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Diffusion in systems crowded by active
force-dipole molecules

Matthew Dennison, *a Raymond Kapralab and Holger Starka

Experimental studies of systems containing active proteins that undergo conformational changes driven

by catalytic chemical reactions have shown that the diffusion coefficients of passive tracer particles and

active molecules are larger than the corresponding values when chemical activity is absent. Various

mechanisms have been proposed for such behavior, including, among others, force dipole interactions

of molecular motors moving on filaments and collective hydrodynamic effects arising from active

proteins. Simulations of a multi-component system containing active dumbbell molecules that cycle

between open and closed states, a passive tracer particle and solvent molecules are carried out.

Consistent with experiments, it is shown that the diffusion coefficients of both passive particles and the

dumbbells themselves are enhanced when the dumbbells are active. The dependence of the diffusion

enhancement on the volume fraction of dumbbells is determined, and the effects of crowding by active

dumbbell molecules are shown to differ from those due to inactive molecules.

1 Introduction

A body of evidence points to the existence and importance of
nonthermal fluctuations in the cell that are driven by chemical
activity that maintains the cell in a nonequilibrium state.1–8

Such fluctuations have been measured and characterized using
various experimental probes and are often attributed to the
forces generated by molecular motors when they interact with
filaments comprising the cellular cytoskeletal network. The
results of in vitro experiments on systems containing actin
networks and active myosin motors also suggest that nonthermal
fluctuations play a significant role in the systems’ dynamical
response to deformation.9,10 Support for such effects is provided
by the observation that the mean square displacements of passive
molecules and active species are smaller when the production of
ATP is inhibited. For example, the diffusive dynamics of chromo-
somal loci in prokaryotic cells is sensitive to metabolic activity;
when ATP synthesis is inhibited the apparent diffusion coefficient
decreases.6 Force-spectrum-microscopy studies have shown that
force fluctuations in eukaryotic cells enhance the movement of
large and small molecules; when the activity of myosin II motors
is selectively inhibited diffusive motion decreases but not to the
degree when all ATP synthesis is suppressed.8 These studies have
concluded that it is the aggregate of all metabolic activity, and not

just that of motor proteins, that contributes to enhanced diffusive
motion.

Enhanced diffusion of enzymes and passive particles has
also been observed in in vitro studies of active enzymes in
solution where motor proteins are not present,11–13 and the
possible origins of these effects have been discussed.14 Proteins
executing conformational changes as a result of catalytic
chemical activity can give rise to collective hydrodynamic
effects that enhance the diffusion of both passive particles and
enzymes.15–17 On more macroscopic scales, and in a somewhat
different context, experimental and theoretical investigations of
the diffusion coefficients of passive particles in suspensions of
active microorganisms have shown diffusion enhancement due
to the hydrodynamic flow fields generated by their swimming
motions.18–22

In this paper we investigate diffusive dynamics in a system
containing active dumbbell molecules, a passive particle and
solvent. The active dumbbell molecules cycle between open and
closed conformations and act as nonequilibrium fluctuating
force dipoles. The microscopic dynamics accounts for direct
hydrodynamic interactions as well as direct interactions among
the dumbbell molecules. Molecular crowding is known to
influence the diffusive properties of tracer particles in solutions
where the concentration of crowding species is high: subdiffu-
sive dynamics is observed on intermediate time scales and
long-time diffusion coefficients decrease as the concentration
of crowding elements increases.23–27 Our investigations show
how the diffusive dynamics of passive particles, and the dumb-
bells themselves, vary with the volume fraction of active dumb-
bell molecules. Comparisons with the results for the diffusive
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dynamics in systems containing inactive dumbbells allow us to
analyze and describe the effects of dumbbell activity.

The outline of the paper is as follows. Section 2 describes the
system under study, including the active dumbbell-shaped
‘‘molecules’’, the interaction potentials among species and
the dynamical method used to evolve the system. The properties
of single active and inactive dumbbell molecules are presented
in Section 3. Systems containing many active dumbbell mole-
cules are considered in Section 4, where simulation results for
the self-diffusion coefficients of the passive particle and dumb-
bell molecules are given as a function of the dumbbell force
constants and volume fractions. The conclusions of the study are
given in Section 5.

2 System and dynamical model

The entire system is comprised of dumbbell-shaped active mole-
cules, a passive particle and solvent molecules. The dumbbell-
shaped molecules consist of two beads linked by a harmonic
bond, with interactions between beads of different dumbbells
described by the steep repulsive potential function,28

Ucc ¼ 4e
sc
r

� �48
� sc

r

� �24
þ1
4

� �
r � 21=24sc; (1)

and zero otherwise, where e sets the energy scale, which we take to
be e = 2.5kBT throughout, with kB the Boltzmann constant and T
the temperature. The passive particle is a structureless bead of
diameter sc and mass mc, and interacts with the dumbbell beads
through the potential in eqn (1). The passive particle interacts
with the solvent particles through the repulsive Lennard-Jones
interaction potential Ucf, given by

Ucf ¼ 4e
scf
r

� �12
� scf

r

� �6
þ1
4

� �
r � 21=6scf ; (2)

and zero otherwise, where scf is the passive particle–solvent
interaction distance.

Other interactions involving the solvent are taken into
account through multiparticle collision (MPC) dynamics, com-
prising streaming and collision steps.29–32 The solvent mole-
cules are represented by point particles of mass mf which are
evolved in the streaming step, either ballistically or, when
potential interactions are present, by Newton’s equations of
motion. In the collision steps, which occur at time intervals
tMPC, the solvent particles are sorted into cubic collision cells
with length a, in which they interact with each other according
to multiparticle collisions. The coupling of the dumbbell to
the solvent also can be accounted for in this way, where the
constituent spheres of the dumbbell are included with the solvent
particles in the collision step, in the same manner as for single
polymers.33,34 We chose this approach for computational effi-
ciency. Although a more detailed description of dumbbell–fluid
interactions can be obtained by using explicit intermolecular
potentials in the streaming step of the dynamics, both methods
conserve momentum and account for hydrodynamic interactions.
Further simulation details on the implementation of the MPC
algorithm, along with parameter values, are given in Appendix A.

Dumbbell molecule

While the dumbbells are fictitious ‘‘molecules’’ their dynamics
is constructed to mimic the conformational changes that occur
in active enzymes.15,35 Many catalytically active proteins cycle
between open and closed conformations: substrate binding
triggers passage from the open to closed state, while substrate
unbinding or product release causes the protein to return to its
open conformation. Such systems are maintained in a non-
equilibrium state by input of substrate and removal of product.

The dumbbell beads, each with mass mb, are linked by a
harmonic bond that specifies open (large bond rest length) and
closed (small bond rest length) conformations. The bond
potential energy function has the form,

U ¼ 1

2
k0ðtÞ ‘� ‘0ðtÞð Þ2; (3)

where the bond rest length c0(t) and force constant k0(t) are
dichotomous random variables that take the two values {co, cc}
and {ko, kc}. These correspond to the values for the open and
closed configurations, respectively. A stochastic process that
switches the dumbbell between the open and closed states is as
follows: suppose the current rest bond length is cc. If during the
evolution the bond length c crosses a threshold and satisfies
the condition c o cc + dcc, a random time th is drawn from a
log-normal distribution with average tc. The rest length and
force constant will remain as c0(t) = cc and k0(t) = kc for this
time, after which c0(t) is set to co and the force constant to
k0(t) = ko. Similarly, if c 4 co � dco, c0(t) is set to c0(t) = cc and
k0(t) to kc after a randomly chosen time th with average to. This
model captures the gross features of active proteins that adopt
open and closed metastable conformations and operate though

Michaelis–Menten kinetics, E þ SÐ
k1

k�1
C �!kcat E þ P, where

E, S, C and P represent the enzyme, substrate, enzyme–
substrate complex and product, respectively, with excess substrate
supplied and product removed.

We shall call dumbbells that undergo such nonequilibrium
cyclic conformational changes active dumbbells. If instead the
stochastic mechanism responsible for these changes is absent
and only thermal fluctuations are present, the dumbbells will
be termed inactive dumbbells. In our model, the inactive
dumbbells will simply fluctuate around the open conformation.
This corresponds to a system where enzymes are not supplied
with substrate and remain in open conformations.

Units and parameters

Results are reported in dimensionless units: lengths are scaled
by the MPC cell size a, masses by the solvent particle mass mf,
energy by kBT and time by (a2mf/kBT)1/2. The spring constant k is
in units of kBT/a2. In the simulations presented below we set
to = 0 and vary tc, the average time spent in the closed conforma-
tion. Furthermore, we let ko = k and choose kc = 2k and cc = co/2.
Our choice of to = 0 corresponds to a system with excess
substrate and reaction rates k1, kcat c k�1. The closed and open
dumbbell bond lengths used in all of the simulation results are
cc = 2 and co = 4, respectively, and dcc = dco = 0.05(co � cc) = 0.1.
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Solvent conditions will be indicated by the value of tMPC. Unless
stated otherwise, simulations use tMPC = 0.01, but some results
will be presented for tMPC = 0.05 to explore the effects of different
solvent conditions (see Appendix A).

3 Properties of single active
and inactive dumbbells

Fig. 1(a) shows how the bond length c(t) of a single active
dumbbell varies with time as the dumbbell cycles between open
and closed conformations. The open and closed rest lengths are
indicated by the solid horizontal lines. Data for two values of
the average time spent in the closed conformation, tc = 0 and
tc = 100, are presented. When the dumbbell is in the metastable
open or closed states its dynamics will be controlled by thermal
fluctuations about the rest values co and cc of these states. The
average time for a complete open–close cycle, tcy, is dominated
by tc when tc 4 tt, where tt is the time taken to pass from one
metastable state to the other. We note that tt will depend on

both the force constants {ko, kc} and the rest bond lengths
{co, cc}. In Fig. 1(b) we show the probability density P(c) of bond
lengths for a range of average hold times tc. For tc = 0 we see two
peaks of roughly equal size centered on lengths slightly larger
than the open and slightly smaller than the closed configura-
tions, as the rest length switches between the two values
{co = 4, cc = 2}. As we increase tc the peak close to co decreases
while the one about cc becomes more pronounced, approach-
ing that of a Gaussian distribution with mean m = cc and
variance s2 = kBT/kc, resulting from thermal motion about cc.
We also present data for an inactive dumbbell, corresponding
to a protein in the absence of substrate that remains in the
open configuration, which also exhibits a Gaussian distribution
with mean m = co and variance s2 = kBT/ko.

The orientational dynamics of the dumbbell molecules can
be characterized by the time tr it takes the orientational
correlation function, CS(t) = hê(t)�ê(0)i = hcos y(t)i, to decay to
1/e of its initial value. Here y is the angle between the dumb-
bell’s initial orientation ê(0) and its orientation ê(t) at time t.
This function is plotted in Fig. 2 for both inactive and active
dumbbells. For inactive dumbbells tr E 300. When the dumb-
bells are active, tr is shorter, particularly for small tc and large k,
with tr E 10 for tc = 20 and k = 90, and tr E 40 for tc = 200 and
k = 20. For the range of particle parameters studied, the
dumbbells do not exhibit orientational alignment, either on
the local or the global levels, with the systems exhibiting
nematic order parameters close to zero and no correlations
between the orientations of neighbouring particles.

The force dipole for a dumbbell molecule is m(t) =
�k0c(t)(c(t) � c0), where k0 and c0 stand for, respectively, the
spring constant and bond rest length at the time when m(t) is
measured. We define the normalized temporal force-dipole
autocorrelation function by Cm(t) = hDm(t)Dm(0)i/hDm2i, with
Dm = m � hmi. It has an initial value of unity and decays to zero
at long times, since the asymptotic value of hm(t)m(0)i is hmi2.
This correlation function is plotted in Fig. 3(a) for several values

Fig. 1 (a) Plot of the instantaneous bond length c(t) against time t for an
active dumbbell with force constant k = 20. Results are presented for
system with average hold times tc = 0 (top) and tc = 100 (bottom).
(b) Probability density of lengths P(c) against length c for the above systems
with various average hold times tc indicated in the plot; P(c) for inactive
dumbbells is also shown. The solid black line on the left peak shows a
Gaussian distribution centred around the closed configuration, with mean
cc and variance s2 = kBT/kc, and the solid black line on the right peak shows
a Gaussian distribution centred around the open configuration, with mean
m = co and variance s2 = kBT/ko.

Fig. 2 Plot of the orientational correlation function CS(t) = hcos y(t)i,
where y is the angle between the dumbbell’s initial orientation and its
orientation at time t, against t for a single dumbbell in solution. Parameters
are indicated in the legend.
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of the force constant k. The force dipole correlations decay with
a strongly damped oscillatory tail at longer times that is due to
the changes in sign when the forces that trigger closing or
opening change their sign. The force dipole correlation time tm,
defined as the time for Cm(t) to decay to 1/e of its initial value,
ranges from tm E 2–7 for the data in the figure. These times are
less than an order of magnitude shorter than the orientational
correlation times. For active dumbbells hDm2i depends on k,
co,c and tc, and its magnitude decreases with increasing tc. We
find that it scales with the force constant as hDm2iB ka, where
a also changes with tc. For the results shown in the inset
to Fig. 3(a), we find a B 1.6 for tc = 20 and a B 1.2 for
tc = 100. In the limit tc - N, a = 1.

The results for an active dumbbell may be contrasted with
those for an inactive dumbbell that simply experiences thermal
fluctuations about its open conformation. The correlation
function Cm(t) for this situation is plotted in Fig. 3(b). It decays

monotonically to its long-time value, signalling the absence of
anti-correlation effects that arise from the active dumbbell con-
formational changes. In addition, hDm2i now scales as hDm2iB k.

A simple Langevin model,

m
d2‘ðtÞ
dt2

¼ �zd‘ðtÞ
dt
� moo

2 ‘ðtÞ � ‘oð Þ þ f ðtÞ; (4)

can be used to compute Cm(t) for an inactive dumbbell. In this
equation z is the friction coefficient, m = mb/2 is the relative
dumbbell mass, oo

2 = ko/m and f (t) is a Gaussian white-noise
random force with correlation function hf (t) fi = 2kBTzd(t). The
force dipole here takes the form m(t) = �koc(t)(c(t) � co) with
ko = k. Using the solution of eqn (4), the unnormalized force
dipole correlation function is given by

mðtÞmð0Þh i ¼ kBTð Þ2 1þ 2e�gt 1þ 2þ oo

o

� �2� ��	

� sinh2 otþ g
2o

sinh 2ot
�
þ k‘o

2

kBT

� e�gt=2
g
2o

sinhotþ coshot
� �o

;

(5)

where g = z/m, o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=4� oo

2
p

with g 4 2oo for overdamped
dynamics. Its limiting form is limt-Nhm(t)m(0)i = hmi2 = (kBT)2,
which we may use to calculate Cm(t). The only unknown
parameter in the expression for hm(t)m(0)i is the friction
coefficient z that appears in the ratio g = z/m. By fitting to the
data for a single force constant, we obtain a value of g B 3.19,
from which one obtains good agreement with the simulation
results for all values of the force constant shown in Fig. 3(b). In
the strongly overdamped limit eqn (5) takes the simpler form,

hmðtÞmð0Þi ¼ kBTð Þ2 1þ 2e�2kt=z þ k‘o
2

kBT
e�kt=z

	 �
: (6)

For inactive dumbbells hDm2i = (kBT)2(2 + kco
2/kBT), which

shows the linear scaling of hDm2i with k seen in the inset to
Fig. 3(b). Since kco

2/2kBT c 1, to a good approximation we may
write hm2i/kco

2 E kBT and this ratio is approximately indepen-
dent of the force constant magnitude. The decay from this
initial value of Cm(t) depends on the value of k, with a larger
value resulting in a faster decay, as can be seen in Fig. 3(b). The
decay time tm varies between tm E 2–8, comparable to that for
active dumbbells, albeit from a smaller initial value.

4 Diffusion in a field of active
dumbbells

The diffusion of a passive particle as well as the self-diffusion of
an active dumbbell, in a field of active dumbbell molecules, are
discussed in this section. A visual representation of the system
under study is given in Fig. 4, which shows an instantaneous
configuration of the dumbbells and passive particle drawn
from the dynamics. Solvent particles are not displayed due to
their large number.

All our simulations start from an isotropic configuration of
dumbbell particles, and for all the system parameters studied

Fig. 3 (a) Plot of Cm(t) = hDm(t)Dm(0)i/hDm2i, with m = �k0c(c � c0) the
force dipole for a dumbbell, against t for an active dumbbell with tc = 100.
The value of k is indicated in the legend. Also shown is data for tc = 20
at k = 70. The value of hDm2i is plotted in the inset as a function of k for
tc = 100 (red circles) and tc = 20 (green triangles). The solid lines show the
dependence of this quantity on ka with a indicated in the plot. (b) Plot of
Cm(t) against t for an inactive dumbbell. Solid black lines show the
theoretical prediction given by eqn (5). The value of hDm2i is shown in
the inset as a function of k, where the solid line shows a ka dependence
with a = 1.
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here we find no evidence of positional or orientational ordering
of the dumbbells.

Passive particle diffusion

As briefly described in the Introduction, the diffusion coeffi-
cients of passive particles are enhanced when the medium in
which they move contains active enzymes or swimmers. Recent
experimental studies have shown that even on microscopic scales
the diffusion of passive molecular tracers are enhanced in the
presence of active catalyst molecules.36 In this subsection, we
determine how the diffusion coefficient of a passive tracer particle
varies as a function of the volume fraction of active dumbbells.
Although our study is motivated by the diffusive dynamics of
active enzyme systems, no specific enzymatic system is consid-
ered. Rather, we explore the dependence of the diffusion coeffi-
cients on a wide range of dumbbell and other system parameters.

Consider a single passive particle immersed in a system
of volume V containing ndb dumbbells with volume fraction
f = vdbndb/V = vdbc, where vdb is the volume of a dumbbell and
c = ndb/V is the dumbbell concentration. We define this volume
to be that of overlapping monomer spheres with radius sc/2 in
the open configuration, vdb = 2p[sc

3/2 � (sc � lo)2(2sc + lo)/8]/3
with vdb = 82.96 for the parameters used here. The effective
volume will also vary as the dumbbell undergoes conforma-
tional changes, so the volume fraction obtained using this
value of vdb simply provides a convenient way to specify the
dumbbell concentration, c.

The diffusion coefficient D may be determined from the
long-time limit of the mean square displacement37 DR2(t) =
h|R(t) � R(0)|2i B 6Dt, where R is the position of the passive
particle and the angular brackets denote a time and ensemble
average. In general the diffusion coefficient will depend on the
dumbbell volume fraction, force constants and average hold
time, D = D(f,k,tc). In the absence of dumbbells (f = 0) it will be

denoted by D0 and for our system parameters this has the value
D0 = 1.14 � 10�3. The thermal diffusion coefficient of the
passive particle in a solution containing inactive dumbbells,
denoted by DT(f), will also be a function of the dumbbell volume
fraction, since crowding by dumbbells will alter its value.

Fig. 5 compares the dependence of D, for two values of k and
fixed tc = 20, and DT on f. (Additional data is given in the
Appendix B.) For inactive dumbbells DT(f) decreases with
increasing f, consistent with the fact that the inactive dumb-
bells act as crowding agents and inhibit the diffusive dynamics
of the passive particle. The solid line in the figure shows that
the diffusion coefficient varies linearly with f over the range of
volume fractions presented. Expressed as a function of f, we
have DT(f) = D0(1 + kof), where the constant ko = �0.321, which
is independent of k, is obtained from a fit to the data. The
dependence on the dumbbell volume fraction is different when
the dumbbells are active: now D increases with increasing f over the
same range of f values, rather than decreasing as is the case
for crowding by inactive dumbbells. We may write D(f, k, tc) =
D0(1 + k(k, tc)f), where k depends on k and tc, with k = 0.701 and
0.067 for k = 90 and 35, respectively, for the data in Fig. 5.

The active contribution to the diffusion coefficient, DA, is
defined by the equation D = DT + DA. Extensive computations of
DA(f, k, tc) have been carried out to determine its dependence
on the dumbbell volume fraction, force constant and average
hold time. Fig. 6 shows that for fixed f, DA has a power-law
dependence on k of the form DA B kd, where the exponent d
depends on tc. For a fixed value of k, as tc increases DA

decreases. The larger tc is, the slower DA increases with k. The
results of these simulations may be summarized in the follow-
ing form for the diffusion coefficient:

D(f, k, tc) = DT(f) + D0kA(k, tc)f, (7)

where kA(k, tc) = k(k, tc) � ko = l(tc)kd(tc). Additional information
on the dependence of l and d on tc is given in Appendix B.
These results are applicable provided k is not too small since as
k - 0 the dumbbell bond will soften and the dumbbell will

Fig. 4 Instantaneous configuration of the system showing active dumb-
bells (green) and the single passive particle (red) for a system with dumb-
bell volume fraction f = 0.133.

Fig. 5 Diffusion coefficient D of the passive particle versus dumbbell
volume fraction f, in a system of active dumbbells with tc = 20 and two
values of the force constant k indicated in the figure. Also shown is DT, the
diffusion coefficient of a passive particle in a system of inactive dumbbells.
Data is normalized by D0, the diffusion coefficient of a single passive
particle in the absence of dumbbells.
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dissociate. Note that as tc - N we have k(k, tc) - kc, its value
for a dumbbell that fluctuates about its closed conformation.

Depending on the system parameters, it is possible that the
decrease in diffusion due to crowding-induced hindered
motion may be larger than the increase due to dumbbell
activity. In such a circumstance D(f)/D0 may be less than unity
(k(k, tc) o 0), although the ratio will be larger than DT(f)/D0 for
systems with inactive dumbbells. In our simulations we found
that k(k, tc) 4 0 for most values of k and tc, although for a given
tc there is a k value at which k(k, tc) will change sign. This will
occur when k(k, tc) = 0, which corresponds to k = (�ko/l(tc))1/d(tc),
given the scaling forms below eqn (7).

The magnitude of the enhancement of the diffusion coeffi-
cient as measured by DA/DT depends strongly on the system
parameters, f, k and tc, as well as tMPC, which determines the
solvent properties. The largest enhancements for k = 90, tc = 20,
tMPC = 0.01 in Fig. 5 are DA/DT E 0.15 and DA/DT E 0.3 for
f = 0.133 and 0.266, respectively. For another set of system
parameters with tMPC = 0.05, corresponding to a smaller
solvent viscosity, tc = 20 and k = 9, we find D = 4.68 � 10�3

and D0 = 4.44 � 10�3 for f = 0.133 giving DA/DT E 0.05. In
addition to the quantitative estimates of the diffusion enhance-
ment, several qualitative features of DA are worth summarizing.
The coefficient kA differs from ko since it depends strongly on k
and tc. For fixed tc, kA B kd where the exponent d decreases with
increasing tc. These qualitative features of DA differ markedly
from those that characterize the behavior of DT.

Active contributions to passive particle diffusion from the
collective hydrodynamic interactions of many active proteins
were discussed earlier using a Langevin model.15 The result was
the following estimate for DA:

Dth
A ¼

SA

60p‘cutZ2vex
f � D0kthA k; tcð Þf; (8)

for a uniform distribution of proteins with concentration
c = f/vex. This order-of-magnitude estimate was derived assum-
ing a random static distribution of protein orientations, slow
protein translational dynamics, and Oseen interactions with a
short-distance cut-off, ccut, taken to be the sum of the effective

radii of the passive particle and protein. In this equation SA

characterizes the strength of the force dipole correlations,
hDm(t)Dm(0)i. The last equality defines the theoretical estimate
of kA. Evaluation of eqn (8) for a range of k and tc values shows
that kth

A (k, tc) B ks for fixed tc, where s o d, smaller than the
exponent d found from simulation. The predicted values of the
diffusion enhancement are consistent with eqn (8) since they
differ by less than an order-of-magnitude from those in our
microscopic simulations; for example, for f = 0.133, k = 35 and
tc = 20 we have Dth

A /DT = 0.01 while from simulation DA/DT = 0.051.

Active dumbbell self-diffusion

The self-diffusion coefficients of the dumbbells themselves,
Ddb, are also modified due to crowding by other dumbbells,
and the effects of crowding differ depending on whether the
dumbbells are active or inactive. Fig. 7(a) shows DT

db and Ddb,
the diffusion coefficients for inactive and active dumbbells,
respectively, as a function of f, normalized by the diffusion
coefficient of a single inactive dumbbell, D0

db = 1.625 � 10�3.
For inactive dumbbells DT

db decreases with increasing f, as
expected for a crowded environment. A similar trend is seen
for active dumbbells, with Ddb also decreasing with an increase
in f, although the decrease is much smaller than that for
inactive dumbbells. As discussed above, recall that even for the
passive particle in a system of active dumbbells, depending on

Fig. 7 (a) Dumbbell self-diffusion coefficient Ddb versus f, for a system of
active dumbbells with tc = 20 and k = 90 (green triangles), and DT

db for a
system of inactive dumbbells (red circles). Data is normalized by D0

db, the
diffusion coefficient of a single inactive dumbbell. (b) Active contribution
to the dumbbell self-diffusion coefficient DA

db versus f.

Fig. 6 Active contribution to the diffusion coefficient, DA/D0, as a func-
tion of k for several values of tc and f = 0.133. Points show simulation data,
lines show fits of the form DA/D0 = lkdf to the data.
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the system parameters, the diffusion coefficient D may decrease
as f is increased, but this decrease will be less strong than that
for a system of inactive dumbbells. In these cases the effects of
activity are not sufficient to completely overcome the tendency
for crowding to decrease the diffusion coefficient. Nevertheless,
Ddb/DT

db 4 1 and the magnitudes of the diffusion coefficient
changes are comparable to those for the passive particle. For
example, for a volume fraction of f = 0.133 and k = 90, tc = 20,
tMPC = 0.01 we have Ddb/DT

db E 1.19, while for k = 9, tc = 20,
tMPC = 0.05 we have Ddb/DT

db E 1.05. Since the dumbbell–fluid
interactions are modeled at a coarse-grained level, further
investigations of diffusion enhancement using more accurate
models of these interactions would be interesting.

Although the tendency for Ddb to increases or decrease with
increasing f depends on the system parameters, one can see that
the values of the dumbbell self-diffusion coefficients differ mark-
edly depending on whether they are active or inactive. In contrast
to D for passive particle diffusion, which tends to a common value
of D0 as f - 0 regardless of whether the dumbbells are active or
inactive, even for a single dumbbell in solution Ddb will be
different if it is active or inactive. For example, for the data in
Fig. 7(a), Ddb(f = 0) = 2.0 � 10�3 and Ddb/D0

db E 1.15 for a single
dumbbell in solution. Since Ddb depends on the dumbbell con-
formation and is larger when the dumbbell is in the compact
closed form, one expects, and finds, Ddb 4 DT

db.38 Furthermore,
when the average hold time tc is smaller, Ddb(f = 0) becomes
smaller, as the dumbbell spends less time in its closed conforma-
tion. This results in a measured Ddb that is smaller at low k values
for dumbbells with shorter average hold times than for ones with
larger tc values, as can be seen in Table 3 in Appendix B.

Accounting for the fact that Ddb is different for single active
and inactive dumbbells in solution, we define the active dumb-
bell contribution to the self-diffusion coefficient by the equation,
Ddb = DT

db + DA
db + DA,0

db , where DA,0
db = Ddb(f = 0) � D0

db. Fig. 7(b)
plots DA

db versus f and shows that the active contribution
increases with increasing f.

The results presented above show that hydrodynamic interac-
tions resulting from nonequilibrium force dipole fluctuations of the
dumbbell molecules give rise to enhanced diffusion of both the
passive particle and the dumbbells themselves when compared to
their values for systems containing only inactive dumbbells. Direct
intermolecular interactions also play a role but estimates based on
dumbbell sizes and ranges of intermolecular forces suggest that
these interactions are important only at the highest volume frac-
tions considered in this study. Contributions from direct inter-
molecular interactions will increase in importance as the average
separation between dumbbells lsep = (vex/f)1/3 approaches the max-
imum length of a dumbbell ldb = co + 2sc = 8.3. This is the case only
for systems with the largest two volume fractions studied, f = 0.133
and f = 0.266, where lsep = 8.54 and 6.78, respectively.

5 Conclusions

The microscopic simulation of systems containing a passive
particle and either active or passive dumbbell molecules has

allowed us to explore how diffusive dynamics varies with
dumbbell activity and volume fraction. The results showed that
the diffusive dynamics of passive particles in systems crowded
by active molecules that change their conformations differs
markedly from that when the crowding molecules are inactive.
The self-diffusion coefficients of the crowding molecules them-
selves also display properties that depend on their activity.
While crowding by molecules that thermally fluctuate about
their open (or closed) metastable states leads to well-known
subdiffusive dynamics and diffusion coefficients that decrease
with increasing volume fraction, diffusion coefficients are
enhanced, or decrease more slowly, when the crowding agents
are active.

Hydrodynamic interactions induced by active force dipole
fluctuations are responsible for the observed diffusion coeffi-
cient increases, and direct intermolecular interactions contri-
bute at the highest volume fractions. The particle-based
dynamical model used in this investigation accounts for both
of these effects and permits a detailed analysis of the phenom-
ena. The magnitudes of the changes to the diffusion coefficient
were shown to depend not only on the volume fraction of
dumbbells, but also on the force dipole strength and the mean
times spent in the open or closed conformations. The diffusion
enhancement in experiments and in our simulations is not
large but its existence signals that conformational changes
arising from catalytic activity play a role in transport in active
systems.

The dumbbell conformational changes in this study were
specified by a stochastic model that was chosen to mimic some
features of the cyclic dynamics of enzymes undergoing con-
formational changes during their catalytic operation. Our
dynamical model can be generalized to include a more detailed
description of the substrate binding, unbinding and reaction
processes with the enzyme so that the dependence of the effects
on substrate concentration can be investigated. More realistic
enzyme models may also be employed.39,40 The results in this
paper provide the basis for the development and further study
of more realistic models to probe transport properties in
systems crowded by chemically active and inactive molecules
and their relevance to biochemical processes in the cell.

Appendix A

Multiparticle collisions were implemented using the MPC-AT+a
rule that employs the Anderson thermostat and conserves
linear and angular momentum.41–43 Allowing the solvent par-
ticles to interact and exchange momentum only in the collision
step, the frequency of which can be chosen according to the
desired properties of the solvent, makes the method computa-
tionally efficient. Since the collision rule conserves mass and
momentum at the cell level, the hydrodynamic flow fields will
be described correctly, a feature that is essential for hydrody-
namic interactions. The solvent viscosity Z can be controlled by
varying the number of solvent particles nf per collision cell and/
or the MPC time, tMPC.31,32 In our simulations, we use a cubic
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simulation box of linear size nx = 50 MPC cells in each
direction, with nf = 10 fluid particles per cell, and an MD time
step of Dt = 0.001.

The choice of parameters was based on several criteria. We
wish to study a large range of force constants in order to identify
the underlying trends in the system behaviour. Since inertia does
not play a significant role in protein dynamics in solution, the
dumbbell dynamics should be overdamped. This condition sets
a limit on the maximum value of the spring constant. Further-
more, for spring energies which are comparable to the thermal
energy (k B kBT/a2), thermal fluctuations dominate the dumb-
bell motion. This lower bound depends only on the value of kBT,
and not on any other fluid parameters. We consider two values
of the MPC time, tMPC = 0.01 which gives a large fluid viscosity of
Z B 36, and tMPC = 0.05 which gives a lower fluid viscosity
of ZB 8.4. In simulations with the higher viscosity a large range
of force constant values may be used while still remaining in the
regime of overdamped dynamics.

The dumbbell mass is chosen so that it is neutrally buoyant.
Since the dumbbell interacts with the solvent only in the MPC
collision step, we define the volume of interaction of a dumb-
bell with the fluid by vf,db = 4prf,db

3/3, where rf,db = (co + cc)/2,
which corresponds to a sphere with a diameter equal to the
average dumbbell spring rest length. Note that this is distinct
from the dumbbell volume vdb defined earlier. This then gives a
total dumbbell mass of mdb = vf,dbnf. Throughout we set cc = 2
and co = 4, such that we have mdb = 141.37. From our fluid and
dumbbell parameters we then obtain a cross-over spring con-
stant between overdamped and underdamped motion of ko 4
90 for tMPC = 0.01 and ko 4 11 for tMPC = 0.05.

To control the switching between the two spring rest lengths
we must set the cut-off parameter that the length must cross before
the hold time is chosen. We set dco = dcc = 0.05(co � cc) = 0.1. The
hold times are chosen from log normal distributions with averages
for the open and closed configurations of to and tc, and with scale
parameter s = 0.5. Throughout the time spent in the open
configuration is to = 0.

For the passive particle we set the passive particle–fluid
interaction radius to be scf = 2 and the passive particle–dumb-
bell bead interaction diameter to be sc = 4.30. The passive
particle is also chosen to be neutrally buoyant, such that its
mass is given by mc = 4pscf

3nf/3 which for the parameters given
here is mc = 335.103.

Dimensionless units can be mapped approximately onto
physical units by matching dimensions and time scales.28

Consider tMPC = 0.05 for which D0 = 4.44 � 10�3 a2/t0. Taking
a radius of 5 nm for the passive particle and assuming D0 is
given by its Stokes–Einstein value one finds t0 E 0.1 ns. For
k = 9 kBT/a2 we then have for the forces corresponding to active
opening and closing F E 20 pN.

Appendix B

This appendix provides some of the numerical values of the
data in the plots, along with parameters that enter in the

phenomenological forms for the diffusion coefficients. The
data used to construct Fig. 5 is in Table 1.

Table 1 Values of D and DT plotted in Fig. 5 as functions of volume
fraction f for tc = 20 and two values of k, for systems with tMPC = 0.01

f/10�2 k D/10�3 DT/10�3

0.66 90 1.145 1.137
1.66 90 1.155 1.134
3.32 90 1.163 1.128
6.64 90 1.182 1.115
13.3 90 1.261 1.092
26.6 90 1.350 1.043

0.66 35 1.140 1.137
1.66 35 1.141 1.134
3.32 35 1.142 1.128
6.64 35 1.145 1.115
13.3 35 1.148 1.092
26.6 35 1.160 1.043

Table 2 Values of l, d and DT found from fitting D = DT + D0lkdf to the
data, for systems with tMPC = 0.01, and with volume fraction and average
hold time tc indicated. The last column gives DT as measued in a system of
inactive dumbbells

f/10�2 tc l/10�3 d Fit DT/10�3 Sim DT/10�3

0.66 20 5.18 1.13 1.137 1.137
1.66 20 4.74 1.12 1.133 1.134
3.32 20 3.60 1.16 1.128 1.128
6.64 20 4.30 1.12 1.112 1.115
13.3 20 4.74 1.16 1.086 1.092
26.6 20 4.82 1.18 1.052 1.043

13.3 30 11.0 0.98 1.087 1.092

13.3 50 19.5 0.73 1.083 1.092

13.3 100 37.1 0.47 1.084 1.092

13.3 200 78.6 0.20 1.097 1.092

Table 3 Diffusion coefficients Ddb of dumbbell particles for systems with
tMPC = 0.01, at average hold times and with spring constants indicated in the table.
All other parameters are set to the values used throughout, given in the text of the
paper. Data for both a system of active dumbbells with average hold time tc and a
system of inactive dumbbells are presented, all at a volume faction of f = 0.133

tc k Ddb/10�3

30 5 1.707
30 10 1.727
30 20 1.758
30 35 1.783
30 90 1.908

50 5 1.717
50 10 1.729
50 20 1.743
50 35 1.774
50 90 1.847

100 5 1.724
100 10 1.741
100 20 1.753
100 35 1.770
100 90 1.817

Inactive 90 1.625
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Table 2 gives representative values of the parameters that
enter in eqn (7) for the passive particle diffusion coefficient.

Table 3 presents data for the dumbbell self-diffusion coeffi-
cient for several values of the hold time tc and force constant k.
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