to
diffuse over the same distance. Therefore, we conclude that
velocity fluctuations are transported by collective lipid flows
not by the diffusion of single lipids.

We can also consider the time integrals of the velocity
correlation functions

GL(x) =
∫ ∞

0
CL(x, t) dt,

(14)

GT (x) =
∫ ∞

0
CT (x, t) dt.

They are determined by the pair mobility tensor which de-
scribes the velocity response of one fluid element due to the
motion of another element in the fluid.46 Such responses are
given by the Green function of the Stokes equation. The be-
havior of the Green functions depends on the dimensionality
of the fluid. For three-dimensional fluids, the functions fall as
1/r with the distance r. In contrast to this, logarithmic distance
dependence is characteristic for two-dimensional fluids.

As suggested by Saffman and Delbrück,45 biomembranes
can be viewed as 2D fluids of lipids which are immersed in
a 3D solvent. On length scales typical for our simulations,
viscous coupling between the membrane and the solvent is
negligible. Assuming that the membrane is a planar 2D fluid,
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FIG. 11. Longitudinal (circles) and transverse (squares) correlation func-
tions GL(x) and GT(y). The solid and dashed lines show the respective loga-
rithm approximations given by Eq. (15).

expressions for the longitudinal and transverse velocity fluc-
tuations can be derived from the pair mobility tensor.46 Thus,
one gets

GL(x) = −C ln(x/Rc),
(15)

GT (x) = −C[ 1 + ln(x/Rc) ],

where C is a constant prefactor and Rc is a cutoff length which
is typically on the micrometer scale. These approximate ex-
pressions hold for distances x < Rc. On longer length scales,
momentum diffusion into the bulk solvent becomes signifi-
cant and a crossover to the behavior characteristic for 3D sys-
tems should take place. Note that for a finite system, Rc should
be approximately equal to the linear system size.46

Figure 11 displays GL(x) and GT(x), the longitudinal and
transverse correlation functions, determined in our simula-
tions. The solid and dashed lines show best fits using the log-
arithmic approximations (15) with C � 1.6 × 10−3 and Rc

� 20. Good agreement is found indicating that the lipid flows
in our simulations were indeed well described in terms of 2D
hydrodynamics and that the leakage of lipid momentum into
the solvent was negligible on the length scale of our system.

VI. DISCUSSION AND CONCLUSIONS

We have presented and tested a coarse-grain simulation
method for biomembranes. In common with other coarse-
grain methods, individual lipids were modeled as short chains
of beads linked by elastic bonds, and the solvent was ex-
plicitly included using multiparticle collision dynamics. Our
method differs from other investigations31,32 of lipid mem-
brane where MPC dynamics for the solvent was employed
in that we account both for the structure of lipid bilayer and
include explicit lipid-solvent hydrophobic and hydrophilic
interactions.

The interaction parameters of the model were chosen to
reproduce the behavior of typical real lipid bilayers. Thus,
we could follow in our simulations the self-assembly of a
membrane starting from a uniform mixture of lipids and sol-
vent. We could also reproduce various structural states of lipid
bilayers at different temperatures, including the gel phase
at the lower temperature and the liquid phase at the higher
temperature.
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Statistical properties of collective modes of the liquid
state of the membrane were studied. By varying the mem-
brane area, the membrane surface tension was determined and
the lateral stretching modulus were obtained. The bending
modulus of the membrane was then derived from the power
spectrum of membrane height fluctuations. The results show
that the elastic properties of our model membranes are com-
parable to those of a typical real lipid bilayer.

Hydrodynamics of membrane flows was numerically in-
vestigated by computing correlation functions of the lipid ve-
locity field. We found that the velocity fluctuations are not
due to the diffusion of single lipids but are propagated by
collective hydrodynamic modes. The computed velocity cor-
relation functions show logarithmic spatial dependence, sug-
gesting that, on the length scale of our simulations, the lipid
bilayer could be considered as a 2D viscous fluid with little
momentum diffusion into the bulk solvent.

Our simulation method has a number of advantages. By
modeling the solvent using multiparticle collision dynamics,
one does not need to expend computational power to calcu-
late forces acting between solvent particles, as in MD and
DPD simulations. Thus, the simulations could be substantially
accelerated.

Another important feature in our simulations was that
the lipid-lipid and lipid-solvent interactions both contained
short-range hardcore repulsion. Therefore, crowding effects
in the lipid membrane could be well reproduced, as seen in
the observed short-time subdiffusive motion of single lipid
chains. This effect was previously reported in an all-atomMD
study,40 but the long-time normal diffusive regime of single
lipid chains was not found.

Finally, we would like to point out that it is possible
to combine our fast coarse-grain descriptions of membranes
and solvent with coarse-grain simulations for proteins.47 Such
structurally resolved numerical investigations of individual
protein machines in biomembranes, as well as the collective
dynamics of such protein machines, will be presented in fu-
ture work.
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