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Abstract

A mesoscopic dynamics method for the simulation of spatially distributed chemically reacting systems under equilibrium and nonequilibrium
conditions is described. Non-reactive collisions are modeled by multiparticle collision dynamics that conserves mass, momentum and energy.
Reactive collisions are described by birth–death stochastic processes. The dynamics is governed by a Markov chain in the full phase space of the
system, which reduces to mass action rate laws in the mean field limit. Simulations on the Selkov model are carried out to illustrate the simulation
method.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

When viewed on mesoscopic scales, chemically reacting
systems may exhibit behavior that is different from that seen
on macroscopic scales. Normally, such systems are described
macroscopically by chemical rate laws or reaction–diffusion
equations. These descriptions assume that the system contains
large numbers of reactive molecules and, in the case of the
reaction–diffusion equation, that spatial gradients are weak.
There are many instances where such descriptions are likely
to be inappropriate. Consider biochemical reactions occurring
in a cell [1]. Cells are small chemical reactors with volumes of-
ten in the range of µm3. Some chemical species may have very
low concentrations, so that there may be only a few molecules
of these species present in the cell. Similar considerations apply
to reactions taking place in micelles in microemulsion solutions
or to reactions in other nano-confined systems. In such circum-
stances, macroscopic continuum approaches will fail and mod-
els that account for the discrete nature of the chemical species
and molecular fluctuations must be used.

The most direct way to account for all of these features is
to follow the reactive dynamics at a microscopic level using
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molecular dynamics (MD). However, the simulation of chemi-
cal reactions in a solvent or dense background medium presents
computational problems. The large population of solvent par-
ticles, while chemically inert, influences the overall dynamics
and evolution of the system through collisions, even when re-
active events are rare. This makes the Hamiltonian dynamics
of large systems computationally challenging. Consequently, a
variety of approximate or coarse grain methods are usually em-
ployed to investigate such systems.

For spatially uniform systems, the birth–death master equa-
tion, where reactions occur with given probabilities, can be
used to model the reactive dynamics in a way that incorporates
the effects of fluctuations in the numbers of chemical species
[2]. Gillespie’s algorithm provides an efficient way to simulate
the dynamics [3,4]. Often, it is essential to account for spatial
degrees of freedom in the system. In this case, one may use
reaction–diffusion equations or spatial master equations where
birth–death reaction dynamics is combined with diffusive hops
among spatial cells to account for both species number fluctua-
tions and diffusion [5–10].

At a very basic level, the molecules in a reactive system
move from point to point and interact or collide in non-reactive
or reactive collisions that change their velocities and possibly
their identities or species numbers. At a mesoscopic level, of-
ten the full details of the interactions are not important. In such
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cases one may consider coarse grain versions of the collision
process that mimic the effects of many real collisions; however,
the coarse grained collisions cannot be constructed in an ar-
bitrary fashion. It is important that they preserve the essential
properties of the real collision dynamics. In this article we con-
sider the extension of one such mesoscopic dynamical scheme,
multiparticle collision (MPC) dynamics [11–13], to chemically
reactive systems. MPC dynamics conserves mass, momentum
and energy. The dynamics also preserves phase space volumes.
On long distance and time scales one may show that the sys-
tem obeys the Navier–Stokes equations of hydrodynamics. The
transport coefficients are easily computed for this model [12,
15,16]. Furthermore, MPC dynamics can be combined with
molecular dynamics of embedded solute molecules or parti-
cles. In such hybrid MPC-MD schemes, hydrodynamic interac-
tions among the solute molecules are automatically taken into
account since momentum is conserved. As a result of these fea-
tures, MPC dynamics has been used to simulate a variety of sys-
tems [13] including hydrodynamic flows [17], colloid [18] and
polymer [19,20] systems and self-propelled particles [21,22].

The extension of MPC dynamics presented here provides
a mesoscopic basis for the study of general spatially dis-
tributed reactive systems in equilibrium as well as far-from-
equilibrium conditions. It naturally includes local and global
species number fluctuations. The dynamics reduces to the
reaction–diffusion equation on long distance and time scales.

The outline of the paper is as follows: In Section 2 we
present the extension of MPC dynamics to reactive systems and
give an algorithm for the simulation of the dynamics. The for-
mulation allows for the possibility of reactions driven far from
equilibrium by flows of chemicals so that particle numbers are
no longer conserved. In Section 3, we show how the mean field
chemical rate laws are obtained on macroscopic scales for a
specific biochemical reaction, the Selkov model, carried out
under far-from-equilibrium conditions. Section 4 presents the
results of simulations of the Selkov model in order to illustrate
the features of the method. The conclusions are given in Sec-
tion 5, while extensions of reactive collision rules that conserve
mass, momentum and energy, which may be useful for studies
of reactive fluid flows or in other contexts, are given in Appen-
dix A.

2. Reactive multiparticle collision dynamics

Multiparticle collision dynamics accounts for the two basic
elements discussed above: particle motion and collisions. Sup-
pose that in a system of N molecules in a volume V the ith
molecule has position xi and velocity vi . Effective multiparticle
collisions are assumed to take place at discrete time intervals τ .
Between such collisions molecules free stream. Multiparticle
collisions are carried out in the following way: at each time
interval τ the system with volume V is divided into Nc cells
of volume Vc so that V = NcVc . Rotation operators ω̂ξ , cho-
sen from some set of rotation operators, Ω = {ω̂1, . . . , ω̂n}, are
assigned to each cell Vξ of the system. If Vξ is the center of
mass velocity of all molecules in cell Vξ , collisions change
particle velocities, vi , for xi ∈ Vξ , according to the multipar-

ticle collision rule, v′
i = Vξ + ω̂ξ (vi − Vξ ), where v′

i is the
post-collision velocity. This collision rule can be generalized
to multi-component systems [14]. If �i ∈ {1,2, . . . , s} denotes
the species label of particle i, then we may write the collision
rule as

(1)v′
i = V′

ξ + ω̂ξ

(
V�i

ξ − Vξ

) + ω̂
�i

ξ ω̂ξ

(
vi − V�i

ξ

)
,

where V�i

ξ is the center of mass velocity of particles of species

�i in cell Vξ and ω̂ξ and ω̂
�i

ξ are again randomly chosen rotation
operators. At each collision update ω̂ξ acts on all particles in Vξ

and then ω̂
�i

ξ acts on the subsets of particles of species �i in Vξ .
As noted above, it can be shown that this collision rule con-
serves mass, momentum and energy and preserves phase space
volumes.

Using the MPC rule, the transport properties of the system
can be computed. An especially relevant transport property for
the reactive systems we consider is the diffusion coefficient.
Taking the collision rule that treats all non-reactive collisions
among different species as being the same, the diffusion coeffi-
cient can be expressed as a discrete-time Green–Kubo formula.
For rotations about a randomly chosen axis by angles of ±α

the diffusion coefficient can be evaluated approximately to give
[14],

(2)D = kBT τ

2m

(
3γ

(γ − 1 + e−γ )(1 − cosα)
− 1

)
,

where γ is the average number of particles per collision cell
and m is the mass of each particle.

Next, we need to account for the possibility that chemical
reactions may take place among the species. Reactions are as-
sumed to occur locally within each cell by birth–death stochas-
tic processes. We first consider a simple birth–death descrip-
tion for an open system that may be far from equilibrium. In
this case the reactive events will not, in general, satisfy mass,
momentum and energy conservation. In Appendix A we show
how reactive rules can be constructed that do satisfy all con-
servation laws. Such a generalization may be especially useful
when coupling between reaction and fluid flow is of interest or
when hydrodynamic interactions among solute molecules must
be taken into account.

Consider a set of reactions with reaction Rμ characterized
by rate constant kμ:

(3)Rμ :
s∑

�=1

ν
μ
� X�

kμ−→
s∑

�=1

ν̄
μ
� X� (μ = 1, . . . , r),

where X� (� = 1, . . . , s) are the s chemical species and ν
μ
� and

ν̄
μ
� are the stoichiometric coefficients for reaction μ. Suppose

that there are N
ξ
� particles of species � in cell Vξ , giving a total

number of Nξ = ∑
� N

ξ
� particles in the cell. We assume that

reactions occur independently in the cells. The probability that
a reaction Rμ will occur in Vξ in (t, t + dt) is kμ(Vc)h

ξ
μ dt ≡

a
ξ
μ dt . The factor a

ξ
μ for a randomly chosen reaction Rμ in Vξ

is given by

(4)aξ
μ = kμ(Vc)

s∏
�=1

N
ξ
� !

(N
ξ
� − ν

μ
� )! ≡ kμ(Vc)h

ξ
μ,
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where the notation kμ(Vc) indicates that the rate constants have

been scaled for the cell volume Vc and h
ξ
μ is the combinatorial

factor that accounts for the number of different ways the reac-
tion can occur in the cell. In this simple model, reactions occur
with probabilities that are independent of the particle velocities.
This need not be the case and it is not difficult to generalize this
rule. In particular, it is possible to account for activated reac-
tive events that depend on the energies of the particles. The
combinatorial factor h

ξ
μ = 0 if ν

μ
� > N

ξ
� for any �, so reac-

tion Rμ cannot occur in cell Vξ in this case; clearly a
ξ
μ = 0

also. The probability that no reaction will occur in the time t ′

is Pξ
0 (t ′) = e−a

ξ
0 t ′ , where a

ξ
0 = ∑

ν a
ξ
ν . The probability density

that no reaction will occur up to the time t ′ and the reaction

Rμ will occur between t ′ and t ′ + dt ′ is Pξ
μ(t ′) = a

ξ
μe−a

ξ
0 t ′ . In

reactive multiparticle collision (RMPC) dynamics, reactive and
non-reactive collision occur at discrete time intervals τ . Conse-
quently, the probability that in the time interval τ the reaction
Rμ will occur first, followed by any other events, is of interest
and is given by

(5)pξ
μ(Nξ , τ ) =

τ∫
0

dt ′Pξ
μ(t ′) = a

ξ
μ

a
ξ
0

(1 − e−a
ξ
0 τ ),

where Nξ is the vector of species populations in the cell. The
dependence on τ will be omitted when confusion is unlikely
to arise. This quantity may be used to sample reactive events
at the discrete times τ . If the reaction probability is small so
that a

ξ
0τ � 1, then p

ξ
μ(Nξ ) = a

ξ
μτ , which is the correct form

for only one reactive event in the time interval τ . Should a
ξ
0τ

not satisfy this inequality, the full expression for p
ξ
μ(Nξ ) will

provide a sampling function that is bounded by unity.
In summary, in RMPC dynamics, at time intervals τ the

system is divided into collision cells and reactive multiparticle
collisions are carried out independently in each cell. These col-
lisions consist of the concatenation of MPC velocity-changing
collisions and birth–death stochastic reactive events that take
place with probabilities p

ξ
μ(Nξ ). The combination of reactions

and multiparticle collisions models coarse grain reactive and
non-reactive collisions in the system. Particles then free stream
for a time τ until the next collision event.

The above dynamics defines a Markov chain for a proba-
bility density P(xN,vN, t), where N is the total number of
particles in the system at time t and (xN,vN) = (x1, . . . ,xN,

v1, . . . ,vN) are the phase-space coordinates. We use the no-

tation: vN = ∏Nc

ξ=1

∏s
�=1 v1v2 . . .v

N
ξ
�

= ∏Nc

ξ=1

∏s
�=1 vN

ξ
� , etc.

The Markov Chain can be written formally as

P(xN + vNτ,vN, t + τ) = eiL0τP (xN,vN, t + τ)

(6)= (R̂ĈP)(xN,vN, t),

where R̂ and Ĉ are operators that correspond to the reactive
and MPC events, respectively, and the free streaming operator
is iL0 = vN · ∇xN . The RMPC operator has the formal struc-
ture

(R̂ĈP)(xN,vN, t)

(7)= 1

|R|Nc

∑
RNc

1

|Ω|Nc

∑
ΩNc

((
Nc∏
ξ=1

R̂ξ Ĉξ

)
P

)
(xN,vN, t),

where R is a set of reactions, R= {R0,R1, . . . ,Rr}, including
the possibility of no reaction denoted by R0. The probability
that no reaction occurs in the time interval τ is p

ξ
0(N) = 1 −∑r

μ=1 p
ξ
μ(τ) = e−a

ξ
0 τ . Eq. (7) expresses the fact that the RMPC

operators act independently on each collision cell and the val-
ues of the velocity rotation operators are chosen from the set
Ω and the reaction operators are chosen from R. The collision
operators have the following more explicit expressions: For no-
tational simplicity, we assume that the multiparticle collisions
are not species dependent. In this case we can write [11,12]

P C(xN ′
,vN ′

, t) = (ĈP)(xN ′
,vN ′

, t)

= 1

|Ω|Nc

∑
ΩNc

∫
dv′N ′

P(xN ′
,v′N ′

, t)

(8)×
N ′∏
i=1

δ
(
vi − Vξ − ω̂ξ (v′

i − Vξ )
)
.

Here we use N ′ to denote the number of particles in the system
at time t prior to the action of the reaction operators. The re-
action operator is easily written for the case where the reactive
events involve individual particles in the cells [23], rather than
simply acting on the species numbers in the cells. In its sim-
plest form considered here, we assume that particles within the
cells are not distinguished in reactive events. In this case, the
full RMPC operator may now be written more explicitly as

(R̂P C)(xN,vN, t)

=
∑
N′

Nc∏
ξ=1

r∑
μ=0

pξ
μ(N′ ξ )

×
s∏

�=1

δ
N

ξ
� ,N

′ ξ
� +�

μ
�

−�
μ
�∏

k=1

∫
dx

N
ξ
� +k

dv
N

ξ
� +k

(9)×
�

μ
�∏

j=1

1

Vc

φ0(vN
′ ξ
� +j

)P C(xN ′
,vN ′

, t),

where the Maxwell distribution, for particle mass unity, is
φ0(v) = (2πkBT )−3/2 exp(−|v|2/2kBT ) and �

μ
� = ν̄

μ
� − ν

μ
� .

We use the convention that if the upper limit in the product is
less than the lower limit the product is to be interpreted as unity.
The delta functions specify the species number changes in re-
active events. If particles are created in a reaction, their velocity
is chosen from a Maxwell distribution at the temperature of the
system. These equations generalize the treatment of cubic auto-
catalysis fronts considered earlier [24] to arbitrary reacting sys-
tems and form the basis for the analysis of the RMPC dynamics.

3. Derivation of mean field equation for Selkov model

In order to illustrate the use and simulation of RMPC dy-
namics, we consider the reversible version of the Selkov reac-
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tion [25],

R1 :A
k1−→ X, R2 :X

k2−→ A, R3 :X + 2Y
k3−→ 3Y,

(10)R4 : 3Y
k4−→ X + 2Y, R5 :Y

k5−→ B, R6 :B
k6−→ Y.

This reaction scheme is a very simplified model of the phos-
phofructokinase portion of the glycolytic cycle that contributes
to the oscillations seen in this system. Using a reactive lattice-
gas model [26,27], it was studied in the context of biochemical
reactions at the cellular level [28]. Since the mean field reac-
tion dynamics of the reversible version of the model shows both
oscillatory and steady state behavior and the mean field phase
diagram is known [29], it is a convenient test case for our study.
The chemical rate law corresponding to Eq. (10) is

dcX(t)

dt
= k1 − k2cX − k3cXc2

Y + k4c
3
Y ,

(11)
dcY (t)

dt
= k3cXc2

Y − k4c
3
Y − k5cY + k6.

To demonstrate the ability of our methods to allow for
changes in the total number of particles in time, we consider
an open chemical system for which the concentrations of A and
B particles are kept fixed through external controls. In writing
Eq. (11) we have incorporated the constant concentration cA

into the rate constant k1 and the constant concentration cB into
the rate constant k6. This means X particles are added through
R1 with constant rate k1, and Y particles are added with con-
stant rate k6 through R6, while reactions R2 and R5 remove X

and Y particles from the system respectively. In terms of our
previous notation, r = 6, and s = 2. We will denote X1 = X

and X2 = Y going forward.
We now show how RMPC dynamics can be reduced to the

mass action rate law when non-reactive collisions occur much
more frequently than reactive collisions. In this case the veloc-
ity distribution is Maxwellian and diffusion is rapid so that the
system is spatially homogeneous so that the particle distribution
is Poissonian. Under these conditions RMPC dynamics reduces
to birth–death Markov chain dynamics for the species numbers.

Assuming that non-reactive events are effective enough to
decorrelate the particles in the system, we write P as a product
of local probability distributions,

(12)P(xN ′
,vN ′

, t) =
Nc∏
ξ=1

P
ξ
0 (xN ′ ξ

,vN ′ ξ
),

that are locally Poissonian number-distributed and have a
Maxwell velocity distribution. Thus,

(13)P
ξ
0 (xN′ ξ

,vN′ ξ
) = P̃ (N′ ξ )

N ′ ξ∏
l=1

1

Vc

φ0(vl ),

where

(14)P̃ (Nξ ) = e−NX
N

N
ξ
X

X

N
ξ
X! e−NY

N
N

ξ
Y

Y

N
ξ
Y !

is a product of Poissonian distributions for each species. Then,
integration of Eq. (6) for the scheme (9) over all variables ex-
cept the local number of particles in cell ξ leads to

P̃ (Nξ , t + τ)

= k1(τ )P̃
(
N

ξ
X − 1,N

ξ
Y

) + k2(τ )
(
N

ξ
X + 1

)
P̃

(
N

ξ
X + 1,N

ξ
Y

)
+ k3(τ )

(
N

ξ
X + 1

)(
N

ξ
Y − 1

)(
N

ξ
Y − 2

)
P̃

(
N

ξ
X + 1,N

ξ
Y − 1

)
+ k4(τ )

(
N

ξ
Y + 1

)
N

ξ
Y

(
N

ξ
Y − 1

)
P̃

(
N

ξ
X − 1,N

ξ
Y + 1

)
+ k5(τ )

(
N

ξ
Y + 1

)
P̃

(
N

ξ
X,N

ξ
Y + 1

)
+ k6(τ )P̃

(
N

ξ
X,N

ξ
Y − 1

)
+ (

1 − k1(τ ) − k2(τ )N
ξ
X − k3(τ )N

ξ
XN

ξ
Y (N

ξ
Y − 1)

− k4(τ )N
ξ
Y

(
N

ξ
Y − 1

)(
N

ξ
Y − 2

) − k5(τ )N
ξ
Y − k6(τ )

)
(15)× P̃

(
N

ξ
X,N

ξ
Y

)
,

where

(16)ki(τ ) = ki(Vc)
1 − e−a

ξ
0 τ

a
ξ
0

.

Multiplying Eq. (15) by N
ξ
X and summing over N

ξ
X and N

ξ
Y

yields the discrete time rate equation,

NX(t + τ) − NX(t) = (eτ ∂
∂t − 1)NX(t)

(17)= k1 − k2NX − k3NXN2
Y + k4N

3
Y ,

where we have introduced the time translation operator
exp(τ ∂

∂t
). Expanding the translation operator in a Taylor se-

ries and taking the limit τ → 0 gives the macroscopic rate law
for X in Eq. (11). The chemical concentrations are defined
by cX = NX/Vc and cY = NY /Vc while the rate constants
are given by k1 = k1(Vc)/Vc , k2 = k2(Vc), k3 = k3(Vc)V

2
c ,

k4 = k4(Vc)V
2
c , k6 = k6(Vc)/Vc , k5 = k5(Vc). Here we used

the fact that limτ→0 ki(τ )/τ = ki(Vc). Similarly, multiplying
by N

ξ
Y and carrying out a similar analysis gives the macroscopic

rate law for cY .

4. Selkov model simulation results

In order to test the utility of RMPC dynamics, we simulated
the dynamics of the Selkov model using the algorithm devel-
oped in Section 2. The simulations were carried out for systems
whose size ranged from Nc = 103 to Nc = 503. From the phase
diagram of the Selkov model [29] and our mean field analy-
sis, parameter values corresponding to a stable limit cycle and
stable focus could be determined. They are: k1 = 0.0009485,
k2 = 0.0001, k3 = 0.0004, k4 = 0.0004, k5 = 0.001, while
k6 = 0.0001265 for the limit cycle and k6 = 0.0002024 for the
stable focus.

If reactions occur on time scales that are long compared to
the velocity relaxation time, as is the case for most reactions
of interest, the velocity distribution will be Maxwellian. In our
simplified Selkov reaction rule reactive events are thermoneu-
tral and do not depend on particle velocities, so no perturbation
of the velocity distribution will occur as a result of reaction. The
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Fig. 1. Velocity distribution and energy for stable limit cycle dynamics. (top)
Comparison of the simulated x-component of the velocity distribution of
X-particles with a Maxwellian distribution at kBT = 0.3 in a system with
Nc = 503. (bottom) The total energy versus time for Nc = 303 (blue) and
Nc = 503 (black). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Selkov model is an example of a reaction carried out under far-
from-equilibrium conditions where the concentrations of some
species are assumed to be held fixed by external flows. As a re-
sult, particle numbers are not conserved in the dynamics. Con-
sequently, neither the momentum nor energy are conserved, in
contrast to non-reactive MPC dynamics. Neither the restriction
to reactions that are independent of velocities nor the break-
down of conservation laws need be assumed and the collision
rules discussed in Appendix A provide examples where these
conditions are not violated. The extent to which the velocity
distribution remains Maxwellian and the energy is conserved in
this far-from-equilibrium system can be seen in Fig. 1 where the
velocity distribution and energy are shown for limit cycle dy-
namics. The velocity distribution is Maxwellian while the total
energy fluctuates about a fixed value. The energy fluctuations
are larger for smaller system sizes as expected.

Evolution to stable limit cycle dynamics is shown in Fig. 2
for large (Nc = 503) and small (Nc = 103) system sizes. The
cX versus cY phase plane plot for Nc = 503 shows that a sta-
ble limit cycle, which closely matches the mean field result, is
obtained from RMPC dynamics. Since reaction is much slower

Fig. 2. Phase plane plots of cX vs cY for 0 � t � 100000 showing evolution to a
stable limit cycle. (top) Nc = 503 and (bottom) Nc = 103. The mean field limit
cycle is indicated by a blue line. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

than diffusion in our simulation conditions, the system is nearly
spatially homogeneous. The degree to which diffusion is able
to maintain spatial homogeneity can be gauged by the diffu-
sion length �D = (Dτc)

1/2, where τc is a characteristic time
scale in the system. Taking τc to the period of the limit cy-
cle, τc ≈ 18750, and using the value of the diffusion coefficient
computed from Eq. (2), we find �D ≈ 88, which is larger than
the linear dimension of the system. In addition, the large num-
ber of particles in the system leads to small fluctuations so that
mean field behavior is expected. For small Nc = 103 system
sizes, fluctuations are much more pronounced and these large
fluctuations signal the observed breakdown of the mean field
approximation.

Similar trends are seen for parameter values corresponding
to a stable focus shown in Fig. 3. For large system sizes oscil-
latory decay to the focus is observed. For the small system size
there are large fluctuations which signal the breakdown of mean
field behavior for small systems.
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Fig. 3. (top) Oscillatory decay to a stable focus shown as a phase plane plot
of cX vs cY for 0 � t � 100000 for Nc = 503. (bottom) Phase plane plot for
Nc = 103 showing very noisy oscillatory behavior. The mean field fixed point
is indicated by a solid blue circle. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

5. Conclusion

Reactive multiparticle collision dynamics can be used to
study spatially distributed reacting systems in both equilib-
rium and nonequilibrium conditions. In the simplest version
of the model, the reactive events include the creation and de-
struction of particles. This leads to a violation of the basic
conservation laws, in contrast to non-reactive MPC dynamics.
Furthermore, the reactive collision model chosen to illustrate
the results is especially simple since reaction occurs indepen-
dently of the particle velocities. In this case, assuming diffusion
is rapid compared to reaction, the model is equivalent to a birth–
death Markov process dynamics for the species numbers. In this
regime the dynamics could have been simulated effectively us-
ing the Gillespie algorithm for the birth–death master equation
since spatial degrees of freedom play a minor role. However,
RMPC need not be restricted to this simple case. Appendix A
indicates how the reaction rules can be modified to satisfy mass,
momentum and energy conservation. In this case the solvent

in which the reactions occur is explicitly taken into account.
Such rules can also be adapted to incorporate activated reactive
processes.

RMPC dynamics may be contrasted with birth–death mas-
ter equation dynamics that takes into account spatial degrees of
freedom. In such master equation approaches, the system is di-
vided into cells in which stochastic birth–death reactions occur
and particles hop from cell to cell by diffusive jumps. RMPC
dynamics is similar in spirit except that MPC non-reactive col-
lision dynamics is used to move particles in the system. On long
distance and time scales, this dynamics will generate diffusive
motion of the species with known values of the diffusion coef-
ficients. Since MPC dynamics is easy and efficient to simulate,
it is a very effective way to model these diffusion processes.
The algorithm is synchronous, with the time τ governing the
non-reactive MPC collisions.

In contrast to spatial master equation approaches, RMPC dy-
namics provides a more microscopic perspective of the system
that can be very useful in many contexts. For example, hybrid
MPC-MD schemes have proven to be a very effective way to
simulate conformational changes in polymers and biomolecules
and colloidal dynamics in solution by combining full molecu-
lar dynamics of some relevant species with MPC dynamics of
the solvent. The reactive extension presented here can be used
in similar contexts where reactions can occur among the sol-
vent molecules, which interact with large solute molecules or
for reactions occurring directly with solute molecules. Effects
of cellular crowding, where obstacles in the cell influence both
transport and reaction, can be studied in this way [30,31]. As a
result, the method should prove useful in a variety of applica-
tions where molecular motions, reactions and spatial degrees of
freedom play a role.
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Appendix A. Reaction rules

In this appendix we give rules for chemical reactive events
that conserve mass, momentum, and energy within a similarly
constrained background medium. These rules produce dynam-
ical correlations through the imposed conservation constraints.
Reactive collisions obey the constraints imposed by fission and
fusion of particle pairs and such events are confined to a cell but
are not local within a cell. Such birth–death processes can be
implemented because coordinates do not appear in the dynam-
ical constraints and potential energy is absent. Below we show
in a few examples of typical elementary reactions how reactive
collision rules can be constructed. The methods discussed here
can be extended to treat other reactions encountered in applica-
tions.

Example 1. A+B → C. For structureless A, B and C particles,
it is not possible to conserve energy and momentum without an
additional particle or particles participating in the reaction. The
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simplest case to consider is A+ B + M → C + M , where M is
a solvent particle. For mass conservation we must have mC =
mA +mB . For energy conservation, the center of mass momen-
tum of an A and B particle is PAB = pA + pB . Similarly, the
relative momentum of the pair is pAB = (mApB −mBpA)/mC .
Letting primes denote post-collision quantities, energy conser-
vation reads,

p2
A

2mA

+ p2
B

2mB

+ p2
M

2mM

= P 2
AB

2mC

+ p2
AB

2μ
+ p2

M

2mM

(A.1)= p′2
C

2mC

+ p′2
M

2mM

,

where μ = mAmB/mC is the reduced mass. If P 2
AB/2mC =

p′2
C /2mC in this equation, then p2

AB/2μ + p2
M/2mM =

p′2
M/2mM . Thus, the original AB pair forms a C particle with

the same center of mass energy. Then to conserve total energy
the internal energy in the AB pair is transferred to the M parti-
cle. These equations determine the magnitudes p′

C and p′
M . For

momentum conservation, pA + pB + pM = p′
C + p′

M . Momen-
tum is conserved even if p′

M has a randomly chosen direction
n̂ provided p′

M = n̂p′
M = n̂(p2

M + mMp2
AB/μ)1/2. The value

of p′
C follows from the equation: p′

C = pA + pB + pM − p′
M ,

where (random) n̂ couples p′
C and p′

M .
Since the initial positions of A, B and M particles are irrele-

vant, we can either remove both A and B and create a C particle
at a random position or we can destroy either A or B and as-
sign the position of the remaining particle to C. The momenta,
p′

C and p′
M , are chosen according to the above prescription.

Example 2. C + M → A + B + M . This reaction is formally
the reverse of Example 1 but, if we choose, the conservation
laws can be satisfied using different dynamical rules. For mass
conservation we again have mC = mA + mB . For energy con-
servation

p2
C

2mC

+ p2
M

2mM

= p′2
A

2mA

+ p′2
B

2mB

+ p′2
M

2mM

(A.2)= P ′2
AB

2mC

+ p′2
AB

2μ
+ p′2

M

2mM

.

Again, let P ′2
AB/2mC = p2

C/2mC , thereby conserving the en-
ergy of the center of mass motion. This implies p′2

M/2mM =
p2

M/2mM − p′2
AB/2μ. However there is freedom of choice

in the relative kinetic energy of the AB pair, implying the
choice of a specific rule. For momentum conservation, pC +
pM = p′

A + p′
B + p′

M . The magnitude p′
AB , where p′

AB =
(mBp′

A − mAp′
B)/mC , is determined by our rule and the mag-

nitude p′
M follows from the energy conservation relation. In

general we can choose the direction n̂ of p′
M and n̂AB of p′

AB

randomly, so that p′
M = n̂p′

M and p′
AB = n̂ABp′

AB . This in-
formation allows us to determine p′

A and p′
B . The simplest

rule is to set
p′2

AB

2μ
= 0, i.e., p′

AB = 0. Then there is no need
for the M particle and we can just consider C → A + B and
still satisfy the conservation laws. In this case we have, from
the relative momentum, p′

A = mAp′
B/mB , which then gives

p′
B = mBpC/mC . Example 2 in its full form is the reverse of

Example 1. Microscopic detailed balance may be imposed.

Example 3. A + B → C + D. This example can be treated
in a similar way to Example 2. For mass conservation, mA +
mB = mC + mD . Let MAB = mA + mB and μAB = mAmB/

(mA +mB), etc. Mass conservation implies MAB = MCD ≡ M .
For energy conservation

p2
A

2mA

+ p2
B

2mB

= p′2
C

2mC

+ p′2
D

2mD

= P 2
AB

2M
+ p2

AB

2μAB

(A.3)= P ′2
CD

2M
+ p′2

CD

2μCD

.

For momentum conservation, pA + pB = p′
C + p′

D , or
PAB = P′

CD . Momentum conservation implies that P 2
AB/2M =

P 2
CD/2M . Energy conservation gives p2

AB/2μAB =
p′2

CD/2μCD . This equation determines the magnitude of the rel-
ative kinetic energy of the CD pair: p′

CD = (μCDp2
AB/μAB)1/2.

Choose the direction of p′
CD at random. Call this direc-

tion n̂CD . Thus, p′
CD = n̂CD(μCDp2

AB/μAB)1/2. Note that
p′

CD = μCD(p′
C/mC − p′

D/mD) = p′
C − μCD/mD · P′

CD .
Since P′

CD and p′
CD are known p′

C = p′
CD + μCD/mD · P′

CD .
The value of p′

D follows from momentum conservation.
Comparison of the reaction rules defined in this appendix

with those used in the Selkov-model simulations illustrates that
chemical reactions within a mesoscopic hydrodynamic evolu-
tion can be simulated with different degrees of realism. In the
Selkov simulation the creation and destruction of particles is not
hydrodynamically conservative. In general, chemical reactions
with sources can be simulated by changing solvent particles
into reagents or reactive particles into inert species; this con-
serves dynamical variables. Also, this preserves particle num-
ber locally but not particle identity. In open systems, faithful
simulation of source and sink chemical processes requires ad-
ditional considerations. Introduction of reagents and removal of
products can occur either at the boundaries of a homogeneous
system or in the bulk for a heterogeneous system. Evidently,
an open reaction can be simulated by careful imitation of the
appropriate boundary conditions. The developments described
in this appendix indicate how chemical and dynamical realism
can be improved even to the extent of accounting for reaction
energy and local temperature changes.
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