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A particle-based mesoscopic model for enzyme kinetics is constructed and used to investigate the
influence of diffusion on the reactive dynamics. Enzymes and enzyme-substrate complexes are mod-
eled as finite-size soft spherical particles, while substrate, product, and solvent molecules are point
particles. The system is evolved using a hybrid molecular dynamics–multiparticle collision dynam-
ics scheme. Both the nonreactive and reactive dynamics are constructed to satisfy mass, momentum,
and energy conservation laws, and reversible reaction steps satisfy detailed balance. Hydrodynamic
interactions among the enzymes and complexes are automatically accounted for in the dynamics.
Diffusion manifests itself in various ways, notably in power-law behavior in the evolution of the
species concentrations. In accord with earlier investigations, regimes where the product production
rate exhibits either monotonic or nonmonotonic behavior as a function of time are found. In addition,
the species concentrations display both t−1/2 and t−3/2 power-law behavior, depending on the dy-
namical regime under investigation. For high enzyme volume fractions, cooperative effects influence
the enzyme kinetics. The time dependent rate coefficient determined from the mass action rate law
is computed and shown to depend on the enzyme concentration. Lifetime distributions of substrate
molecules newly released in complex dissociation events are determined and shown to have either a
power-law form for rebinding to the same enzyme from which they were released or an exponential
form for rebinding to different enzymes. The model can be used and extended to explore a variety of
issues related concentration effects and diffusion on enzyme kinetics. © 2011 American Institute of
Physics. [doi:10.1063/1.3528004]

I. INTRODUCTION

Diffusion-controlled reactions have been studied exten-
sively and are one of the central topics in chemical and bio-
logical reaction kinetics. The well-known enzyme-catalyzed
Michaelis–Menten (MM) reaction,1

E + S
k1
⇀↽
k−1

C
kcat→ E + P, (1)

is a standard model in this field. Here E, S, C , and P rep-
resent the enzyme, substrate, enzyme–substrate complex, and
product, respectively. The phenomenological rate constants
for the various reaction steps are k1, k−1, and kcat.

The classical mean-field description of MM kinetics as-
sumes that diffusion is fast compared to reaction and ignores
many-body competition effects. For fast reactions, diffusion
shapes the spatial distribution of reactants, leading to spatial
and temporal inhomogeneous concentration profiles near the
enzymes. The existence of spatial concentration fluctuations
occurring on different time scales leads to rich dynamical be-
havior in diffusion-influenced reactions. It is well known that
reaction rate coefficients can be controlled by diffusion2 and
can become time dependent as a result of diffusion effects.3–5

The final approach of reactant concentrations to equilibrium
is determined by diffusion and leads to a power-law decay
instead of exponential relaxation.
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The nonuniform distribution of substrates and products
can induce correlations among enzymes, which may play
an important role in the dynamics. For example, molec-
ular synchronization waves in arrays of allosterically reg-
ulated enzymes have been suggested to arise as a re-
sult of coherence of catalytic turnover cycles of indi-
vidual enzymes induced by diffusing product molecules.6

Even the simplest reaction–diffusion systems with only two-
body reactions and no autocatalysis show very rich and
incompletely understood phenomena. Investigations of the
breakdown of classical descriptions of MM kinetics re-
quire theoretical tools that can probe diverse space and
time scales and can account for fluctuations. A variety of
theoretical,7–22 simulation,18–29 and experimental30–33 studies
have been used successfully to study a range of problems in
this area.

To simplify this complicated problem, a single enzyme
is usually considered and enzymes are assumed to be static.
These assumptions may not always be valid. Once a sub-
strate or product is released from a complex, it may diffuse
and rebind with other enzymes, giving rise to cooperative en-
zyme reactions. The mobility of enzymes can lead to new
interactions among them as the enzymes move into and out
of the range of the potential, which may affect dynamical
behavior.27, 34 Hydrodynamic interactions are long ranged and
can influence enzyme motions.34 Therefore, the assumptions
that enzymes act independently or are immobile may neglect
important correlations.
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Since such complex many-body problems cannot be
solved exactly, theoretical treatments must rely on approxi-
mations to the reactive dynamics. Consequently, it is of in-
terest to develop simulation schemes that are able to de-
scribe reaction–diffusion induced correlations, fluctuations,
and hydrodynamic interactions. Such methods can provide
additional insights into the dynamical behavior of these sys-
tems and be used to test the applicability of other theoretical
models.

In this paper, we construct a simple mesoscopic model
for MM kinetics, which is based on a hybrid molecu-
lar dynamics–multiparticle collision (MD–MPC) dynamics
for the time evolution of the reactive species and solvent
molecules.35, 36 We focus on the influence of diffusion on the
reaction dynamics and cooperative effects involving the in-
teractions among many enzyme molecules. The paper is or-
ganized as follows. In Sec. II, the mesoscopic MM model is
introduced. In this section both nonreactive and reactive colli-
sion dynamics that preserve mass, momentum, and energy are
described. Details related to the simulation of the mesoscopic
dynamics are given in Sec. III. In this section the simulation
results are also presented and discussed. Section IV presents
results for systems where the volume fraction of enzymes and
complexes is high. The conclusions of this investigation are
given in Sec. V.

II. MESOSCOPIC ENZYMATIC REACTION DYNAMICS

We now describe how a coarse-grain model of a sys-
tem in which Michaelis–Menten-type enzymatic reactions
take place can be constructed. Our mesoscopic model pre-
serves important general features of full molecular dynam-
ics, such as the basic mass, momentum, and energy conserva-
tion laws but eliminates fine details of both nonreactive and
reactive collision events. The simplification of the dynamics
allows us to carry out long-time simulations of the reactive
dynamics for large systems. Through the use of such a meso-
scopic model, we can investigate the influence of diffusion
on the reaction dynamics and cooperative effects involving
the interactions among many enzymes. Because our dynam-
ics preserves the basic conservation laws, hydrodynamic in-
teractions are properly accounted for and no additional as-
sumptions about friction coefficients or random forces need
be made.

We consider a system comprising reactive E , S, C , and
P species, as well as a large excess of nonreactive solvent
molecules M that serve as heat bath. The reactive species
are idealized as structureless particles in order to coarse
grain over the details of the molecular structure and catalytic
process, such as internal conformational changes in the en-
zyme and specific aspects of bond-making and bond-breaking
events. The large enzyme and enzyme–substrate molecules
are treated as finite-size particles while all other species, sub-
strate, product, and solvent molecules are taken to be point
particles. An instantaneous configuration of the system show-
ing these species (with the exception of the large number of
solvent molecules) is given in Fig. 1.

FIG. 1. Instantaneous configuration of the system containing enzymes
(red spheres), enzyme–substrate complexes (blue spheres), substrates (black
dots), and products (cyan dots). Solvent molecules are not shown.

A. Nonreactive dynamics

The nonreactive dynamics is described by hybrid molec-
ular dynamics–multiparticle collision dynamics.35–38 In this
scheme the enzymes and enzyme–substrate complexes inter-
act with each other and with the solvent, substrate, and prod-
uct molecules through repulsive Lennard-Jones (LJ) poten-
tials,

VLJ(r ) = 4εν

[(σν

r

)12
−

(σν

r

)6
+ 1

4

]
, r < rc, (2)

and zero otherwise. Here, rc = 21/6σν is a cutoff distance and
ν labels the type of interaction. The total potential energy
for a system with NE enzyme molecules with coordinates
rNE = (r1, r2, . . . , rNE ), with similar expressions for the other
species, is given by

V(rNE , rNC , rNS , rNP , rNM )

= VE E + VEC + VCC + VE S + VE P + VE M

+VC S + VC P + VC M , (3)

where the subscripts indicate the type of interaction. There
are no interaction potentials among the solvent, substrate, or
product molecules. These interactions are described by multi-
particle collisions discussed below. The mesoscopic dynamics
consists of concatenations of two steps: (1) Newtonian evolu-
tion of all species governed by the potential V . This is the
MD step of the algorithm. (2) Multiparticle collisions among
the S, P , and M species occur at discrete time intervals τ .
In order to carry out the multiparticle collisions, the system
is partitioned into cells ξ and rotation operators ω̂ξ , chosen
from some set of rotation operators, are assigned to each cell.
For cell ξ the center of mass velocity Vξ is computed and the
postcollision velocity of the particle i in the cell is given by

v′
i = Vξ + ω̂ξ (vi − Vξ ). (4)
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This simple collision dynamics mimics the net effects
of many real collisions that occur in the time interval τ .
MD–MPC dynamics conserves mass, momentum, and energy
as well as phase space volumes. Thus, it has many of the
important characteristics of full molecular dynamics but is
computationally efficient since there are no forces among
the majority of the particles in the system. The transport
properties of the solvent undergoing MPC dynamics can
be computed analytically.35, 36, 39–41 Reviews of this method
which contain additional details concerning the theory, simu-
lation methods, and applications are given in Refs. 37 and 38.

B. Reactive dynamics

The reaction dynamics is also described at a mesoscopic
level that preserves the essential features of full molecular dy-
namics. Reactive collisions are constructed to conserve mass,
momentum, and energy and account for energy transfers to
and from the surrounding solvent molecules that serve as heat
bath. Earlier, reactive MPC models considered simple cat-
alytic interconversion between two species42 or highly coarse
grained bulk reactive dynamics.43 The complex formation and
dissociation reactions involving finite-size species considered
here require a new set of reactive collision rules to ensure that
the conservation laws are satisfied.

Enzyme catalysis involves a number of processes that de-
pend on the detailed structure and dynamics of the protein,
substrate, and product molecules. Typically, the substrate dif-
fuses to the vicinity of the active site of the protein where
it binds to form the enzyme–substrate complex. This often
then induces conformational changes in the enzyme–substrate
complex that lead to a chemical reaction that produces prod-
uct, which then dissociates from the complex to regenerate the
enzyme. The bond-making and bond-breaking events, as well
as the conformational transformations in the protein and re-
active event, involve substantial energy changes. This energy
is ultimately dissipated by the surrounding solvent medium.
Thus, a full description of such dynamics requires a micro-
scopic, or finer mesoscopic, level of detail.44

Our mesoscopic description of enzyme kinetics does not
attempt to describe this level of detail. Instead it focuses
on the diffusive dynamics leading to the formation of the
enzyme–substrate complex and the subsequent dissociation
of the complex to form either substrate or product. All micro-
scopic details described above are subsumed in simple reac-
tive collision events characterized by reaction rates that, nev-
ertheless, account for the net energy changes with the environ-
ment in which the reactions take place. Such a coarse descrip-
tion allows us to study the effects of diffusion on the enzyme
kinetics in some detail and also consider cooperative reaction
and diffusion effects in ensembles of enzyme molecules. Be-
low we show how the main reactive events can be described
at a mesoscopic level. Full details are presented in Appendix.

1. Formation of enzyme-substrate complex:
E + S → C

The enzyme and substrate diffuse in the solvent until they
encounter each other. The substrate must find the active region

on the enzyme before the catalytic reaction can commence.
While our model can be generalized to account for an active
domain on the surface of the enzyme, here we model this ef-
fect by carrying out the reactive collision with probability p
on encounter. It is possible that more than one substrate will
enter the reaction zone of the enzyme in a given time interval
and we must account for this possibility as well. More specifi-
cally, once n substrate molecules enter into the radial reaction
region r < rc of an enzyme for the first time, the probability
of reaction is pR = 1 − (1 − p)n . If the substrates do not re-
act with the enzyme at the first MD time step as a consequence
of a small reaction probability p (or small n) when they enter
in the reaction region, they lose the opportunity to react until
they enter into the region from outside again. One of the n
substrates is randomly selected for possible reaction. A ran-
dom number in [0,1) is chosen and if it is smaller than pR the
reaction E + S → C occurs.

The velocity of the newly formed complex, v′
C , is taken

to be equal to the center of mass velocity of the enzyme and
the substrate molecule that participates in the reaction:

v′
C = VE S = m E vE + mSvS

mC
, (5)

where the mass of the complex is mC = m E + mS . The rel-
ative energy of the colliding pair is ultimately dissipated in
the environment and to take this into account we change the
velocities of neighboring solvent molecules. The manner in
which this is done for an arbitrary number of participating
solvent molecules so that the basic conservation laws are pre-
served is described in Appendix. Here it is sufficient to imag-
ine that only two neighboring solvent molecules M1 and M2
participate in this event and in this case the general formulas
derived in Appendix reduce to the following expression for
their postreaction velocities:

v
′
M1 = 1

2 (vM1 + vM2) + 1
2 n̂1v ′

Mr
(6)

v
′
M2 = 1

2 (vM1 + vM2) − 1
2 n̂1v ′

Mr ,

where

v ′
Mr =

(2μE S

mM
v2

r + 4

mM
VE S(rE S) + v2

Mr

)1/2
. (7)

Here vMr = vM1 − vM2 is the relative velocity of the two
solvent molecules, n̂1 is a randomly chosen unit vector,
vr = vE − vS , rE S = rE − rS , and μE S is the reduced mass
of E and S. It is easy to verify that with this choice of postre-
action velocities mass, momentum, and energy are conserved
in the reaction leading to complex formation.

2. Dissociation of enzyme-substrate complex:
E + S ← C → E + P

Once a complex is formed it may either dissociate to re-
lease the substrate or the catalytic reaction can occur with
production of the product molecule. To account for these re-
actions, we assume that the lifetimes of the complex before
dissociation, td , are exponentially distributed, although other
distributions may be chosen to account for more specific prod-
uct release mechanisms. The probability that no reaction oc-
curs in the time interval td is pd (td ) = exp (−(k0

−1 + kcat)td ).



044503-4 J.-X. Chen and R. Kapral J. Chem. Phys. 134, 044503 (2011)

σ
E

E

FIG. 2. Schematic representation of the dissociation C → E+S (or P).

Here k0
−1 and kcat are the intrinsic dissociation rate con-

stants for substrate and product, respectively. If the complex
is formed at time t , the time of the next dissociation, t + td
can be computed from t + 1/(kcat + k0

−1) ln(1/r1), where r1

is random number chosen from a uniform distribution on the
interval [0,1). Given another random number r2 on [0,1), the
reaction C → E + P will occur if r2 < kcat/(kcat + k0

−1),
otherwise the reaction is C → E + S will take place.

We assume that the newly formed S or P molecules ap-
pear at a distance rS(P) = rC + n̂rc, where n̂ is a randomly
oriented radial unit vector (see sketch in Fig. 2 ), which is
outside the range of the potential acting between E and ei-
ther S or P . (It is not necessary to assume that S or P
appear at a distance outside the range of the potential but this
simplifies the computation of the postreaction velocities.) En-
ergy is taken from the environment to affect the dissociation
reactions. Once again we consider the simple case where two
neighboring solvent molecules supply this energy from their
relative motion. Thus, the postreaction velocities are taken to
be (see Appendix)

v′
M j = 1

2 (vM1 + vM2), j = 1, 2, (8)

for the solvent molecules and

v′
E = vC + mS

mC

√
mM

2μE S
r̂SE vMr ,

(9)

v′
S = vC − m E

mC

√
mM

2μE S
r̂SE vMr ,

for the enzyme and substrate molecules. Here r̂SE is a unit
vector pointing from E to S.

When dissociation of the complex occurs, the postreac-
tion velocity of the substrate is determined by the velocities
of the neighboring solvent molecules that participate in the
energy exchanges that occur during reaction. In Fig. 3, we
show the velocity distribution of the newly formed substrate
molecules as a result of the complex dissociation. These re-
sults show that a Maxwell–Boltzmann distribution, charac-
terized by the temperature of the system, is obtained. Since

FIG. 3. Velocity distribution of newly formed substrate molecules that re-
sult from dissociation of the enzyme–substrate complex (solid triangles).
The simulation results are compared with a Maxwell–Boltzmann distribu-
tion with kB T = 0.2 (solid line). The simulation parameters: NE (0) = 200,
NS(0) = 6000, σE = 3.0, kB T = 0.2, and k−1 = 0.015.

solvent molecule thermal equilibrium is rapidly established
on the slower time scale of reactive events, the newly formed
substrate molecule velocities reflect this rapid solvent equili-
bration process and exhibit an equilibrium velocity distribu-
tion. Similar expressions apply for product formation45 where
S is replaced by P . As for nonreactive dynamics, this reac-
tive collision dynamics conserves mass, momentum, and en-
ergy. A more general treatment of such dissociation reactions
is given in Appendix.

When the reactive collision events for binding of the sub-
strate to the enzyme to form the complex and dissociation of
the complex to regenerate the substrate and enzyme are com-
bined with multiparticle collisions, this reversible kinetics sat-
isfies detailed balance.

III. SIMULATION OF ENZYME CATALYSIS

A. Simulation details

Our simulations of the enzyme kinetics were carried out
in a cubic box with sides L = 60 and periodic boundary con-
ditions. The enzyme molecules were first placed in the box
with randomly chosen positions, avoiding overlapping con-
figurations. The pointlike substrate and solvent particles were
then randomly assigned positions that were within the cube
but outside the enzyme spheres so that the initial potential
energy is zero. When necessary, the nonreactive dynamics is
then simulated to further equilibrate the initial configuration.

In order to perform multiparticle collisions, the box was
subdivided into L3 = 603 cells with length a0 = 1. The aver-
age number density of solvent molecules per cell was nM = 8
so that there were on average 1.728 × 106 solvent molecules
in the box. Velocity rotations by π/2 about randomly cho-
sen axes were carried out in the multiparticle collision step.
The masses of the S, P , and M species were taken to be
identical and given by m = 1, while the mass of the enzyme
was adjusted according to its volume to ensure that the en-
zyme is approximately neutrally buoyant. Random shifts of
the grid defining the collision cells were also applied, so that
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Galilean invariance is ensured.37–39, 46 The initial velocities of
all molecules were chosen from a Maxwell–Boltzmann distri-
bution characterized by the temperature T .

The LJ potentials describing the interactions between
enzyme or complex and substrate, product and solvent
molecules were characterized by an energy parameter ε1

= 1.0 and length parameter σ1 = σE = 3.0. The cutoff dis-
tance is rc = 21/6σ1. The LJ potentials describing the E − E ,
E − C , and C − C interactions have energy parameter ε2

= 2.0 and length parameter σ2 = 6.2. All quantities in the
paper were reported in dimensionless units based on energy
ε1, mass m, and cell length a0 parameters: r/a0 → r ,
t(ε1/m/a2

0)1/2 → t and kB T/ε1 → T . The MD time step
used to integrate Newton’s equations of motion with the ve-
locity Verlet algorithm was �t = 0.005. Multiparticle colli-
sions were carried out every 200 MD steps so that τ = 1.

While the enzyme and complex molecules experience
soft LJ interactions with the point particle species and each
other in theoretical estimates given below, it is useful to define
an approximate enzyme size to account for reactive collisions
with substrate molecules and to estimate enzyme diffusion co-
efficients and volume fractions. Since the point particles inter-
act with the enzymes with a repulsive LJ potential with length
parameter σE , and the potential range is rc = 21/6σE , this is
an appropriate value to take for the enzyme radius in its inter-
actions with the solvent, substrate, and product molecules (see
Fig. 2). The mass of a neutrally buoyant enzyme molecule was
then taken to be m E ≈ 4πr3

c nM/3, where nM is the number
density of solvent molecules.

B. Michaelis–Menten kinetics

There are numerous theoretical studies of the influence of
diffusion on enzyme kinetics, which make various predictions
for rate constants or time evolution of concentrations. These
investigations range from those based on diffusion or Brow-
nian motion models to kinetic theory and molecular dynam-
ics descriptions. Although our model is mesoscopic in char-
acter, in contrast to most other approaches with the excep-
tion of full molecular dynamics, it is a particle-based scheme
that explicitly accounts for all species, including solvent, and
preserves all conservation laws. Consequently, it can be used
to test the validity of simpler theories that coarse grain over
some of these degrees of freedom or make other simplifying
assumptions to obtain the results.

For the enzyme catalyzed reaction,

E + S
k1
⇀↽
k−1

C
kcat→ E + P,

the production rate of product P , ν(t), is given by

ν(t) = d[P(t)]

dt
= kcat[C(t)], (10)

where [α] = Nα/V is the number density of species α.
The maximum production rate occurs when all of the enzyme
exists in the form of the enzyme–substrate complex so that
[C] = [E(0)] ≡ [E0] and νmax = kcat[E0].

Standard treatments of MM kinetics assume mean-field
kinetic equations where the rate constants k1 and k−1 have

their intrinsic values, k0
1 and k0

−1, respectively, and make use
of a steady state approximation on the rate of complex forma-
tion to give

[C(t)] = [C]ss

(
1 − e−(k0

1 [S0]+k0
−1+kcat)t

)
, (11)

for the pseudo-first-order condition where [S] ≈ [S0]
� [E0]. The time dependent production rate in this approx-
imation is denoted by ν0(t). The steady state concentra-
tion of complex is [C]ss = [E0][S0]/(K 0

M + [S0]), with K 0
M

= (k0
−1 + kcat)/k0

1 the Michaelis constant. The steady state
production rate then has the form, ν0

ss = kcat[E0][S0]/(K 0
M

+ [S0]).
Within such a framework, diffusion effects may be

taken into account approximately through the modification
of the intrinsic reaction rate constants by diffusion so that47

k D
1 = k0

1kD/(k0
1 + kD) and k D

−1 = k0
−1kD/(k0

1 + kD), where
the Smoluchowski rate constant is kD = 4π Dσ̄E with D
= DE + DS the mean diffusion coefficient of the enzyme and
substrate molecules and σ̄E an effective enzyme radius where
the reactive boundary condition is applied in the solution
of the diffusion equation. Using these forms, the Michaelis
constant becomes K D

M = K 0
M + kcat/kD . The time depen-

dent production rate is νD(t) and the corresponding steady
state production rate is νD

ss = kcat[E0][S0]/(K D
M + [S0]). If

diffusion effects are completely neglected then K D
M → K 0

M
and the steady state production rate adopt its earlier form
νD

ss → ν0
ss .

It is well known that diffusion influences the nature of the
time evolution of species concentrations and rate constants.
In particular, the rate constant k1, which characterizes the

irreversible formation of the complex, E + S
k1→ C acquires

time dependence. In the limit of low enzyme concentrations
where all enzymes act independently and assuming diffusive
dynamics, k1(t) has the form,3–5

k1(t) = k0
1kD

k0
1 + kD

+ (k0
1)2

k0
1 + kD

exp
[(

1 + k0
1

kD

)2 Dt

σ̄ 2
E

]

× erfc
[(

1 + k0
1

kD

)( Dt

σ̄ 2
E

)1/2]
. (12)

This expression for k1(t) is obtained when the diffusion equa-
tion is solved subject to the radiation boundary condition,
k0

1nS(σ̄E , t) = 4πσ̄ 2
E Dr̂ · ∇nS(σ̄E , t), where nS(r, t) is the lo-

cal substrate density at a distance r from the enzyme and r̂
is unit radial vector. As noted earlier, k0

1 is an intrinsic rate
constant that characterizes reactive collision events in the dif-
fusive boundary layer around the enzyme. Although the en-
zymes are soft spheres in our model, an estimate of k0

1 can
be obtained by supposing they are hard spheres and approx-
imating the collision frequency of the enzyme and substrate
molecules to give42

k0
1 = pR

(8πkB T

μE S

)1/2
r2

c . (13)

Since this intrinsic rate coefficient characterizes reactive
events inside the diffusive boundary layer around the enzyme
the radius rc = 21/6σE need not be the same as σ̄E where
the boundary condition on the diffusion equation is applied.
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FIG. 4. (a) Plot of the production rate ν(t)/νmax vs time. (b) Log-linear
plot of ν(t)/νmax vs time. The solid, dashed, and dotted curves correspond
to ν(t)/νmax from the simulation, ν0(t)/νmax and νD(t)/νmax, respectively.
The vertical arrows indicate the characteristic times tc and τ0. The cor-
responding steady state values of ν0

ss , νD
ss , and νss are shown. (c) Fit of

(ν(t) − νss )/νmax shows that the relaxation from the peak to the steady state
value is governed by a power law with t−1/2. The data are the result of an av-
erage over 16 realizations with different initial random configurations of en-
zymes. Simulation parameters: NE (0) = 100, NS(0) = 10000, kB T = 0.2,
σE = 3.0, pR = 1.0, k0

−1 = 0.1, and kcat = 0.5.

This rate coefficient can be determined by simulation and the
validity approximate form can be tested.

Diffusion effects lead to power-law behavior of the con-
centrations, in contrast to that of classical kinetics where the
production rate ν(t) exponentially approaches its steady state
value νss [see Eq. (11)]. The effects of diffusion on the full
MM mechanism give rise to various forms of power-law be-
havior for long times, depending on the kinetic regime under
investigation. There is a large literature that has explored such
effects using diverse theoretical and simulation models.7–29

Here we present simulation results that illustrate some of
the phenomena exhibited by diffusion-influenced enzyme
kinetics.

One of the nontrivial effects of diffusion predicted by ki-
netic theory12 to exist in MM kinetics is the existence of a
peak in the product production rate ν(t) that precedes a t−1/2

power-law decay to the steady state value, νss = kcat[C]ss .
In Fig. 4(a), we plot ν(t)/νmax = [C(t)]/[E0] versus time,
which displays a nonmonotonic power-law approach to the
steady state, in accord with earlier theoretical predictions12

and simulations.18

The existence of two dynamic regimes can be discerned
from the plots of ν(t)/νmax in Fig. 4(b): a short-time regime
that precedes the maximum in the plot, and a long-time
regime where ν(t) decays to its steady state value. In the
initial regime, abundant surrounding substrate molecules re-
act rapidly with the enzyme and diffusion plays a minor role.
In this “quasiclassical” regime, characterized by the intrinsic
rate constants k0

1 and k0
−1, ν(t) increases exponentially with

time constant τ0 = (k0
1[S0] + k0

−1 + kcat)−1, to an apparent in-
trinsic steady state value ν0

ss . We denote the time at which
ν(t)/νmax deviates from ν0(t)/νmax by tc. For the conditions
in Fig. 4, we have τ0 � tc.

In the second “diffusion-controlled” regime, diffusion
dominates. In Fig. 4(b), for times longer than tc, one sees
that the system slowly relaxes to the steady state value. Since

FIG. 5. (a) Plot of the production rate ν(t)/νmax vs time. The solid, dashed,
and dotted curves denote ν(t)/νmax from the simulation, ν0(t)/νmax and
νD(t)/νmax, respectively. The vertical arrows indicate the times tc and τ0.
(b) Log–log plot (νP − ν(t))/νmax shows a t−3/2 power-law behavior. The
linear dotted line corresponds to t−3/2 and is presented for comparison. (c)
The log–log plot (ν(t) − νss )/νmax for long times indicates a t−1/2 power-
law decay to steady state. The data are an average of 32 realizations of
the dynamics. Simulation parameters: NE (0) = 100, NS(0) = 1000, kB T
= 0.2, σE = 3.0, pR = 1.0, k0

−1 = 0.1, and kcat = 0.01.

ν(t)/νmax has exceeded its steady state value at the end of
the quasiclassical regime at tc, a peak is observed in the
curve. In the diffusion-controlled regime, the rate constants
attain their full values k1 and k−1. The effects of diffusion
manifest themselves in the steady state values of the prod-
uct production rates which satisfy the inequalities: ν0

ss/νmax

> νss/νmax > νD
ss/νmax

12 [see Fig. 4(b)]. The product produc-
tion rate approaches its steady state value from above, which
has been also observed in recent studies.19 Diffusion is also
responsible for the slow power-law approach to the steady
state. In Fig. 4(c), we show a log–log plot of the deviation
(ν(t) − νss)/νmax in the diffusion-controlled regime, which
shows the t−1/2 asymptotic power-law behavior predicted by
kinetic theory.12

Figure 5(a) shows results for a different set of parame-
ters with a smaller rate constant kcat and ten times smaller
initial substrate concentration. Both of these changes increase
the characteristic time τ0. Now τ0 is comparable to tc so
that the diffusion-controlled regime is reached before ν0(t)
has evolved to its peak value, νP . In this diffusion-influenced
regime between τ0 and the peak, a t−3/2 power law is found,
which can be seen from the log–log plot shown in Fig. 5(b).
Subsequent to the formation of a very small and broad peak at
νP , ν(t) relaxes to its steady state value with a t−1/2 power
law decay as shown in Fig. 5(c).

In addition to the kinetic theory prediction of a t−1/2

power-law decay for [C(t)] when [S0] � [E0], kinetic the-
ory also predicts12 a t−3/2 power law for low substrate con-
centrations, which depends on the initial conditions. While
the parameter values and initial conditions are not the same
as in the kinetic theory calculations, the results in Figs. 5(b)
and 5(c) demonstrate that regimes where both t−1/2 and t−3/2

power-law behaviors exist for enzyme kinetics.
The t−3/2 asymptotic behavior is the same as that for

the reversible formation and dissociation of the complex, E
+ S ⇀↽ C . We have carried out simulations of this reversible
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reaction mechanism and have confirmed the existence of a
t−3/2 power-law decay. We note that the asymptotic behavior
of the reaction E + S ⇀↽ C ⇀↽ E + P also shows a t−3/2

power-law decay.11

In classical MM kinetics, diffusion is assumed to be fast
enough so that the solution is well mixed and the depletion
of substrates near the enzyme as a result of reaction may be
ignored. However, this approximation is not valid in general
and inhomogeneities may develop in the system that will in-
fluence the dynamics. In Fig. 6, we show the time dependent
substrate–enzyme(complex) average radial distribution func-
tion,

gS(r, t) =
〈∑NS (t)

i=1 δ(r − |rSi (t) − rα j (t)|)
〉

(4πr2[S(t)])
, (14)

where α = E, C and the bracket signifies an average over
enzymes and complexes. In Fig. 6(a), we plot the time average
of gS(r, t) in the steady state. The substrate concentration
gradient which is formed near the enzymes and complexes
can be seen in this figure.

In dilute systems with small binding rates, similar dy-
namical behavior occurs near to and far from the enzyme.
The concentration of substrate decreases with time as a re-
sult of product formation. If the binding reaction is fast and/or
[S0] � [E0], the kinetics may differ in these spatial regions.
Figure 6(b) plots the time dependent substrate distribution
near the enzyme divided by its value at t = 0. Due to the
high initial concentration of substrates and fast binding to en-
zymes, there is strong substrate depletion at short times. Slow
diffusion is unable to compensate the decrease in substrate in
the binding reaction. Subsequently, some substrate molecules
are released when the complex dissociates. This, in addition
to replenishment by diffusion, leads to an increase and peak in
the substrate concentration at intermediate times. Since prod-
ucts are created continuously, the substrate distribution re-
laxes to a quasisteady value and slowly decays to zero. These
results are consistent with recent Brownian dynamics simula-
tion studies.19

IV. MANY-BODY EFFECTS IN ENZYME KINETICS

Thus far we have considered systems with low concen-
trations of enzymes where the enzyme molecules act almost
independently. Even in simple catalytic reactions, coopera-
tive effects due to high concentrations of catalysts have been
shown to lead to nonanalytic dependence of reaction rates on
the volume fractions of catalytic particles.42, 48, 49 If the en-
zymes occupy significant volume fractions of the system and
no longer act independently, we expect cooperative effects
to play a role; for example, substrate or product molecules
which are released when the complex dissociates may dif-
fuse through the solution and rebind to other enzymes. In vivo
enzymatic reactions occur in crowded cellular environments
where the equilibrium and and dynamical properties may be
very different from their ideal solution counterparts.50–53 Co-
operative effects in systems of this type can influence catalytic
turnover cycles in the system. In addition, the concentration
of reactants in the vicinity of one enzyme may be affected

by the presence nearby enzymes, which gives rise to spa-
tiotemporal fluctuations and correlations between enzymes. In
such cases enzyme kinetics may not be described accurately
by mean field equations which neglect such correlations. In
this section, we explore some features of cooperative enzyme
kinetics.

A. Rate coefficients

The functional dependence of the forward and reverse
reaction rates on the chemical concentrations defines the re-
action rate coefficients that characterize the individual steps
in a reaction mechanism. These rate coefficients are usually
determined by writing the time rate of change of chemical
concentrations as mass action chemical rate laws. For non-
ideal systems, the functional form of this relation has been the
subject of considerable discussion.54 Here we assume mass
action kinetics applies and study the nature of the rate co-
efficients defined in this way for systems where the volume
fraction of enzymes and enzyme–substrate complexes is large
and the solution no longer behaves ideally. The volume frac-
tion of enzymes and complexes is given approximately by
φ = NE (0)VE/V since the enzymes and substrates have the
same volumes VE in our model and the total number of en-
zymes and complexes is conserved, NE (t) + NC (t) = NE (0).
(For our soft potential model the volume VE is not strictly de-
termined but can be estimated from σE in the LJ potential.)

Consider the reversible binding of the substrate to the en-
zyme, E + S ⇀↽ C . If N f (t) is the number of reactions per
unit volume that convert reactants to products in the time in-
terval t , we define the time dependent forward reaction rate
by R f (t) = dN f (t)/dt . The reverse reaction rate is defined
in an analogous fashion as Rr (t) = dNr (t)/dt . The net re-
action rate is R(t) = R f (t) − Rr (t). The reaction rates are
written in mass action form as

R f (t) = k ′
1(φ, t)[E(t)][S(t)],

(15)
Rr (t) = k ′

−1(φ, t)[C(t)],

where the primes denote the effective rate coefficients defined
by these equations that may depend on the volume fraction as
well as the time.

At equilibrium we have R f = Rr , so that

[C]eq

[E]eq[S]eq
= k ′

1(φ)

k ′
−1(φ)

, (16)

where the eq subscripts denote equilibrium concentrations,
and rate coefficients without time arguments are the values
these quantities take at equilibrium. The equilibrium constant
for a nonideal system is expressed in terms of the ratio of ac-
tivities as

Keq = aC

aE aS
= γC

γEγS

[C]eq

[E]eq[S]eq
, (17)

where aα is the activity of species α. In the second equal-
ity we used the relation between activities and concentrations
aα = γα[α]eq in terms of the activity coefficient γα . Conse-
quently, we may write



044503-8 J.-X. Chen and R. Kapral J. Chem. Phys. 134, 044503 (2011)

0.01 0.1 1 10 100
0.2

0.4

0.6

0.8

1.0
(b)

(a)
g S

(r
C
,t)

/g
S
(r

C
,0

)

t

5.5 6.0 6.5 7.0 7.5 8.0
0.0

0.4

0.8

1.2

r

g S
(r

,t ss
)/

g S
(r

,0
)

FIG. 6. (a) The normalized substrate–enzyme (complex) radial distribution
function in the steady state. (b) Plot of gS(rc, t)/gS(rc, 0) the time depen-
dent averaged deviation of substrate concentration at rc . Simulation parame-
ters: NE (0) = 50, NS(0) = 10000, kB T = 0.05, σE = 5.0, pR = 1.0, k0

−1= 5.0, and kcat = 0.5.

Keq = γC

γEγS

k ′
1(φ)

k ′
−1(φ)

. (18)

This equation provides a relation between the ratio of effec-
tive forward and reverse rate coefficients and the equilibrium
constant in the nonideal system.

Simulations of the enzyme reaction dynamics for systems
with large φ can be used to explore if a mass action descrip-
tion is the most appropriate or convenient way to analyze the
kinetics. For our model system, the relation between the ac-
tivity and concentration is largely determined by volume ex-
clusion effects. Approximating the enzymes and complexes
as hard spherical particles, the activity coefficient of species
α is given by51 γα = 1/pα , where pα is the probability of
successful insertion of a molecule of species α at a random
location in the system. For the point substrate particles, this is
just fraction of the total volume not occupied by enzymes or
complexes, pS = 1 − φ, so γS = 1/(1 − φ). Similar consid-
erations apply for γE and γC but one must account for the
finite sizes of these species; however, since the volume of an
enzyme is the same as that of a complex, γE = γC . Hence,
we have the more specific relation between the equilibrium
constant and the effective rate coefficients,

Keq = k ′
1(φ)(1 − φ)

k ′
−1(φ)

. (19)

The forward and reverse rate coefficients were deter-
mined from the simulations using the definitions discussed
above. The results show that k ′

−1(φ, t) is weakly dependent
on φ and the results for different φ cannot be distinguished
within the statistical uncertainty of our simulations; however,
k ′

1(φ, t) depends strongly on the enzyme and complex volume
fraction, in accord with earlier observations.28

In view of these results and Eq. (19), it is convenient to
scale k ′

1 by (1 − φ) and define the scaled forward, k1(t)
≡ k ′

1(φ)(1 − φ), and reverse, k−1(t) ≡ k ′
−1(φ), rate coeffi-

cients. Figure 7 plots the k1(t) and k−1(t) rate coeffi-
cients versus time for two different initial numbers of en-
zyme molecules: NE (0) = 100 corresponding to a system
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FIG. 7. Time dependent rate coefficients in the reversible reaction E + S
⇀↽ C for different initial numbers of enzyme molecules. (a) The time evolu-
tion of k1(t). Inset: plot of gS(rc, t)/gS(rc, 0) (ordinate), the time dependent
substrate radial distribution function at rc , vs time (abscissa). (b) The time
evolution of k−1(t). Simulation parameters: NS(0) = 1000, kB T = 0.2,
σE = 3.0, pR = 1.0, and k−1 = 0.01. The data are the result of an average
over 64 realizations with different initial random configurations of enzymes.

with a small enzyme volume fraction (φ ≈ 0.074), and NE (0)
= 400, where φ ≈ 0.29. We observe that k1(t) is indepen-
dent of φ within the statistical uncertainty of our simulations,
so we have omitted the φ dependence of k1(t) and k−1(t) in
our notation; however, we cannot rule out a weak dependence
on φ. These results suggest that proposals that relate the reac-
tion rate to expressions involving the activities54, 55 may pro-
vide a convenient way to analyze rate data.

The rate coefficient k1(t) displayed in Fig. 7 evolves to
its asymptotic value in a nonmonotonic fashion.56 The inset of
Fig. 7(a) shows the time dependent substrate radial distribu-
tion function near the enzyme. The features that are responsi-
ble for the structure of gS(rc, t)/gS(rc, 0) were discussed ear-
lier in connection with the plot in Fig. 6. Here, however, no
product molecules are produced in the reaction. In this case,
the substrate molecules which are released when the complex
dissociates, along with the substrate molecules that arrive by
diffusion, gradually increase the local substrate concentration
near the enzyme, after the initial fast substrate depletion due
to the complex formation reaction. This effect is responsible
for the nonmonotonic time evolution of k1(t).

We can contrast this situation with that for irreversible
reactions leading to the formation of the complex. We con-
sider the reaction E + S → C → E + P where substrates
are completely converted to products with no substrate re-
lease. Figure 8 plots the time dependent rate coefficient k1(t)
for two different initial numbers of enzymes. Again, these
scaled rate coefficients exhibit data collapse for different φ

values.
The continuous conversion of S → P leads to a reduc-

tion of gS(rc, t)/gS(rc, 0) near the enzyme. From the right in-
set in Fig. 8, one can see that a strong substrate concentration
gradient develops near the enzyme. The value of k0

1 obtained
from k1(t = 0) in the simulation is in accord with the estimate
of the intrinsic rate constant using Eq. (13), k0

1 ≈ 25.3.
The steady state rate constant k1 can be determined from

the long time value of k1(t). From Fig. 8 (left inset) we see
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kcat = 0.5. The data are the result of an average over 64 realizations with
different initial random configurations of enzymes.

that k1(t) decays monotonically as a t−1/2 power law to
its steady state value, in accord with the asymptotic form of
Eq. (12),

k1(t) ∼ k0
1kD

k0
1 + kD

[
1 + k0

1 σ̄E

k0
1 + kD

(π Dt)−1/2
]
. (20)

The predicted steady state rate coefficient is k1 = k0
1kD/(k0

1
+ kD). We can estimate kD from the known value of the diffu-
sion coefficient D = DE + DS ≈ DS = 0.24, where we have
used the analytical expression for the diffusion coefficient for
MPC dynamics,37

DS = kB T τ

2m

( 3γ

(γ − 1 + e−γ )(1 − cos α)
− 1

)
, (21)

where γ is the number of particles per MPC cell. We find
kD = 10.1, which yields k1 = 7.2. Determining k1 from an
extrapolation of the simulation data, we find k1 ≈ 7.4 which
is consistent with the theoretical estimate.

B. Lifetime distributions

In order to provide additional details on many-body en-
zyme effects in the substrate binding processes, we computed
statistics related to the fates of substrate molecules that are
formed when a complex dissociates. A newly released sub-
strate molecule may rebind to the same enzyme from which it
was released, bind to another enzyme in the system or, in an
infinite system, remain unbound.

The lifetime distributions of the newly released substrate
molecules can be computed by recording the time intervals tL

between the release of a substrate molecule and its subsequent
rebinding, either to the same or different enzyme molecules.
We denote by Ps(tL ) and Po(tL ) the lifetime probability den-
sities for rebinding to the same and different enzymes, respec-
tively. In Fig. 9(a), we see that Ps(tL ) decays with a t−3/2

L
power law as expected for a diffusive process.57, 58 The dis-
tribution Po(tL ) exhibits an exponential decay e−tL /τL with
characteristic time τL = 33.3 for the chosen simulation pa-
rameters. The time τL depends on the average distance �E

between enzyme molecules, which varies in time as the re-
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FIG. 9. (a) Lifetime distribution for rebinding to the same enzyme. Inset:
Log–log plot and fit (red dotted line) showing the t−3/2 power-law decay.
(b) Lifetime distribution for rebinding to other enzymes. Inset: Linear-log
plot and fit (red dotted line) to an exponential decay, e−tL /33.3. Simula-
tion parameters: NE (0) = 400, NS(0) = 5000, kB T = 0.2, σE = 3.0, pR

= 1.0, k0
−1 = 0.5, and kcat = 0.05. The data are an average of 32 realiza-

tions of the dynamics.

action proceeds. An order of magnitude estimate of the de-
cay time is τL ∼ �2

E/6D. If the average number of enzyme
molecules in the system after a rapid initial decay, N̄E ≈ 225,
is used to estimate �E ≈ (V/N̄E )1/3 − 2rc ≈ 3.1 ( 2rc is sub-
tracted to account for the finite sizes of the enzymes), we ob-
tain τL ≈ 6.6.

The binding of substrate molecules to enzymes that are
different from those from which they were released can lead
to cooperative enzyme many-body effects, such as the syn-
chronous operation of ensembles of enzymes. In addition
studies of the type described above can be extended to con-
sider cases where the products produced by one type of en-
zyme can act as inhibitors or substrates for different types
of enzymes in the system, resulting in more complicated
kinetics.

V. CONCLUSION

The mesoscopic model described in this paper provides
a basis for a simulation scheme that can be used to study a
variety of features related to the effects of diffusion, reaction,
and hydrodynamics on enzyme kinetics. A coarse grained de-
scription is adopted where the enzyme is modeled as a finite-
size spherical particle and its reactive and nonreactive dynam-
ics with substrate molecules account for basic properties of
the dynamics. While all details related to specific aspects of
substrate binding and unbinding, the reactive event leading
to product formation, and possible conformational changes in
the enzyme during the catalytic process are subsumed in the
rates of simple reactive and nonreactive collision events, the
model preserves a number of important features that are es-
sential for a proper description of the dynamics at a coarse
grained level. The model is particle-based and includes en-
zyme, substrate, enzyme–substrate complex, product, and sol-
vent molecules. The collision dynamics is constructed to sat-



044503-10 J.-X. Chen and R. Kapral J. Chem. Phys. 134, 044503 (2011)

isfy mass, momentum, and energy conservation laws. Since
the dynamics involves complex formation and dissociation,
the solvent plays a crucial role in preserving energy and mo-
mentum conservation. Since all of these conservation laws
are satisfied, in particular momentum conservation, hydro-
dynamic interactions among the enzymes and complexes is
taken into account in the dynamics.

The influence of diffusion on the enzyme kinetics was ex-
plored and a variety of different power-law regimes, as well
as regimes where both nonmonotonic and monotonic evolu-
tion of the product production rate to its steady state value,
were observed in accord with earlier investigations using dif-
ferent theoretical and simulation methods. For systems where
the enzymes occupy significant volume fractions of the sys-
tem, the structure of the chemical rate law and the forms of
the time and volume-fraction-dependent rate coefficients that
characterize the reactive dynamics were explored. A formu-
lation of the rate law in terms of activities provided a useful
way to analyze the simulation results.

The model could be used to explore a variety of prob-
lems in this area. Applications involving cooperative enzyme
dynamics may be difficult to study by other means; however,
since all species, including solvent, are treated in the dynami-
cal model, diffusive and hydrodynamic collective motions are
taken into account without the need for the introduction of
phenomenological space and time dependent transport prop-
erties. The model may also be generalized to include finer
detail in the enzyme conformational structure and dynamics.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the Nat-
ural Sciences and Engineering Council of Canada.

APPENDIX: CONSTRUCTION OF REACTIVE
COLLISION DYNAMICS

1. The reaction A + B → C

We consider a general binary reaction between species A
and B that leads to the formation of the complex C . Once
an AB pair with relative separation, rAB = |rA − rB | ≤ rc,
in the reaction zone is selected for reaction, the complex
C is formed with mass mC = m AB = m A + m B to ensure
mass conservation. We also require that momentum and en-
ergy be conserved. Before the reactive event the total mo-
mentum of the colliding A and B particles is pA + pB

= PAB = m ABVAB , where the center of mass velocity of the
pair is VAB = (m AvA + m BvB)/m AB . To conserve momen-
tum in this reactive event, we choose the momentum of the
newly formed complex, p′

C , to be equal to the total momen-
tum of the AB pair before reaction: p′

C = PAB . In terms of
velocities we have v′

C = VAB .
The total energy of the pair before reaction is

1
2 m Av2

A + 1
2 m Bv2

B + VAB(rAB)

= 1
2μABv2

r + 1
2 m AB V 2

AB + VAB(rAB). (A1)

In the right equality, we have written the total kinetic en-
ergy in terms of the relative and center of mass kinetic en-
ergies of the pair. Here VAB(rAB) is the A − B pair potential
and μAB = m Am B/m AB the reduced mass. Since v′

C = VAB

from momentum conservation, the kinetic energy of the com-
plex that is formed on reaction is 1/2mC v ′2

C = 1/2m AB V 2
AB ,

consequently we must dispose of the kinetic and potential en-
ergy of the relative motion of the AB pair in order to con-
serve energy. We can do this by allowing energy to flow into
the solvent. In particular if there are n solvent molecules in
the vicinity of the reactive AB pair, we can adjust the veloc-
ities of these solvent molecules to account for the AB rel-
ative energy. Thus, accounting for these neighboring solvent
molecules, total energy conservation in the reaction reads

1

2
μABv2

r + 1

2
m AB V 2

AB + VAB(rAB)

+
n∑

j=1

1

2
mM v2

M j +
n∑

j=1

VAj (rAj )

= 1

2
mC v ′2

C +
n∑
j

1

2
mM v ′2

M j +
n∑
j

VAj (rAj ), (A2)

where the primes again denote postcollision quantities. Since
the rAj distances do not change on reaction and 1/2mC v ′2

C
= 1/2m AB V 2

AB as noted above, this equation simplifies to

1

2
μABv2

r + VAB(rAB) +
n∑

j=1

1

2
mM v2

M j =
n∑
j

1

2
mM v ′2

M j .

(A3)

Of course the total momentum of these participating solvent
molecules must also be conserved so that

n∑
j=1

pM j =
n∑

j=1

p′
M j , (A4)

which is equivalent to requiring that the precollision and post-
collision center of mass velocities of the n solvent molecules
are the same: 1/n

∑n
j=1 VM j = V(n)

M = V(n)′
M .

These relations allow the postreaction velocities of the
participating solvent molecules to be determined. In view of
the fact that V(n)

M = V(n)′
M , Eq. (A3) can be written in terms of

solvent velocities relative to their center of mass as
n∑
j

1

2
mM

(
v′

M j − V(n)
M

)2

= 1

2
μABv2

r + VAB(rAB) +
n∑

j=1

1

2
mM

(
vM j − V(n)

M

)2
. (A5)

Partitioning the AB pair relative energy equally among the
n solvent molecules, we may solve for the magnitude of the
postreaction solvent velocities, relative to their center of mass
velocity to obtain

∣∣v′
M j − V(n)

M

∣∣ =
[ μAB

nmM
v2

r + 2

nmM
VAB(rAB)

+ (vM j − V(n)
M )2

]1/2
. (A6)
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It remains to specify the unit vectors n̂ j that determine the
directions of the solvent relative velocities. There is consider-
able freedom in how this can be done. Since we must satisfy∑n

j

(
v′

M j − V(n)
M

) = 0, one way is to simply choose the unit
vectors of n − 1 participating solvent molecules at random.
The remaining unit vector, say n̂n , is then determined by the
condition,

n̂n = −
n−1∑

j

n̂ j

∣∣v′
M j − V(n)

M

∣∣∣∣v′
Mn − V(n)

M

∣∣ . (A7)

The postreaction values of the velocities of the participating
solvent particles are then given by

v′
M j = V(n)

M + n̂ j

∣∣v′
M j − V(n)

M

∣∣, j = 1, . . . , n, (A8)

with |v′
M j − V(n)

M | given by Eq. (A6). Equation (A8), along
with v′

C = VAB , completely determines the postreaction sol-
vent and enzyme–substrate-complex velocities so that mass,
momentum and energy are conserved.

As an illustration of these general formulas, consider the
case where two solvent molecules ( n = 2) participate in the
energy exchange on reaction. For n = 2, Eq. (A6) reads

v ′
Mr =

(
2μAB

mM
v2

r + 4

mM
VAB(rAB) + v2

Mr

)1/2

, (A9)

where vMr = vM1 − vM2. Equation (A7) gives n̂2 = −n̂1,
where n̂1 is a randomly chosen unit vector and from Eq. (A8)
the postreaction solvent velocities are

v
′
M1 = V(2)

M + 1
2 n̂1v ′

Mr
(A10)

v
′
M2 = V(2)

M − 1
2 n̂1v ′

Mr .

These expressions are used in the simulations described in the
text.

2. The reaction C → A + B

The postreaction velocities for the reaction C → A + B
can be computed in the following way so as to satisfy mass,
momentum, and energy conservations. Mass conservation of
course requires that mC = m A + m B , while momentum con-
servation implies that

mC vC = m Av′
A + m Bv′

B = mC V′
AB, (A11)

or vC = V′
AB . If we just consider the A, B, and C species,

energy conservation gives

1
2 mC v2

C = 1
2 m Av ′2

A + 1
2 m Bv ′2

B + VAB(rAB)

= 1
2μABv ′2

r + 1
2 mC V ′2

AB + VAB(rAB), (A12)

which, in view of momentum conservation, would put a se-
vere restriction on v ′

r that cannot always be satisfied. Once
again we need to utilize the presence of surrounding solvent
molecules to provide energy to the newly formed A and B
molecules for them to separate. Taking into account the pres-
ence of n neighboring solvent molecules, energy conserva-

tion now becomes

1

2
mC v2

C +
n∑
j

1

2
mM v2

M j

= 1

2
μABv ′2

r + 1

2
mC V ′2

AB + VAB(rAB) +
n∑
j

1

2
mM v ′2

M j .

(A13)

Momentum conservation for these participating solvent
molecules implies that V(n)

M = V(n)′
M . Taking into account mo-

mentum conservation for all species participating in the reac-
tion, the energy conservation condition becomes

n∑
j

1

2
mM

(
vM j − V(n)

M

)2

= 1

2
μABv ′2

r + VAB(rAB) +
n∑
j

1

2
mM

(
v′

M j − V(n)
M

)2
.

(A14)

Thus, the magnitude of the postreaction relative velocity is
given by

v ′
r =

[
− 2

μAB
VAB(rAB)

+ mM

μAB

n∑
j

((
vM j − V(n)

M

)2 − (
v′

M j − V(n)
M

)2
)]1/2

. (A15)

Once the postreaction values of the velocities of the partic-
ipating solvent molecules are specified, the above equation
determines v ′

r . The direction of v′
r can be chosen to be in

the outward radial direction from A to B, r̂B A. A conve-
nient choice for the v′

M j follows from the assumption that
postreaction velocities, relative to their center of mass veloc-
ity, are zero so that their relative energies are converted into
relative energy of the newly formed A and B molecules.
Thus, v′

M j = V(n)
M and

v ′
r =

[
− 2

μAB
VAB(rAB)+ mM

μAB

n∑
j

(
vM j −V(n)

M

)2
]1/2

. (A16)

Again, consider the case where only two neighboring sol-
vent molecules provide the thermal energy and the newly cre-
ated S or P molecule lies outside the range of the AB po-
tential so that VAB(rAB) = 0. In this case, Eq. (A16) takes the
form,

v ′
r =

√
mM

2μAB
|vM1 − vM2|, (A17)

and

v′
A = vC + m B

mC

√
mM

2μAB
r̂B A|vM1 − vM2|,

(A18)

v′
B = vC − m A

mC

√
mM

2μAB
r̂B A|vM1 − vM2|.
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