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Active media, whose constituents are able to move
autonomously, display novel features that differ from
those of equilibrium systems. In addition to naturally
occurring active systems such as populations of
swimming bacteria, active systems of synthetic self-
propelled nanomotors have been developed. These
synthetic systems are interesting because of their
potential applications in a variety of fields. Janus
particles, synthetic motors of spherical geometry with
one hemisphere that catalyses the conversion of fuel to
product and one non-catalytic hemisphere, can propel
themselves in solution by self-diffusiophoresis. In
this mechanism, the concentration gradient generated
by the asymmetric catalytic activity leads to a
force on the motor that induces fluid flows in the
surrounding medium. These fluid flows are studied
in detail through microscopic simulations of Janus
motor motion and continuum theory. It is shown that
continuum theory is able to capture many, but not all,
features of the dynamics of the Janus motor and the
velocity fields of the fluid.

This article is part of the themed issue ‘Multiscale
modelling at the physics–chemistry–biology interface’.

1. Introduction
Synthetic motors that transduce chemical energy into
directed motion may be used as small-scale cargo
delivery vehicles for applications in science and medicine,

2016 The Author(s) Published by the Royal Society. All rights reserved.
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and the realization of novel nanoscale applications has stimulated much research activity in this
area of science [1–10]. Of the many different motors that have been constructed in the laboratory,
our interest is in those that operate by self-diffusiophoresis where concentration gradients of
reactant and products produced by localized catalytic activity on the motor surface give rise
to forces that lead to directed motion of the motor. In particular, we consider spherical Janus
motors with catalytic and non-catalytic faces, because they have perhaps the simplest geometry
and have been studied often [4,10–17]. Investigations of the dynamics of these motors, with sizes
varying from nanometres to micrometres, are theoretically challenging because they operate out
of equilibrium and experience strong thermal fluctuations.

Continuum theories are usually employed to describe the mechanism that is responsible for
diffusiophoretic motor motion [18,19]. In such macroscopic theories, the fluid in which the motor
moves is modelled by the Navier–Stokes equations and the concentration fields of the solute
species by reaction–diffusion equations. Interactions of the fluid with the motors are taken into
account by boundary conditions on the motor surface. Very small nanomotors lie in the domain
where the validity of a continuum description of the fluid dynamics and the influence of fluid
motion on motor dynamics should be questioned and tested. Evidence for the breakdown of
continuum theory can be found in molecular dynamics simulations of sphere-dimer motors [20]
with lengths of a few nanometres: fluid structure and dynamics are microscopically complex in
the vicinity of the motor, although the fluid velocity fields in the motor vicinity exhibit structured
flow patterns after averaging over fluctuations [21], similar to those predicted by continuum
theories [22].

In this paper, we present the results of coarse-grain microscopic simulations of Janus motors
propelled by a self-diffusiophoretic mechanism. The Janus motors interact with the chemical
species in the solvent through hard collisions [23] and the solvent molecules evolve through
multiparticle collision dynamics [24]. A particular focus of this study is the nature of the solvent
flow fields near to and far from the Janus motor, because they are an integral part of the propulsion
mechanism. The continuum equations, subject to boundary conditions on the motor, are solved to
obtain the motor velocity and fluid velocity fields, so that the continuum and microscopic models
may be compared.

2. Microscopic and continuum descriptions

(a) Microscopic dynamics
In the microscopic simulations, the properties of the entire system, comprising the Janus motor
and the surrounding multicomponent fluid medium, follow directly from the specification of the
reactive and non-reactive interactions and numerical solution of the equations of motion. The
coarse-grain microscopic dynamical scheme for the simulation of diffusiophoretic Janus motors
studied here has been described in detail previously [23,25], and only a brief outline will be
given below.

The simulations are performed by molecular dynamics for a Janus motor, which is combined
with multiparticle collision dynamics for fluid motion [24,26–28]. In multiparticle collision
dynamics the fluid is modelled by Ns point particles of species A and B with mass m in a cubic
volume L3 with linear size L. The fluid particles interact with the Janus motor through central
intermolecular potentials, Wα(r), where α = A, B indicates the particle type interacting with the
Janus motor. Interactions with the catalytic face of the Janus motor may lead to reactions that
convert fuel molecules to products. Collision rules that specify the nature of the reaction and
conserve mass, momentum and energy may be constructed [25]. Here, we suppose that the
simple irreversible chemical reaction A → B takes place whenever an A molecule collides with the
catalytic hemisphere and exits the reaction surface with radius R. In this study, we adopt a hard
collision model for the reactive and non-reactive interactions with the Janus motor [23]. The A and
B species interact with the motor through hard potentials, Wα(r) = ∞, for r<Rα and Wα(r) = 0 for
r ≥ Rα , where Rα denotes the collision radius for species α. We denote the larger of the radii by R
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Figure 1. A Janusmotorwith catalytic (C) andnon-catalytic (N) faces. The catalytic face converts fuelA toproductB. Themotor is
propelled in the direction ofV = ẑVz which is taken to lie along the polar z-axis in a spherical polar coordinate systemwith polar
angle θ . The left part of the figure shows the geometry used in the continuum model. The solid outer circle denotes the outer
edge of the boundary layer at radius R. The right part of the figure shows the geometry used in the microscopic hard bounce-
back model. The inner dashed circle indicates the radius at which bounce-back collisions of B particles take place, whereas the
outer solid circle, which coincides with the outer edge of the boundary layer, is the bounce-back radius for A particles. (Online
version in colour.)

and assume that the collision radii are chosen, so that R − Rα is small compared with the motor
radius (figure 1). The chemical species α experiences modified bounce-back collisions at radius
Rα . In the remainder of the paper, we take R = RA >RB, so that the Janus motor is propelled in a
direction with the catalytic hemisphere at its head.

There are no intermolecular potentials among the solvent particles; their interactions are
described by multiparticle collisions. The evolution of the system consists of streaming and
collision steps. In the streaming steps, the system evolves by Newton’s equation of motion with
impulsive forces determined from the intermolecular potentials of the solvent particles with the
Janus motor. In the collision steps, which occur at time intervals τ , the system is partitioned into
cells ξ of size a which are assigned rotation operators, chosen from a set of rotation matrices.
Particle velocities in a cell are then rotated relative to the centre of mass velocity in a cell in
order to obtain the post-collision velocity. In order to maintain the system out of equilibrium,
fuel must be supplied and product removed. This may be done by explicit fluxes of these species
at the boundaries of the system, or internally by out-of-equilibrium bulk reactions. Here, we use
bulk reactions to establish the non-equilibrium steady state for Janus motor operation. This is
easily accomplished by using reactive multiparticle collision dynamics [29]. Once the system is
partitioned into cells for the multiparticle collisions, cell-level reactions that convert product B
particles back to fuel A particles are carried out as follows: at each collision step, the reaction,

B
k2→ A, takes place independently in each cell ξ with probability pξ (Nξ

B) = 1 − e−aξ2τ , where Nξ

B is
the total number of B particles in cell ξ and aξ2 = k2Nξ

B.
The important feature of this coarse-grain microscopic dynamics is that it conserves mass,

momentum and energy. Consequently, the Navier–Stokes and reaction–diffusion equations can
be derived from it, and it is able to describe the fluid flow fields and species concentration fields
that accompany the motion of Janus motors. In addition, analytical expressions for the transport
properties of the solvent have been obtained; in particular, the solvent viscosity is known and this
property is central to the motor propulsion and fluid flows that arise from motor motion.

(b) Continuummodel
In the continuum description, we consider a macroscopically large spherical Janus motor with
radius RJ moving with velocity V in an incompressible fluid with viscosity η. We further assume
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that the Reynolds number is small, so that inertia may be neglected and the Stokes equations
describe the fluid velocity fields. The concentration fields of the A and B species are described by
reaction–diffusion equations with common species diffusion coefficient D, and the Péclet number
is taken to be small, so that advective effects may be neglected. Because the system is maintained
in a steady state by non-equilibrium bulk reactions as described above for microscopic dynamics,
these reactions are accounted for by mass action kinetic terms in the reaction–diffusion equations.

The computation of the velocity of motors propelled by the diffusiophoretic mechanism,
using continuum theory is well established [18,30–33], and the flow fields that result from a
multipole description of swimming bodies have been studied [34]. The fluid velocity field is
assumed to satisfy stick boundary conditions on the surface of the Janus particle. The potential
functions Wα through which the fuel and product species interact with the Janus particle have
a finite range. These interactions, in conjunction with the inhomogeneous concentration fields of
species generated in the vicinity of the motor as a result of the asymmetric catalytic activity, give
rise to body forces acting on the motor. Because momentum is conserved these forces generate
fluid flows within the boundary layer of thickness δ where forces act, and the velocity field,
v(R, θ ) ≡ vs(θ ), at the outer edge of the boundary layer, RJ + δ ≡ R, is the slip velocity, which takes
the form [18]

vs(θ ) = − kBT
η
ΛVθ cB(R, θ ), (2.1)

where Λ= ∫∞
0 r(e−WB(r)/kBT − e−WA(r)/kBT) dr. In writing equation (2.1), we used the fact that the

total number of A and B particles is conserved in reactions, so that the concentrations satisfy
c0 = cA + cB, where c0 is the total concentration of A and B.

Making use of the reciprocal theorem of hydrodynamics [35], the velocity of the Janus motor
can be obtained from the surface average of the slip velocity at the outer edge of the boundary
layer at R: V = −〈vs〉. In order to compute the velocity, the solute concentration field at the outer
edge of the boundary layer is needed. To find this field for our system with bulk reactions
the reaction–diffusion equation, D∇2cB − k2cB = 0, must be solved subject to the boundary
condition, kDR(∂cA(r, θ )/∂r)|r=R = k0cA(R, θ )H(θ ). Here, k0 and kD = 4πRD are the intrinsic and
Smoluchowski rate constants, and H(θ ) is a characteristic function that is unity on the catalytic
hemisphere (0 ≤ θ ≤ π/2) and zero on the non-catalytic hemisphere (π/2 ≤ θ ≤ π ). The solution
may be written as the series

cB = c0

∞∑
n=0

anfn(r)Pn(μ), (2.2)

where Pn(μ) is a Legendre polynomial, μ= cos θ and fn(r) is determined from the solution of the
radial equation. The fn(r) functions are defined such that fn(R) = 1. The unknown coefficients an

may then be determined from the solution of a linear set of algebraic equations [23]. Substitution
of equation (2.2) into the expression for the slip velocity and computation of the surface average
yields the velocity component of the Janus motor along the director ẑ of the Janus motor, Vz =
2
3 (kBT/ηR)Λc0a1, and for the hard collision modelΛ is given byΛ= (R2

A − R2
B)/2. Comparisons of

the measured motor velocity from simulations with this theoretical expression have been given
earlier [23]. We now turn to the main focus of this paper: the fluid velocity fields that accompany
motor motion.

The velocity fields are an integral part of the propulsion mechanism. In addition to the
information they provide about dynamical processes arising from the structure of the boundary
layer, they are responsible for the hydrodynamic interactions among motors. The slip velocity is
an important ingredient in the calculation of the fluid flow fields because it enters in the boundary
conditions that the flow fields must satisfy. In order to find the fluid velocity fields, we solve the
Stokes equation, ∇p = η∇2v, where p is the pressure field, for an incompressible fluid satisfying
∇ · v = 0 subject to the boundary conditions, v(R, θ ) = V + vs at the outer edge of the boundary
layer. In addition, far from the Janus motor we require that limr→∞ v(r) = 0. The details of this
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calculation are given in appendix A and the resulting expressions for the radial vr and angular vθ
parts of the velocity field are found to be

vr(r,μ) = kBT
η
Λc0

[
2a1

3R

(
R
r

)3
P1(μ) +

∞∑
n=2

n(n + 1)an

2R

(
R
r

)n
{(

R
r

)2
− 1

}
Pn(μ)

]

and vθ (r,μ) = kBT
η
Λc0

[
a1

3R

(
R
r

)3
V1(μ) +

∞∑
n=2

n(n + 1)an

4R

(
R
r

)n
{

n
(

R
r

)2
− (n − 2)

}
Vn(μ)

]
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)

Here, Vn = −(2/n(n + 1))P1
n(μ), where P1

n is the associated Legendre polynomial of order 1. Note
that if one drops terms with n ≥ 2 the flow field at distances far from the Janus particle is given by

v = 1
2

(
R
r

)3
(3r̂r̂ − I) · V , (2.4)

where I the unit dyadic. This fluid flow field exhibits a dipolar flow pattern, which is generated
by the slip velocity vs = (kBT/ηR)Λc0a1 sin θ θ̂ ; hence, the dipolar flow is a special case of a general
flow produced by the motion of a self-diffusiophoretic [18,36,37] and a thermophoretic Janus
motor [38].

The stream function may be obtained from the fluid velocity field and is given by (see
appendix A)

ψ(r,μ) = −Vz
R
r

R2I2(μ) + kBT
2ηR

Λc0

∞∑
n=2

n(n + 1)an

(
R
r

)n
(r2 − R2)In+1(μ), (2.5)

where In(μ) = (Pn−2 − Pn)/(2n − 1) is the Gegenbauer function of the first kind [35]. These flow
fields are discussed in §3.

3. Comparison of theory and simulations
In this section, we compare the results of microscopic simulations with the predictions of
macroscopic continuum theory for the properties of self-diffusiophoretic Janus motors. Our
main focus is on the fluid velocity fields, but results for the concentration fields will also be
presented because they enter into the calculation of the velocity field. As discussed earlier, once
the interaction model for the system is specified in the microscopic simulation, all transport
properties, such as the solvent viscosity, species diffusion coefficients, Janus motor velocity and
rotational and translational diffusion coefficients, follow directly from averages of dynamical
quantities determined from solutions of the equations of motion of the entire system. In contrast,
the continuum model requires transport properties as input, such as the viscosity, species
diffusion constants and reaction rate constants that enter in the boundary conditions for the
velocity and concentration fields. These boundary conditions are applied at R, the outer edge
of the boundary layer. Consequently, in order to compare the predictions from microscopic
simulations with continuum theory, the macroscopic parameters needed for the continuum
calculation must be determined from the microscopic simulations.

The reaction boundary condition contains the Smoluchowski and intrinsic reaction rate
constants, kD and k0, respectively. These rate constants may be found by monitoring the time
evolution of the concentrations of fuel A molecules when only irreversible chemical reactions at
the Janus motor are taken into account with no bulk reactions (k2 = 0) [39]. From the rate equation
dcA(t)/dt = −k(t)cJcA(t), where cJ = 1/L3 is the Janus motor number density, one may determine
k(t), the time-dependent rate coefficient. Its initial value, determined from the initial slope of
the cA(t) decay, is k(0) = k0, the intrinsic rate constant. Its asymptotic value is limt→∞ k(t) = k =
k0kD/(k0 + kD), from which we may determine kD. The intrinsic rate constant k0 may be estimated
from kinetic theory as the product of the collision cross section and the mean speed of the A
particles, which gives k0 = R2

A

√
2πkBT/m. The Smoluchowski rate constant may also be estimated,
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because kD = 4πDR and the diffusion coefficient is known. As noted above, the expression for
the solvent viscosity is also known, and all of the ingredients needed for a comparison with the
continuum theory are available.

The following system parameters have been chosen for the microscopic simulations: we use
dimensionless units where mass is in units of m, lengths in units of a and energies in units of
kBT. Time is then expressed in units of t0 = (ma2/kBT)1/2. In these units R = 2.5, c0 ≡ Ns/L3 = 10,
and the Janus motor has mass M = 4

3πR3c0 m ≈ 655 and moment of inertia I ≈ 1636. The cubic
simulation box has linear dimension L = 50 with periodic boundaries. By choosing the rotational
angle α = 120◦ and collision time step τ = 0.1 for multiparticle collisions, the fluid viscosity is
η= 7.93 and the common self-diffusion constant for the A and B particles is D = 0.061. The
molecular dynamics time step for bounce-back collisions is 0.01. The bulk reaction rate is chosen
as k2 = 0.01. The rate constant kD is found to be kD = 1.94 from simulation, in agreement with
the theoretical estimate of 1.92. The intrinsic rate coefficient from simulation is k0 ≈ 15.0, whereas
the simple kinetic theory estimate is 15.7 for RA = 2.5. The Λ factor for RB = 2.485 is given by
Λ= 0.037. Using these parameters, simulations yield an average propulsion speed of VS = 0.0043,
whereas continuum theory predicts a value of VT = 0.0064. This propulsion speed, along with
other parameter values, ensures that the Reynolds number is small, Re = c0RVS/η∼ 0.013 
 1,
which implies that viscous effects dominate over inertial effects. For these simulation conditions,
the Péclet number is also small, Pe = VSR/D ∼ 0.17 
 1, so that fluid advection is negligible
in the reaction–diffusion equations, whereas the Schmidt number is large, Sc = η/c0D ∼ 13 � 1,
which implies that momentum transport dominates over mass transport, characteristic of a liquid
solvent. Results are obtained from averages over more than 200 realizations of the dynamics.

First, we compare concentration fields in the vicinity of the Janus motor computed from
continuum theory with those obtained from microscopic simulations. Figure 2a shows the
normalized concentration fields of the product B particles (cB/c0) plotted in the xz plane. Although
there is overall qualitative agreement between the continuum and simulated concentration fields,
the continuum model systematically underestimates the simulated values. This discrepancy could
be due to the fact that the simulations are carried out at small but finite Péclet number, whereas
the Péclet number in continuum model is assumed to be zero; however, simulations of a reactive
Janus particle without propulsion (RA = RB) also show a similar discrepancy. Thus, the results
point to a breakdown of the continuum model on small length scales near the surface of the
particle where the catalytic reaction occurs. The continuum model accounts for reactions through
a boundary condition on the outer edge of the boundary layer and further assumes the fluid
flow field satisfies stick boundary conditions on the surface of the particle. Neither of these
conditions is fully valid when one examines the particle dynamics within the boundary layer
in the microscopic simulations of our small motors. This breakdown of the continuum model is
also reflected in the fact that the continuum and simulation values of the motor velocity differ.
The microscopic model accounts for both of these effects through the direct hard intermolecular
interactions between the fluid particles and the Janus motor. Figure 2b presents quantitative
comparisons of B particle concentrations and concentration gradients near the boundary layer
(r � R) as a function of θ . Although the concentration fields obtained from the continuum model
and simulations present small differences as noted above, the concentration gradients responsible
for the motor propulsion are in very good agreement.

The motor moving with velocity V induces a flow field in the solvent. The characteristic
patterns predicted from the Stokes equations can be seen in figure 3a. Note that the fluid flow
field near the Janus motor does not have a dipolar form. Instead, it exhibits structure involving
more complicated fluid circulation. Fluid is pushed from the front of the motor and returns in the
lateral directions producing fluid circulation. Fluid entering from the side moves to the rear parts
of the motor. Interesting fluid circulation patterns appear again near the rear of the motor. At large
distances the fluid does not return to the motor but moves away. At mid-range distances where
r/a0 ∼ 19, there is a stagnation point where the outgoing flow and incoming flow meet. On the
basis of the far-field flow characteristics, the motor behaves as a pusher swimmer when RA >RB,
because the fluid is pushed from the front and back and returns to the side of the motor [40].
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(right). The upper hemisphere is the catalytic and the lower hemisphere is non-catalytic. (b) Quantitative comparison of
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Figure 3. Streamlines and velocity fieldmagnitude from continuum theory. (a) Streamlines in the vicinity of the Janusmotor in
the laboratory frame where the motor moves with the velocity V . (b) Magnitude of the fluid velocity field scaled by propulsion
velocity VT in the xz plane.

When the molecular interactions change, e.g. RA <RB, so thatΛ< 0, the motor behaves as a puller
swimmer, because fluid is pulled from the front and back and moves away on the sides. Figure 3b
shows the magnitude of the fluid velocity scaled by the propulsion speed in the laboratory frame.
There are strong outgoing and incoming flows on the front, sides and rear parts of the motor.
Flow fields with similar characteristics have been reported for systems with motors propelled
by thermophoresis [41,42].

In figure 4a, the fluid velocity vector fields in the vicinity of the motor predicted by continuum
theory and obtained from microscopic simulations are compared. Overall, the qualitative
agreement between the velocity fields is good although the absolute magnitude of the velocity is
somewhat different. The magnitude of the fluid velocity in the θ = π/2 direction from the centre
of the motor, scaled by the magnitude of the motor velocity, is shown in figure 4b. The results of
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the continuum theory agree well with the simulation results in the near and far fields, although
there are large fluctuations in the simulation results at large distance that arise from the effects of
thermal noise on the small values of the velocity. Continuum theory predicts that the magnitude

of the fluid velocity decays asymptotically as v=
√
v2

r + v2
θ ∼ |3(kBT/ηR)Λc0a2P2(μ)|(R/r)2 +

O(1/r3) (see equation (2.3)), and the 1/r2 power-law behaviour is consistent with the far-field
characteristics of pusher and puller swimmers as shown in the streamlines in figure 3. The fluid
velocity field obtained from the microscopic simulations confirms the 1/r2 power-law decay.
Extensive averaging of instantaneous local velocities is required to obtain the structure of flow
fields in the microscopic simulations. Because the velocity field is related to derivatives of the
stream function, much more extensive simulations are required to obtain accurate values of the
stream function suitable for comparison with the theoretical values.
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Figure 5a,b shows quantitative comparisons of continuum theory and simulations for the
magnitude of the fluid velocity field, scaled by the magnitude of the propulsion velocity, along the
front (θ = 0) and back (θ = π ) directions from the centre of the motor. Although the microscopic
simulations exhibit large fluctuations, the continuum theory does capture major trends seen in the
simulation results. Near the motor (r/R ≤ 1.25), the discrepancies between the continuum theory
and simulations are observed in the forward direction (θ = 0), whereas in the backward direction
(θ = π ), the results are consistent. These differences can be attributed to approximations on the
fluid flow fields within the boundary layer in the continuum model.

As shown in the insets of figure 5, continuum theory predicts a 1/r2 power-law decay at
long distances. The distance at which this asymptotic regime is reached depends on the angle,
and analysis of the analytical formulae in equations (2.3) shows that this regime is reached
approximately 100 times earlier for θ = π/2 than for θ = 0 and θ = π . The velocity field obtained
from the microscopic simulations is consistent with these observations. The results in figure 4b for
θ = π/2 show that the simulation results lie in the asymptotic regime for r/R> 2, whereas figure 5
indicates that our simulations have not reached the asymptotic regime for the angles θ = 0 and
θ = π . Note also that in the inset of figure 5b, one sees the stagnation point predicted from the
streamlines in figure 3, which occurs at distances that are inaccessible in the current simulation.

4. Conclusion
The microscopic simulations of the fluid velocity fields presented above show clear evidence of
coherent hydrodynamic flows generated by Janus motor motion that are generally in accord with
the predictions of continuum theory. Such agreement, while perhaps expected, because these
flows have their origin in the force-free nature of the dynamics and momentum conservation,
is nevertheless interesting for several reasons. The small motors investigated in this study are
subject to strong thermal fluctuations. The fluid flow fields presented in the comparisons were
obtained by extensive averaging of local particle velocities subject to strong thermal fluctuations.
Collective hydrodynamic effects in microscopic simulations have been observed much earlier in
connection with long-time tails in velocity correlation functions, and our results show that such
fields exist in far-from-equilibrium systems with active self-propelled particles. The continuum
model uses a highly idealized treatment of the boundary layer and assumes no-slip boundary
conditions at the motor surface and negligible fluid advection. Nevertheless, when suitable input
parameters are used, notably the effective radius which characterizes the boundary layer, major
features of the average flow fields are described well. The results in this paper should prove useful
when more complex situations involving many motors are considered, because hydrodynamic
interactions play a part in determining the dynamics and microscopic simulations provide a way
to capture complex flow-field effects.
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Appendix A
The fluid velocity fields in the region outside the boundary layer may be obtained by solving
the Stokes equations. Taking the divergence of Stokes equations, ∇p = η∇2v and using the
incompressibility condition, ∇ · v = 0, the pressure field satisfies Laplace equation, ∇2p = 0.
Because the pressure field is uniform far from the Janus motor, this axisymmetric field may
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be written in the form p = p∞ + ∑∞
n=0 pn, where p∞ is the pressure far from the motor and

pn = γnr−(n+1)Pn(μ) is a solid spherical harmonic. The general solution for an axisymmetric
velocity field that vanishes far from the Janus motor may be written as [43]

v =
∞∑

n=1

[∇φn + Z(1)
n r2∇pn + Z(2)

n rpn], (A 1)

where φn = χnr−(n+1)Pn(μ) is a solid spherical harmonic arising from the homogeneous
equation ∇2v = 0. Substitution of these expressions into the Stokes equations, and using the
incompressibility condition yields the following expressions for the Zn coefficients: Z(1)

n =
(2 − n)/(2ηn(2n − 1)) and Z(2)

n = (n + 1)/(ηn(2n − 1)). The radial and angular components of the
velocity field may then be written as

vr =
∞∑

n=1

[
(n + 1)

2η(2n − 1)
γn

rn − (n + 1)
χn

rn+2

]
Pn(μ)

and vθ =
∞∑

n=1

[
(n − 2)

2
(n + 1)

2η(2n − 1)
γn

rn − n(n + 1)
2

χn

rn+2

]
Vn(μ).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A 2)

The coefficients χn and γn may be determined from the boundary condition for the velocity
fields at the outer edge of the boundary layer, v(R, θ ) = V + vs(θ ), and the condition that the
system is force-free. Using the expression for the concentration field given by equation (2.2), the
slip velocity may be written as a series in Vn(μ): vs(θ ) = θ̂ (kBT/2ηR)Λc0

∑∞
n=1 n(n + 1)anVn(μ),

where θ̂ is a unit vector in the θ -direction. The radial and angular components of the boundary
condition take the forms

vr(R, θ ) = VzP1(μ)

and vθ (R, θ ) =
(

kBT
ηR

Λc0a1 − Vz

)
V1(μ) + kBT

2ηR
Λc0

∞∑
n=2

n(n + 1)anVn(μ).

⎫⎪⎪⎬
⎪⎪⎭ (A 3)

Comparing equations (A 2) and (A 3) for the n = 1 terms yields the equations,

− 2χ1

R3 + γ1

ηR
= Vz, −χ1

R3 − γ1

2ηR
= kBT
ηR

Λc0a1 − Vz. (A 4)

The total force F within the boundary layer is zero, so that F = ∫
S Π · r̂ dS = 0, where the integral is

over the boundary surface, the stress tensor is Π = −p1 + η(∇v)sym, and the superscript denotes
the symmetric gradient. Using the forms for the pressure and velocity fields and performing
the surface integral, one finds γ1 = 0. From equation (A 4), it follows that Vz = 2

3 (kBT/ηR)Λc0a1,
which agrees with the result obtained earlier in the text using the reciprocal theorem. Comparing
coefficients for n ≥ 2 terms one obtains

γn = −kBTΛc0ann(2n − 1)Rn−1, χn = − kBT
η
Λc0an

n
2

Rn+1. (A 5)

Substituting these results into the expression for the velocity field, we find equation (2.3) given
in the main text.

The stream function may be obtained from the fluid velocity field. A general expression for the
stream function for an unbounded fluid that does not diverge along the z axis (μ= ±1) may be
written as

ψ(r,μ) =
∞∑

n=1

{
An

rn−3 + Bn

rn−1

}
In(μ), (A 6)

where In(μ) = (Pn−2 − Pn)/(2n − 1) is the Gegenbauer function of the first kind [35]. The fluid
velocity expressed in the spherical polar coordinate system is determined from the stream
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function by

v = − 1
r2 sin θ

∂ψ

∂θ
r̂ + 1

r sin θ
∂ψ

∂r
θ̂ . (A 7)

From the properties of the Gegenbauer functions [35], ∂In/∂μ= −Pn−1 and (1 − μ2)(∂Pn−1/∂μ) =
n(n − 1)In, the radial and tangential components of the velocity are given by

vr =
∞∑

n=1

[
−An+1

rn − Bn+1

rn+2

]
Pn(μ), vθ =

∞∑
n=1

[
−n − 2

2
An+1

rn − n
2

Bn+1

rn+2

]
Vn(μ). (A 8)

Comparing these expressions for the components of the velocity field with those in equation
(A 2), one finds that the coefficients appearing in the stream function are related by A1 = B1 = 0,
A2 = 0, B2 = −R3Vz and An+1 = −(n + 1)γn/(2η(2n − 1)) and Bn+1 = (n + 1)χn for n ≥ 2, leading to
equation (2.5) of the main text.
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