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A microscopic model for chemically-powered
Janus motors†

Mu-Jie Huang,* Jeremy Schofield and Raymond Kapral

Very small synthetic motors that make use of chemical reactions to propel themselves in solution hold

promise for new applications in the development of new materials, science and medicine. The prospect

of such potential applications, along with the fact that systems with many motors or active elements

display interesting cooperative phenomena of fundamental interest, has made the study of synthetic

motors an active research area. Janus motors, comprising catalytic and noncatalytic hemispheres, figure

prominently in experimental and theoretical studies of these systems. While continuum models of Janus

motor systems are often used to describe motor dynamics, microscopic models that are able to

account for intermolecular interactions, many-body concentration gradients, fluid flows and thermal

fluctuations provide a way to explore the dynamical behavior of these complex out-of-equilibrium systems

that does not rely on approximations that are often made in continuum theories. The analysis of

microscopic models from first principles provides a foundation from which the range of validity and

limitations of approximate theories of the dynamics may be assessed. In this paper, a microscopic model

for the diffusiophoretic propulsion of Janus motors, where motor interactions with the environment occur

only through hard collisions, is constructed, analyzed and compared to theoretical predictions. Microscopic

simulations of both single-motor and many-motor systems are carried out to illustrate the results.

1 Introduction

Synthetic chemically propelled motors of various shapes and sizes
have been the object of a considerable amount of research.1–4

Interest in such self-propelled objects derives both from their
potential uses, such as nanoscale cargo delivery vehicles, and
because, like all active matter operating under nonequilibrium
conditions, they display phenomena that differ from those in
equilibrium systems. Although such motors may utilize chemical
activity in different ways to produce directed motion, this paper
concerns motors that operate by diffusiophoretic mechanisms.
In self-diffusiophoresis, asymmetric catalytic activity on the motor
produces a concentration gradient in chemical species which
gives rise to a force that is responsible for directed motion. Of
the possible motor geometries, perhaps the simplest is a spherical
Janus motor where one hemisphere catalyzes the conversion of
fuel to product while the other hemisphere is chemically inactive.
Janus motors may be readily made in the laboratory, the macro-
scopic theory for their self-diffusiophoretic propulsion is well

developed and the spherical symmetry of a single Janus motor
simplifies the theoretical calculations. For these reasons they have
been the subjects of extensive experimental and theoretical
study.5–10

The collective dynamics seen in systems containing many
motors depends on the interactions among motors as well as
the propulsion properties of the individual motor constituents.11–22

These interactions among motors can arise from distinct origins,
including direct intermolecular interactions as well as coupling
through hydrodynamic flow fields and chemical gradients.
Furthermore, small motors are subject to strong thermal
fluctuations, which must also be included in any theoretical
description of the dynamics. Continuum models supplemented
with Langevin forces may be used to study the behavior of these
systems; however, there is a need for microscopic theories for
the dynamics of active systems for a number of reasons. Studies
of chemically-powered motors are being extended to motors
with very small spatial dimensions down to the scale of tens of
nanometers or even Angstroms.23,24 On such small length
scales the validity and applicability of continuum theories
requires reexamination. In addition, by treating direct motor
interactions from first principles, microscopic theories will
automatically account for many-body hydrodynamic inter-
actions and chemical gradients on both large and small scales.
These desirable features are achieved at the cost of having to
explicitly treat the dynamics of all constituents of the system,
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namely the motors, the reactive chemical species and the solvent,
at a particle-based level.

Microscopic models have been constructed previously and
used to investigate chemically-powered motors.10,25–32 In contrast
to these models, the microscopic model described in this paper
involves only hard interactions between the Janus motor and
solvent species. The model captures all of the essential features of
the motor mechanism, is simple to treat theoretically and has the
advantage that its dynamics may be simulated efficiently.

The paper is structured as follows: the model for an active
Janus motor propelled through a diffusiophoretic mechanism
is described in Section 2. The corresponding continuum theory,
which includes a description of how the system is maintained
out of equilibrium, is presented in Section 3. The simulation
method and system parameters are given in Section 4. Simulation
results for the dynamical properties of a single Janus motor, along
with a discussion of the quantities needed to make a comparison
with the continuum theory, can be found in Section 5. Section 6
gives a brief description of the behavior of many Janus motors to
show that the model is able to describe the important many-body
aspects of the collective dynamics. A discussion of the results in
the paper are given in Section 7.

2 Microscopic model for Janus motors

In this paper we consider a particle-based microscopic model
that combines molecular dynamics for the motor interacting
with the solvent, including reactive chemical species, with a
coarse-grain description of the interactions among all solvent
species. In this model, solvent particles interact periodically
only through an effective collision operator described in detail
in Section 4 and otherwise stream freely between collisions with
the Janus motor.

Consider a Janus motor of radius R with catalytic and non-
catalytic hemispheres, denoted as C and N, respectively. As shown
in Fig. 1(a), a chemical reaction, A - B, takes place on the C
hemispherical surface that converts fuel particles A to product
particles B and, in the process, produces a concentration gradient
of A and B particles in the vicinity of the motor (Fig. 1(b)). We
assume that such a reaction occurs whenever an A particle collides
with the catalytic hemisphere.

The A and B solvent particles interact with the Janus motor
through a variant of hard-sphere collisions in which the solvent
particles are allowed to penetrate the Janus sphere but experience
modified bounce-back collisions when their distance to the
sphere is less than a specified collision radius. More specifically,
at a position r from the center of mass of Janus motor, the A and
B particles interact with the motor through hard potentials WaJ(r),

WaJðrÞ ¼
1; roRa

0; r � Ra;

(
(1)

where a = A, B, and Ra r R is the collision radius for a particle of
type a interacting with the motor surface. We let R denote the
larger of RA and RB. The collision radii are chosen so that the
quantity R � Ra is small compared to the motor radius.

The rules that govern the bounce-back collisions with the
Janus motor are as follows: let r and v be the position and
velocity of the solvent particle of species a with mass m, and rJ,
vJ and xJ be the position, linear velocity and angular velocity of
the Janus motor with mass M and moment of inertia I.
The relative position and velocity are defined by r* = r � rJ

and v* = v � vJ.
The bounce-back collision dynamics differs for the A and B

particles and, referring to Fig. 2, can be described as follows.
During free streaming the instantaneous relative positions of
solvent particles of each species a are monitored at each time
step dt and a bounce-back collision will occur if (r*�v*) o 0, and
|r*| o Ra so that the particle encountered the collision surface
with radius Ra. We assume that the solvent and Janus motor
exchange momentum at position r1 = R r̂1 on the surface of the
Janus motor, and that |v| c |vJ| and |l � (R � Ra)| is small,
where l is the mean free path of the solvent particle, so that the
relative velocities are approximately the same at the positions r*

Fig. 1 (a) Sketch of the Janus motor comprising catalytic (C) and non-
catalytic (N) hemispherical surfaces. The chemical reaction, A - B, occurs
on the C surface and converts fuel A particles (green) to product B particles
(light blue). The orientation of the Janus motor û and the polar angle y are
indicated. (b) An instantaneous configuration drawn from the simulation of
the dynamics of the system shows the distribution of B particles in the
vicinity of the Janus motor.

Fig. 2 Application of the bounce-back collision rule for a solvent particle
of type a. When a solvent particle moves with velocity v* toward the Janus
motor and finds itself at position r* (black dot) inside the reflecting radius
Ra (dashed circle), a bounce-back collision takes place at the contact
position r1 (black triangle) on the surface of the Janus motor with radius R
(solid circle). The travel time from r1 to r* is Dt+ and the postcollision
position of the solvent particle is r0 (black square).
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and r1. To compute r1, one needs to find the time Dt that
it takes the solvent particle to travel from r1 to r*. Note that
r* = r1 + v*Dt, which yields |r* � v*Dt| = |r1|. This travel time is

Dt� ¼
r� � v�
v�2
� 1

v�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� � v�ð Þ2�v�2 r�2 � R2ð Þ

q
; (2)

where the solution Dt+ is taken, since Dt� is the time it takes
the solvent particle to travel to the farther surface of the Janus
motor. Therefore, we have

r1 = r* � v*Dt+. (3)

At position r1, the velocity of the solvent particle, which is
treated as a spin-less point particle, relative to the moving and
rotating Janus motor surface is

ṽ = v* � xJ � r1 = ṽn + ṽt, (4)

where ṽn = r̂1(r̂1�ṽ) and ṽt = ṽ � ṽn are the normal and tangential
components of ṽ, respectively. The momentum exchange during
each collision is given by

Dp ¼ Dpn þ Dpt ¼ �mD~vn �
mI

I þ mR2
D~vt; (5)

where m = mM/(m + M) is the reduced mass.28,33 After a collision,
the relative velocity is completely reversed, ṽ0 = �ṽ, and the
velocity changes in the normal and tangential directions are
Dṽn = ṽn

0 � ṽn = �2ṽn and Dṽt = ṽt
0 � ṽt = �2ṽt, respectively.

Then, the post-collision linear and angular velocities are given by

v0 = v � Dp/m, (6)

vJ
0 = vJ + Dp/M, xJ

0 = xJ � (r1 � Dp)/I.

These collision rules conserve the energy as well as the total
linear and angular momentum of the system. After the collision
at the surface of the Janus motor, the post-collision position of
the solvent particle is taken to be r0,

r0 = r � 2 v*Dt+. (7)

Fig. 3(a) shows the conventional bounce-back rule, where
r1 = Rar̂1, and the particle velocity is reversed upon collision
with the surface at Ra. In the presence of soft repulsive inter-
actions particles are repelled from the surface and to mimic
this effect in the modified bounce-back model the position of a
solvent particle is shifted according to eqn (7), and so is the

outgoing particle flux (Fig. 3(b)). While both simple and mod-
ified bounce-back rules give rise to directed motion, in the
modified bounce-back collision rule the solvent particles are
forced to leave the Janus motor after collision thereby incorpor-
ating an effective repulsion in the dynamics. In general,
depending on the nature of intermolecular interactions
between the surface of the Janus motor and solvent species,
one may chose various bounce-back rules that give rise to
directed motion. In these bounce-back collision models, since
the A and B species have different collision cross sections, pRa

2

with the Janus motor, and a concentration gradient of these
species is present, a body force on the motor is produced which
leads to directed motion by the diffusiophoretic mechanism.

3 Continuum model for Janus motor
velocity

Theoretical predictions of the diffusiophoretical motion of Janus
motors based on continuum theory in a low Péclet number
regime have been developed previously.34,35 The continuum
treatment assumes that the fluid and reactive species concen-
tration fields are described by the Stokes and reaction-diffusion
equations, respectively. The fluid velocity field satisfies stick
boundary conditions on the surface of the motor, and the concen-
tration fields satisfy reactive ‘‘radiation’’ boundary conditions on
the catalytic part of the Janus motor. Since the reactive chemical
species have different interactions with the Janus motor, the self-
generated inhomogeneous concentration field gives rise to a net
body force on the motor, which, in turn, produces a fluid flow in
the boundary layer around the Janus motor within which forces
act. The resulting fluid velocity field at the outer edge of the
boundary layer is the slip velocity, and this slip velocity provides
a boundary condition for the solution of the Stokes equation and
thereby determines the velocity field outside the boundary layer
that accompanies the Janus motor motion. In this continuum
theory, the propulsion velocity of the Janus motor along its
symmetry axis, û, can be calculated from the surface average of

the slip velocity, Vu = �hû�v(s)iS, where h� � �iS ¼ 4p �R2
� ��1Ð

S0
dS

denotes the surface average at a radial distance r = %R corresponding
to the outer edge of the boundary layer.

In general, the solvent particle of type a can interact with
the catalytic and noncatalytic hemispheres through different
potentials WaC and WaN, respectively. A concentration gradient
of product particles created by the reactions on the catalytic
surface together with different interactions of the fuel and
product species with the surface of the Janus motor give rise
to a slip velocity at the outer edge of the boundary layer at %R.
The value of the axisymmetric slip velocity can be computed
using the diffusiophoretic mechanism,3,34 and is given by

vðsÞð �R; yÞ ¼ �kBT
Z
rycBð �R; yÞ LN þ LC � LNð ÞYðyÞ½ �; (8)

where y is the polar angle in a spherical polar coordinate
system (see Fig. 1(a)), ry is the gradient in the tangential
direction, cB is the concentration of B particles, kBT is the

Fig. 3 The collision radius for (a) conventional bounce-back rule at Ra

and (b) modified bounce-back rule at R. The incoming and outgoing
solvent particles are indicated as blue arrows.
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thermal energy at temperature T, Z is the viscosity of solvent,
and Y(y) is the characteristic function that is unity on the
catalytic hemisphere (0 o y o p/2) and zero on the non-
catalytic hemisphere (p/2 o y o p). The effects of interactions
of the A and B particles with the Janus motor appear through
the factors LC and LN, where

LH ¼
ð1
0

dr r e�bWBH � e�bWAH
� �

; (9)

with H = C, N. Here we assume that the species a interacts with
the catalytic and noncatalytic hemispheres with the same
potential, that is LC = LN = L, and eqn (8) becomes

vðsÞð �R; yÞ ¼ �kBT
Z
rscBðsÞL; (10)

and with hard potentials described in eqn (1) we have

L ¼ 1

2
RA

2 � RB
2

� �
: (11)

The concentration field that appears in eqn (10) may be deter-
mined from the solution of a reaction-diffusion equation. The
form that this equation takes depends on how the system is
maintained in a nonequilibrium state. Fuel A may be supplied
and product B removed at distant boundaries or nonequilibrium
reactions may occur in the bulk that catabolize product molecules
and generate fuel, similar to the process that occurs in living cells.
To model the latter case, we may assume a reaction of the form

B �!k2 A in the bulk phase that serves to maintain the system in a
nonequilibrium steady state. In the low Péclet number regime, the
steady-state reaction diffusion equation with the bulk reaction can
be written as Dr2cA(r,y) + k2cB(r,y) = 0. Since the total bulk
concentration of the solvent particles satisfies c0 = cA + cB, which
we assume to hold locally, this equation may also be written as

(r2 � k2)cB(r,y) = 0, (12)

where we have defined k2 = k2/D. The reaction-diffusion equation
should be solved subject to the boundary conditions,
lim
r!1

cAðr; yÞ ¼ c0, while the ‘‘radiation’’ boundary condition36

on the Janus motor that accounts for the catalytic conversion of
A - B on its surface is

kD %RqrcA(r,y)| %R = k0cA( %R,y)Y(y), (13)

where k0 is the intrinsic reaction rate, kD = 4p %RD is the
Smoluchowski rate constant for a diffusion controlled reaction.

The solution of the reaction-diffusion eqn (12) can be
expressed as a series of Legendre polynomials,

cBðr; yÞ ¼ c0
X
‘

a‘f‘ðrÞP‘ðuÞ; (14)

where u = cos y. Substitution of eqn (14) into eqn (12) yields
a Bessel equation for the radial function fl(r) whose solution,

subject to the boundary conditions given above, can written in
terms of modified Bessel functions of second kind, K

‘þ1
2
ðkrÞ, as

f‘ðrÞ ¼
K
‘þ1

2
ðkrÞffiffiffiffiffi
kr
p

ffiffiffiffiffiffiffi
k �R
p

K
‘þ1

2
ðk �RÞ: (15)

The al coefficients can be determined from the solution to a set
of linear equations as, a‘ ¼

P
m

M�1
� �

‘m
Em where

M‘m ¼
2Q‘

2‘þ 1
dm‘ þ

k0

kD

ð1
0

duPmðuÞP‘ðuÞ;

Em ¼
k0

kD

ð1
0

duPmðuÞ;

(16)

with Q‘ ¼ k �RK
‘þ3

2
ðk �RÞ

�
K
‘þ1

2
ðk �RÞ � ‘. The concentration

profile in the absence of a bulk reaction (k2 = 0) is recovered
by taking the k - 0 limit of the equations above. Note that

lim
k!0

f‘ðrÞ ¼ ð �R=rÞ‘þ1, corresponding to the solution of the

reaction-diffusion system where fuel is supplied and product
removed only at the distant boundaries of the system. Also

note that K
‘þ1

2
ðkrÞ

� ffiffiffiffiffi
kr
p

! e�kr=kr for large kr, which implies

that the bulk reaction ‘‘screens’’ the power law decay of the

concentration field with the screening length k�1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=k2

p
which determines the average distance that a product particle
travels from the catalytic surface by diffusion before being
converted back to a fuel particle. We shall use a bulk reaction
to maintain the system out of equilibrium in the simulations
presented below.

By taking the surface average of the slip velocity, these
results may now be used to determine the Janus motor velocity,
leading to

Vu ¼ � û � vðsÞ
D E

S
¼ kBT

Z
2c0

3 �R
a1L ¼

kBT

Z
c0

3 �R
RA

2 � RB
2

� �
a1:

(17)

Note that when the solvent particles individually interact with the
same potential with the different hemispheres of the Janus motor
as in this model, the motor velocity depends only on the l = 1
component of the concentration field due to the fact that the
contributions from the surface average of other modes are zero.
Also note that in the cases where LC a LN, one can see from the
eqn (8) the propulsion velocity will depend on the value of LC� LN.

4 Simulation of Janus motor dynamics

Consider a single Janus motor with radius R, mass M and

moment of inertia I ¼ 2

5
MR2 confined in a cubic box with

linear size L = 50a0 and periodic boundaries. The simulation
volume also contains A and B solvent particles with mass m
and total density n0 at temperature T. In what follows, we use
dimensionless units where mass is in units of m, lengths in
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units of a0 and energies in units of kBT. Time is then expressed
in units of t0 = (ma0

2/kBT)1/2. In these units R = 2.5, n0 = 10,

M ¼ 4

3
pR3n0m 	 655 and I E 1636.

Solvent particles interact with the Janus motor through
modified bounce-back collisions as discussed earlier. In order
to investigate the dependence of the propulsion velocity on the
factor L, various combinations of collision radii, listed in
Table 1, were considered. Solvent particles interact among
themselves through multiparticle collision dynamics (MPCD),37–40

which combines effective multiparticle collisions at discrete
time intervals t = 0.1 with streaming between two consecutive
collisions, so that the mean free path is l = t(kBT/m)1/2 = 0.1.
Multiparticle collisions are carried out by first sorting the
particles into cubic cells x with linear size a0. The postcollision

velocity of particle i in cell x is given by vi
0 ¼ Vx þ R̂ vi � Vxð Þ,

where R̂ is a rotation matrix around a random unit axis by an
angle 1201 and Vx is the center-of-mass velocity of all the
solvent particles in the cell x.41 In the streaming step, a solvent
particle undergoes a bounce-back collision if it is moving toward
and encounters the Janus motor as described in Section 2,
otherwise its position at next time step is r(t + dt) = r(t) + v(t)dt,
where dt = 0.01 is the time step size. With the parameters for the
solvent given above, the solvent viscosity is Z = 7.93 and the
common self diffusion constant for the A and B solvent species
is D = 0.061.

To maintain the system out of equilibrium, bulk reactions
converting product B particles back to fuel A particles are carried
out using reactive MPCD.42 At each MPC collision step, the

reaction, B �!k2 A, takes place independently in each cell x with

probability px Nx
B

� �
¼ 1� e�a

x
2
t, where Nx

B is the total number of B

particles in cell x and ax2 = k2Nx
B with k2 = 0.01 the bulk reaction

rate. For our parameters the screening length is found to be
k�1 E 2.5, about the same as the radius of the Janus motor.

5 Single Janus motor

A Janus motor can execute forward (L 4 0), backward (L o 0)
directed motion or pure diffusive motion (L = 0); also see
Movies S1 and S2 for active motors (ESI†). First we investigate
the purely diffusive dynamics of a Janus motor with collision
radii RA = RB = R so that L = 0. The translational diffusion
coefficient of the Janus motor, DJ, can be obtained from
the long time behavior of the mean squared displacement,
MSD(t) = 6DJt, and we find DJ = 0.0028, which is close to the
Stokes–Einstein value, DJ = kBT/6pZR C 0.0027. The rotational
diffusion coefficient, Dr, can be determined from the decay of
the orientation correlation function, hû(t)�û(0)i = exp(�2Drt).
The simulation result is Dr C 0.00085. The rotational diffusion
coefficient is related to the rotational friction coefficient, zr, by
Dr = kBT/zr. The rotational friction coefficient can be expressed
approximately in terms of microscopic and hydrodynamic
contributions,33,43,44 zr = (ze

�1 + zh
�1)�1 C 1417, where

ze ¼
8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBTm
p

n0R
4½2M=ð5mþ 2MÞ� is the Enskog friction

and zh = 8pZR3 is the hydrodynamic friction for a spherical
object. Using this expression for the rotational friction coeffi-
cient, we find Dr C 0.0007.

An active Janus motor will undergo directed motion along its
symmetry axis as a result of chemically-powered propulsion, as
well as translational and rotational Brownian motion. The
simulation value of propulsion velocity of an active Janus motor
may be determined from a time and ensemble average of
its instantaneous velocity projected onto its instantaneous
orientation, VS

u = hvJ(t)�û(t)i, where h� � �i denotes the average
over time and realizations. Table 1 lists the average steady state
propulsion velocity, VS

u, for various values of L. As expected, the
Janus motor switches from forward to backward motion when
L becomes negative, and its speed increases as |L| increases.
Note that for these propulsion velocities the Péclet number
(Pe = VuR/D) is Pe o 0.4.

In order to compare these simulation results with the predic-
tions of continuum theory, the intrinsic reaction rate coefficient
k0 and the location of the outer edge of the boundary layer %R are
needed to obtain the coefficient a1 in eqn (17). The rate coeffi-
cient k0, that governs the reaction A - B on the catalytic
hemisphere of the Janus motor, can be computed in simulations
by monitoring the time evolution of the total number of fuel A
particles in the system arising from the irreversible chemical
reactions on the Janus motor.27,45 In the low Péclet number limit
the effects from the motion of the Janus motor can be neglected.
The rate equation for A particle concentration is dcA(t)/dt =
�kf(t)cJcA(t), where cJ = 1/L3 is the Janus motor number density.
Here kf(t) is the time-dependent rate coefficient for the con-
version of A to B, which starts at kf(0

+) = k0 and decays to the
asymptotic value kf = k0kD/(k0 + kD).45 The outer edge of the
boundary layer %R can be defined as the distance within which
the microscopic details of the dynamics of the interactions
between solvent particles and the Janus motor become important
so that a continuum description is not applicable. From the
asymptotic value of kf = k0kD/(k0 + kD) we may determine kD and,
use its value to determine %R.

Table 1 Properties of Janus motors with various L factors: k0, kf and
kD = 4pD %R are the intrinsic, long-time and diffusion-controlled reaction
rate coefficients, respectively; %R is the radius of the outer edge of the
boundary layer. VT

u and VS
u are the results of Janus motor velocity projected

along motor axis û from theory and simulation, respectively. The numbers
in parentheses are uncertain digits, e.g., 1.23(4) = 1.23 � 0.04

RA 2.5 2.5 2.5 2.485 2.47
RB 2.47 2.485 2.5 2.5 2.5
L 0.075 0.037 0.0 �0.037 �0.075

VS
u 0.0090(3) 0.0043(3) 0.000(1) �0.0044(3) �0.0095(3)

VT
u 0.012 0.0063 0.0 �0.0062 �0.013

k0 14(4) 15(4) 14(1) 15(4) 13(4)
kf 1.75(2) 1.71(1) 1.7(2) 1.71(2) 1.69(1)
kD 2.00 1.94 1.89 1.93 1.94
%R 2.60 2.52 2.46 2.52 2.52

Dr 0.00087 0.00083 0.00085 0.00083 0.00084
tr 576 604 586 600 597

DT
e 0.016 0.004 0.0028 0.004 0.018

DS
e 0.02 0.006 0.0028 0.0036 0.02
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The time-dependent rate coefficient, kf(t), was computed by
measuring – (dcA(t)/dt)/(cJcA(t)) in simulations that started with
all fuel A particles in the bulk of the solution and in the absence
of the B - A bulk reaction (k2 = 0). Table 1 shows the values
of k0 and kD extracted from the simulation data for various
L values, and the associated radius of outer edge of the
boundary layer determined from %R = kD/4pD. The intrinsic rate
coefficient may be computed from a simple collision model.
Since a reaction happens only when an A particle is in contact
with the collision surface at RA, the rate k0 is then given by the
rate of collisions of the A particle with the catalytic part of

the Janus sphere, leading to k0 ¼ RA
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBT=m

p
.46 It takes the

value k0 C 15.66 for RA = 2.5, which is slightly larger than the
simulation values for various L. For the backward-moving
Janus motors, as expected, k0 decreases as |L| increases
because of the smaller collision radius RA. Using eqn (17) with
the parameters k0, kD and %R, the computed theoretical propul-
sion velocities (VT

u) for different values of L are listed in Table 1.
We find the theoretical predictions are in good agreement with
the simulation results.

The steady-state concentration field of the product particle
can be calculated analytically using eqn (14), along with the
coefficients al derived in Section 3 and using the reaction rates
listed in Table 1. Fig. 4 compares the analytical and simulation
results outside the boundary layer for the forward-moving,
backward-moving and the diffusive Janus motors. Quantitative
comparisons of the product concentration field along various
directions are shown in Fig. 5. From Fig. 4, one sees good
agreement between the results at large distances from the
Janus motor, with slightly higher product concentrations near
the catalytic surface (also see Fig. 5). Such small deviations may
be caused by perturbations induced by motor motion due to
the fact that our simulations are in the small but finite Péclet
number regime.

At short times Janus motors move ballistically with velocity
Vuû as a result of their propulsion, but at long times their
motion becomes diffusive with an enhanced diffusion constant

given by De ¼ DJ þ
1

3
Vu

2tr,
3 where tr = (2Dr)

�1 is the character-

istic time for the rotational diffusion. The rotational diffusion

constants Dr and reorientation times tr were measured for
various values of L and are listed in Table 1. We find that the
rotational dynamics is not affected by the directed motion of
the Janus motor for both forward and backward propagation.
The enhanced diffusion constant was also measured by a fit
to the long-time values of the mean squared displacement.
Good agreements between the simulation (DS

e) and theoretical
(DT

e) estimates can be seen in Table 1.

Fig. 4 Product concentration field, cB(r,y), for moving (|L| = 0.037) and diffusive (L = 0) Janus motors. Panels (a), (c) and (e) are obtained from the
analytical expression in eqn (14), whereas (b), (d) and (f) are the simulation results. The catalytic and the noncatalytic hemispheres are labeled in panel (a).

Fig. 5 Comparison of product concentration profiles for the forward
(a–c) and the backward (d–f) Janus motors with |L| = 0.037 obtained
from simulation (black solid lines) and theory (red dashed lines) along
various directions with y = 0, p/2, and p. Note that the ordinate scales on
panels corresponding to different directions are not the same.
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6 Collective behavior of Janus motors

The hard-sphere Janus motor model was also used to simulate
the dynamics of a collection of Janus motors. In addition to the
bounce-back collisions between solvent particles and the Janus
motor, the interaction between any two Janus motors is
described by a repulsive Lennard-Jones potential, VJL(r) =
4e[(s/r)12 � (s/r)6 + 1/4], when their distance r o 21/6s. Here
e = 1 is the interaction strength and s = 6 is the effective radius,
which is chosen to be larger than twice the hard-sphere radius
R so that each solvent particle can only interact with one Janus
motor at a time. It is important to note that the attractive
depletion force is negligible and does not dominate the collec-
tive dynamics. Simulations were carried out in a cubic box with
linear size L = 50 containing NJ = 125 Janus motors, corres-

ponding to a volume fraction of f ¼ 4

3
pR3NJ

	
L3 ’ 0:065. A bulk

reaction with k2 = 0.01 was employed to maintain the system in
a non-equilibrium steady state. Fig. 6 shows an instantaneous
configuration of Janus motors taken from a realization of
forward-moving Janus motors. The Janus motors are found to
form transient clusters, which can be seen in the upper-left
corner of the simulation box in Fig. 6. In contrast, no apparent
clustering is observed for backward-moving Janus motors.

To quantitatively investigate the collective behavior of the
forward and backward-moving Janus motors, first we consider
the radial distribution function, g(r), of the Janus motors,

gðrÞ ¼ L3

4pr2NJ

XNJ

jo i¼1
d rij � r
� �* +

; (18)

where rij = |rJ,i � rJ,j| is the distance between motors i and j.
Fig. 7(a) shows g(r) for various values of L. For negative L =�0.245

(red dashed line) and �0.48 (red solid line), there is a peak at the
effective radial distance for the motor-motor repulsive interaction
potential r E s, and the peaks sharpen when L = 0.245 (black
dashed line) and 0.48 (black solid line) indicating the aggregation
of forward moving Janus motors. Next, we study the steady-state
properties of the collective motion by considering the correlation
function,

CbðrÞ ¼
1

nðrÞ
XNJ

jo i¼1
b̂i � b̂j
� �

d rij � r
� �* +

; (19)

where b̂i is the unit vector of a physical quantity of particle i and

nðrÞ ¼
PNJ

jo i¼1
d rij � r
� �

is the number of motor pairs with separa-

tion r. Fig. 7(b) shows the orientational correlation functions, Cu(r),
for various values of L. While there is no significant correlation
among the Janus motors with Lo 0, when L4 0 a positive peak
found at r = s, suggesting orientational alignment for forward-
moving Janus motors. While several factors, such as induced flow
fields and crowding effects, may affect the orientation alignment
indicated in this figure, the interactions mediated by product
concentration fields play very important roles in determining the
dynamics of a collection of diffusiophoretic motors.47 Such effects
are the strongest when two motors are in an aligned configuration
as shown in Fig. 8(a) and (b) for the forward-moving and the
backward-moving Janus motors, respectively. A single forward
Janus motor propels itself toward the region with higher product
concentration due to self-diffusiophoretic mechanism. In Fig. 8(a),
when two motors with orientational alignment are close to each
other, the right motor feels the product concentration field
generated by the left motor. Consequently, the motor on the right
side tends to move toward the catalytic face of the left motor which
stabilizes this oriented configuration. In contrast, a backward-
moving motor prefers to move away from the regions with high
product concentration and, therefore, the configuration shown in

Fig. 6 An instantaneous configuration taken from the simulation of a
collection of forward-moving Janus motors with L = 0.245. A transient
cluster can be seen in the upper-left corner of the simulation box. Also see
Movies S3 and S4 for forward-moving and backward-moving Janus
motors. The solvent particles are not displayed (ESI†).

Fig. 7 Spacial correlation functions: (a) radial distribution function, g(r),
(b) orientation correlation function, Cu(r), (c) velocity correlation function,
Cv(r), and (d) angular velocity correlation function, Co(r), for L = 0.48
(RA = 2.5 and RB = 2.3, black solid line), L = 0.245 (RA = 2.5 and RB = 2.4,
black dashed line), L = �0.245 (RA = 2.4 and RB = 2.5, red solid line),
and L = �0.48 (RA = 2.3 and RB = 2.5, red dashed line).
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Fig. 8(b) is unstable giving rise to lower orientational order. In
addition, from the velocity correlation functions, Cv(r), one can
see that the forward-moving motors not only align but also
propagate in the same direction as indicated by the positive
peak at r = s. For the backward-moving motors, a broad
negative peak was found at r = 7 showing that two motors
move away from each other. Finally, we compute the angular
velocity correlation function, Co(r). The Janus motors interact
with each other through central potentials and thus no angular
momentum exchange happens during elastic collisions. Therefore,
as expected no significant angular velocity correlation among the
Janus motors was found.

7 Discussion

Systems with active elements occur throughout nature and are
currently being investigated in many laboratories. The focus of
these investigations varies, ranging from studies of cargo transport
involving single motors to the more complex dynamics of many
interacting motors. As the systems under investigation become
more complicated, for example, involving many interacting motors
to study nonequilibrium phase transitions or phase segregation,
or crowded systems with mobile obstacles of arbitrary shape,
molecular simulation provides a promising way to discover the
essential features that underlie the physical phenomena and to
predict what new phenomena might be seen.

Continuum models for phoretic propulsion are certainly
applicable to large motors and, in fact, often provide good
results for small submicron scale motors. They will breakdown
on the smallest scales and for the smallest motors. The results
in this paper provide some insight into how the parameters
that enter into continuum models may be determined in order
to make comparisons with simulations of small motors in
fluctuating molecular environments.

For many-motor systems microscopic dynamics that satisfies
the basic conservation laws of mass, momentum and energy will
correctly account for all aspects of coupling that arise from
hydrodynamic flow fields induced by motor motion, concen-
tration gradients that have their origin in the catalytic activity
of all motors, as well as direct motor-motor interactions. Effects,
such as those arising from variations of an individual motor’s
speed due to perturbations of chemical gradients by other motors
in the system and the chemotactic-like interactions due to these
gradients, are incorporated in the simulations. The simplicity of

the Janus model described in this paper will facilitate large-scale
simulations designed to probe collective behavior, beyond the
illustrative examples presented in the text. More generally, micro-
scopic models will provide a way to analyze the delicate interplay
of effects that contribute to the new phenomena that are being
explored in chemically-active motor systems.
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